1
|
Liu Y, Chen M. Emerging role of α-Klotho in energy metabolism and cardiometabolic diseases. Diabetes Metab Syndr 2023; 17:102854. [PMID: 37722166 DOI: 10.1016/j.dsx.2023.102854] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/16/2023] [Accepted: 09/08/2023] [Indexed: 09/20/2023]
Abstract
BACKGROUND AND AIM Klotho was first identified as a gene associated with aging and longevity in 1997. α-Klotho is an anti-aging protein and its role in energy metabolism, various cardiovascular diseases (CVDs), and metabolic disorders is increasingly being recognized. In this review, we aimed to outline the potential protective role and therapeutic prospects of α-Klotho in energy metabolism and cardiometabolic diseases (CMDs). METHODS We comprehensively reviewed the relevant literature in PubMed using the keywords 'Klotho', 'metabolism', 'cardiovascular', 'diabetes', 'obesity', 'metabolic syndrome', and 'nonalcoholic fatty liver disease'. RESULTS α-Klotho can be divided into membrane-bound Klotho, secreted Klotho, and the most studied circulating soluble Klotho that can act as a hormone. Klotho gene polymorphisms have been implicated in energy metabolism and CMDs. α-Klotho can inhibit insulin/insulin growth factor-1 signaling and its overexpression can lead to a 'healthy insulin resistance' and may exert beneficial effects on the regulation of glycolipid metabolism and central energy homeostasis. α-Klotho, mainly serum Klotho, has been revealed to be protective against CVDs, diabetes and its complications, obesity, and nonalcoholic fatty liver disease. Human recombinant Klotho protein/Klotho gene delivery, multiple drugs, or natural products, and exercise can increase α-Klotho expression. CONCLUSION Overall, α-Klotho has demonstrated its potential as a promising target for modulating energy metabolism and CMDs, and further research is needed to explore its utilization in clinical practice in the future.
Collapse
Affiliation(s)
- Yuanbin Liu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, No. 99 Zhang Zhidong Road, Wuhan, Hubei, 430000, PR China
| | - Mingkai Chen
- Department of Gastroenterology, Renmin Hospital of Wuhan University, No. 99 Zhang Zhidong Road, Wuhan, Hubei, 430000, PR China.
| |
Collapse
|
2
|
Afsar B, Afsar RE. Hypertension and cellular senescence. Biogerontology 2023:10.1007/s10522-023-10031-4. [PMID: 37010665 DOI: 10.1007/s10522-023-10031-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 03/21/2023] [Indexed: 04/04/2023]
Abstract
Essential or primary hypertension is a wordwide health problem. Elevated blood pressure (BP) is closely associated not only with increased chronological aging but also with biological aging. There are various common pathways that play a role in cellular aging and BP regulation. These include but not limited to inflammation, oxidative stress, mitochondrial dysfunction, air pollution, decreased klotho activity increased renin angiotensin system activation, gut dysbiosis etc. It has already been shown that some anti-hypertensive drugs have anti-senescent actions and some senolytic drugs have BP lowering effects. In this review, we have summarized the common mechanisms underlying cellular senescence and HT and their relationships. We further reviewed the effect of various antihypertensive medications on cellular senescence and suggest further issues to be studied.
Collapse
Affiliation(s)
- Baris Afsar
- Department of Nephrology, School of Medicine, Suleyman Demirel University, Isparta, Turkey.
| | - Rengin Elsurer Afsar
- Department of Nephrology, School of Medicine, Suleyman Demirel University, Isparta, Turkey
| |
Collapse
|
3
|
Maaliki D, Itani MM, Itani HA. Pathophysiology and genetics of salt-sensitive hypertension. Front Physiol 2022; 13:1001434. [PMID: 36176775 PMCID: PMC9513236 DOI: 10.3389/fphys.2022.1001434] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Most hypertensive cases are primary and heavily associated with modifiable risk factors like salt intake. Evidence suggests that even small reductions in salt consumption reduce blood pressure in all age groups. In that regard, the ACC/AHA described a distinct set of individuals who exhibit salt-sensitivity, regardless of their hypertensive status. Data has shown that salt-sensitivity is an independent risk factor for cardiovascular events and mortality. However, despite extensive research, the pathogenesis of salt-sensitive hypertension is still unclear and tremendously challenged by its multifactorial etiology, complicated genetic influences, and the unavailability of a diagnostic tool. So far, the important roles of the renin-angiotensin-aldosterone system, sympathetic nervous system, and immune system in the pathogenesis of salt-sensitive hypertension have been studied. In the first part of this review, we focus on how the systems mentioned above are aberrantly regulated in salt-sensitive hypertension. We follow this with an emphasis on genetic variants in those systems that are associated with and/or increase predisposition to salt-sensitivity in humans.
Collapse
Affiliation(s)
- Dina Maaliki
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Maha M. Itani
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Hana A. Itani
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
4
|
Aziz MS, Aamir AUH, Khan A, Khan Z, Shah SQ, Safi SZ, Batumalaie K, Alobaid HM, Ali A, Imran M. Investigation of Klotho G395A and C1818T Polymorphisms and Their Association with Serum Glucose Level and Risk of Type 2 Diabetes Mellitus. Genes (Basel) 2022; 13:1532. [PMID: 36140700 PMCID: PMC9498819 DOI: 10.3390/genes13091532] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/23/2022] [Accepted: 08/23/2022] [Indexed: 12/01/2022] Open
Abstract
Objective: The objective was to study the association of Klotho gene G395A and C1818T single nucleotide polymorphisms with glycemia, serum, glycosylated hemoglobin (HbA1c) level and the risk of type 2 diabetes mellitus (T2DM) in the Pashtun population of Pakistan. Methods: In this study, 195 normal individuals and 217 T2DM patients were enrolled. All subjects were divided into three groups, namely overall subjects (control + T2DM patients), control individuals and T2DM patients, and their fasting glucose, HbA1c level, lipid profile and C1818T and G395A polymorphisms were determined. Results: The allele frequencies of G395A in overall subjects were 0.568 for A and 0.432 for G. Similarly, allele frequencies for G395A in overall subjects were 0.597 and 0.403 for C and T alleles, respectively. The AA genotype of G395A was observed to be a risk factor for T2DM. In normal individuals, no significant (p > 0.05) association was observed between klotho C1818T and G395A polymorphisms and hyperglycemia. In overall subjects, the C1818T polymorphism was associated (p < 0.05) with high fasting glucose and HbA1c levels in female subjects only. In T2DM patients, both C1818T and G395A polymorphisms were found to be significantly (p < 0.05) associated with high fasting glucose and HbA1c levels both in males and females. Conclusion: The G395A polymorphism was observed to increase the risk of T2DM. Both C1818T and G395 were associated with high fasting glucose and HbA1c levels in T2DM patients.
Collapse
Affiliation(s)
- Muhammad Sadiq Aziz
- Biochemistry Section, Institute of Chemical Sciences, University of Peshawar, Peshawar 25120, Pakistan
| | - Aziz-ul-Hasan Aamir
- Department of Diabetes and Endocrinology, Hayatabad Medical Complex, Peshawar 25120, Pakistan
| | - Ajab Khan
- Biochemistry Section, Institute of Chemical Sciences, University of Peshawar, Peshawar 25120, Pakistan
| | - Zahid Khan
- Biochemistry Section, Institute of Chemical Sciences, University of Peshawar, Peshawar 25120, Pakistan
| | - Syed Qaiser Shah
- Biochemistry Section, Institute of Chemical Sciences, University of Peshawar, Peshawar 25120, Pakistan
| | - Sher Zaman Safi
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom 42610, Malaysia
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan
| | - Kalaivani Batumalaie
- Department of Biomedical Sciences, Faculty of Health Sciences, Asia Metropolitan University, 81750 Johor Bahru, Malaysia
| | - Hussah M. Alobaid
- Department of Zoology, College of Science, King Saud University, Riyadh 11362, Saudi Arabia
| | - Abid Ali
- Department of Zoology, Abdul Wali Khan University, Mardan 23200, Pakistan
| | - Muhammad Imran
- Biochemistry Section, Institute of Chemical Sciences, University of Peshawar, Peshawar 25120, Pakistan
| |
Collapse
|
5
|
Huang D, Wang S. Association Between the Anti-Aging Protein Klotho and Sleep Duration in General Population. Int J Gen Med 2021; 14:10023-10030. [PMID: 34955652 PMCID: PMC8694114 DOI: 10.2147/ijgm.s345927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 12/10/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose Sleep duration is associated with aging. However, the relationship between sleep duration and the concentration of the protein klotho in the serum remains unknown in the general population of the United States. Hence, this study aimed at exploring the association between them. Methods Participants whose data included klotho protein and sleep duration variables in the National Health and Nutrition Examination Survey data from 2007 to 2016 were utilized for this analysis. Results Sleep duration was non-linearly associated with the level of klotho protein in the serum, with a negative association between sleep duration and serum klotho concentration after adjusting for confounding variables (β = −7.6; 95% CI: −11.3, −4.0; P < 0.001). The conversion of the sleep duration from a continuous variable to a categorical variable (tertile: T1: <5.5 hours; T2: 5.5–7.5 hours; T3: >7.5 hours) revealed that the serum klotho of the participants in the highest tertile (>7.5 hours) was 21.9 pg/mL lower (95% CI: −38.6, −5.2; P = 0.01) than those in the lowest tertile (<5.5 hours). Conclusion Our results revealed that people who sleep more than 7.5 hours per night have decreased levels of the anti-aging protein klotho in their serum, thus being more at risk of aging-related syndromes.
Collapse
Affiliation(s)
- Dongdong Huang
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, Zhejiang, People's Republic of China
| | - Saibin Wang
- Department of Respiratory Medicine, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua Municipal Central Hospital, Jinhua, 321000, Zhejiang, People's Republic of China
| |
Collapse
|
6
|
Hu JW, Shi T, Mu JJ. Association of Genetic Variants of Klotho with BP Responses to Dietary Sodium or Potassium Intervention and Long-Term BP Progression. Kidney Blood Press Res 2021; 47:94-102. [PMID: 34856559 DOI: 10.1159/000519839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/09/2021] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES Klotho (KL) plays pivotal roles in the progression of salt-sensitive hypertension. Salt-sensitive hypertension was associated with KL genotypes. We aimed to explore the association of common genetic variants of KL with individual blood pressure (BP) responses to sodium and potassium through a dietary intervention study as well as long-term BP progression. METHODS We conducted family-based dietary interventions among 344 participants from 126 families in rural villages of northern China in 2004. Subjects sequentially underwent a baseline diet, a low-salt diet (51.3 mmol/day Na), a high-salt diet (307.8 mmol/day Na), and a high-salt + potassium supplementation diet (307.8 mmol/day Na + 60 mmol/day K). After dietary intervention, we followed up with these participants in 2009 and 2012. The associations between 6 single-nucleotide polymorphisms (SNPs) of KL and phenotypes were analyzed through a linear mixed-effects model. RESULTS SNPs rs211247 and rs1207568 were positively correlated with the BP response to high-salt diet in the dominant model after adjusting for confounders (β = 1.670 and 2.163, p = 0.032 and 0.005, respectively). BPs rs526906 and rs525014 were in a haplotype block. Block rs526906-rs525014 was positively correlated with diastolic BP response to potassium and potassium sensitivity in the additive model (β = 0.845, p = 0.032). In addition, regression analysis indicated that rs211247 was associated with long-term systolic BP alterations after 8 years of follow-up in the recessive model (β = 20.47, p = 0.032). CONCLUSIONS Common variants of the KL gene might modify individual BP sensitivity to sodium or potassium and influence the long-term progression of BP, suggesting a potential role in the development of salt-sensitive hypertension. Thus, KL may be a new early intervention target for salt-sensitive hypertension.
Collapse
Affiliation(s)
- Jia-Wen Hu
- Department of Cardiovascular Surgery, First Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an, China
| | - Tao Shi
- Department of Cardiovascular Surgery, First Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an, China
| | - Jian-Jun Mu
- Department of Cardiology, First Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Molecular Cardiology of Shaanxi Province, Xi'an, China
| |
Collapse
|
7
|
Xu L, Feng Z, Dai Z, Lee WYW, Wu Z, Liu Z, Sun X, Tang N, Cheng JCY, Qiu Y, Zhu Z. A Functional SNP in the Promoter of LBX1 Is Associated With the Development of Adolescent Idiopathic Scoliosis Through Involvement in the Myogenesis of Paraspinal Muscles. Front Cell Dev Biol 2021; 9:777890. [PMID: 34917617 PMCID: PMC8670502 DOI: 10.3389/fcell.2021.777890] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 10/28/2021] [Indexed: 01/22/2023] Open
Abstract
Previous studies have shown that LBX1 is associated with adolescent idiopathic scoliosis (AIS) in multiple populations. For the first time, rs1322330 located in the putative promoter region of LBX1 was found significantly associated with AIS in the Chinese population [p = 6.08 × 10–14, odds ratio (OR) = 1.42, 95% confidence interval of 1.03–1.55]. Moreover, the luciferase assay and electrophoretic mobility shift assay supported that the allele A of rs1322330 could down-regulate the expression of LBX1 in the paraspinal muscles of AIS. In addition, silencing LBX1 in the myosatellite cells resulted in significantly inhibited cell viability and myotube formation, which supported an essential role of LBX1 in muscle development of AIS. To summarize, rs1322330 may be a novel functional SNP regulating the expression of LBX1, which was involved in the etiology of AIS possibly via regulation of myogenesis in the paraspinal muscles.
Collapse
Affiliation(s)
- Leilei Xu
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- Joint Scoliosis Research Center of The Chinese University of Hong Kong and Nanjing University, Nanjing/Hong Kong, China
| | - Zhenhua Feng
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- Joint Scoliosis Research Center of The Chinese University of Hong Kong and Nanjing University, Nanjing/Hong Kong, China
| | - Zhicheng Dai
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- Joint Scoliosis Research Center of The Chinese University of Hong Kong and Nanjing University, Nanjing/Hong Kong, China
| | - Wayne Y. W. Lee
- Joint Scoliosis Research Center of The Chinese University of Hong Kong and Nanjing University, Nanjing/Hong Kong, China
- SH Ho Scoliosis Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Zhichong Wu
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- Joint Scoliosis Research Center of The Chinese University of Hong Kong and Nanjing University, Nanjing/Hong Kong, China
| | - Zhen Liu
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- Joint Scoliosis Research Center of The Chinese University of Hong Kong and Nanjing University, Nanjing/Hong Kong, China
| | - Xu Sun
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- Joint Scoliosis Research Center of The Chinese University of Hong Kong and Nanjing University, Nanjing/Hong Kong, China
| | - Nelson Tang
- Joint Scoliosis Research Center of The Chinese University of Hong Kong and Nanjing University, Nanjing/Hong Kong, China
- SH Ho Scoliosis Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong, China
| | - Jack Chun-Yiu Cheng
- Joint Scoliosis Research Center of The Chinese University of Hong Kong and Nanjing University, Nanjing/Hong Kong, China
- SH Ho Scoliosis Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Yong Qiu
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- Joint Scoliosis Research Center of The Chinese University of Hong Kong and Nanjing University, Nanjing/Hong Kong, China
| | - Zezhang Zhu
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- Joint Scoliosis Research Center of The Chinese University of Hong Kong and Nanjing University, Nanjing/Hong Kong, China
- *Correspondence: Zezhang Zhu,
| |
Collapse
|
8
|
Morevati M, Mace ML, Egstrand S, Nordholm A, Doganli C, Strand J, Rukov JL, Torsetnes SB, Gorbunova V, Olgaard K, Lewin E. Extrarenal expression of α-klotho, the kidney related longevity gene, in Heterocephalus glaber, the long living Naked Mole Rat. Sci Rep 2021; 11:15375. [PMID: 34321565 PMCID: PMC8319335 DOI: 10.1038/s41598-021-94972-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/16/2021] [Indexed: 11/19/2022] Open
Abstract
The Naked Mole Rat (NMR), Heterocephalus glaber, provides an interesting model for studying biomarkers of longevity due to its long lifespan of more than 30 years, almost ten times longer than that of mice and rats. α-Klotho (klotho) is an aging-suppressor gene, and overexpression of klotho is associated with extended lifespan in mice. Klotho is predominantly expressed in the kidney. The expression profile of klotho in the NMR has not previously been reported. The present investigation studied the expression of klotho in the kidney of NMR with that of Rattus Norvegicus (RN) and demonstrated that klotho was expressed in the kidney of NMR at the same level as found in RN. Besides, a significant expression of Kl mRNA was found in the liver of NMR, in contrast to RN, where no hepatic expression was detected. The Klotho expression was further confirmed at the protein level. Thus, the results of the present comparative study indicate a differential tissue expression of klotho between different species. Besides its important function in the kidney, Klotho might also be of significance in the liver of NMR. It is suggested that the hepatic extrarenal expression of klotho may function as a further longevity-related factor in supplement to the Klotho in the kidney.
Collapse
Affiliation(s)
- M Morevati
- Nephrological Department P 2131, Rigshospitalet, University of Copenhagen, 9 Blegdamsvej, 2100, Copenhagen, Denmark.
| | - M L Mace
- Nephrological Department P 2131, Rigshospitalet, University of Copenhagen, 9 Blegdamsvej, 2100, Copenhagen, Denmark
| | - S Egstrand
- Nephrological Department P 2131, Rigshospitalet, University of Copenhagen, 9 Blegdamsvej, 2100, Copenhagen, Denmark
- Nephrological Department B, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| | - A Nordholm
- Nephrological Department P 2131, Rigshospitalet, University of Copenhagen, 9 Blegdamsvej, 2100, Copenhagen, Denmark
- Nephrological Department B, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| | - C Doganli
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - J Strand
- Randers Regnskov, Randers, Denmark
| | - J L Rukov
- Nephrological Department P 2131, Rigshospitalet, University of Copenhagen, 9 Blegdamsvej, 2100, Copenhagen, Denmark
| | - S B Torsetnes
- Department of Neurology, Akershus University Hospital, Oslo, Norway
| | - V Gorbunova
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - K Olgaard
- Nephrological Department P 2131, Rigshospitalet, University of Copenhagen, 9 Blegdamsvej, 2100, Copenhagen, Denmark
| | - E Lewin
- Nephrological Department P 2131, Rigshospitalet, University of Copenhagen, 9 Blegdamsvej, 2100, Copenhagen, Denmark
- Nephrological Department B, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
9
|
Chen Z, Xiong L, Jin H, Yu J, Li X, Fu H, Wen L, Qi H, Tong C, Saffery R, Kilby MD, Baker PN. Advanced maternal age causes premature placental senescence and malformation via dysregulated α-Klotho expression in trophoblasts. Aging Cell 2021; 20:e13417. [PMID: 34105233 PMCID: PMC8282245 DOI: 10.1111/acel.13417] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 12/20/2022] Open
Abstract
Advanced maternal age (AMA) pregnancy is associated with higher risks of adverse perinatal outcomes, which may result from premature senescence of the placenta. α-Klotho is a well-known antiaging protein; however, its expression and effect on the placenta in AMA pregnancies have not yet been fully elucidated. The expression patterns of α-Klotho in mouse and human placentas from AMA pregnancies were determined by Western blotting and immunohistochemistry (IHC) staining. α-Klotho expression in JAR cells was manipulated to investigate its role in trophoblastic senescence, and transwell assays were performed to assess trophoblast invasion. The downstream genes regulated by α-Klotho in JAR cells were first screened by mRNA sequencing in α-Klotho-knockdown and control JAR cells and then validated. α-Klotho-deficient mice were generated by injecting klotho-interfering adenovirus (Ad-Klotho) via the tail vein on GD8.5. Ablation of α-Klotho resulted in not only a senescent phenotype and loss of invasiveness in JAR cells but also a reduction in the transcription of cell adhesion molecule (CAM) genes. Overexpression of α-Klotho significantly improved invasion but did not alter the expression of senescence biomarkers. α-Klotho-deficient mice exhibited placental malformation and, consequently, lower placental and fetal weights. In conclusion, AMA results in reduced α-Klotho expression in placental trophoblasts, therefore leading to premature senescence and loss of invasion (possibly through the downregulation of CAMs), both of which ultimately result in placental malformation and adverse perinatal outcomes.
Collapse
Affiliation(s)
- Zhi Chen
- Department of ObstetricsThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing MunicipalityChongqing Medical UniversityChongqingChina
- International Collaborative Laboratory of Reproduction and Development of Chinese Ministry of EducationChongqing Medical UniversityChongqingChina
| | - Liling Xiong
- Department of ObstetricsThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing MunicipalityChongqing Medical UniversityChongqingChina
- International Collaborative Laboratory of Reproduction and Development of Chinese Ministry of EducationChongqing Medical UniversityChongqingChina
| | - Huili Jin
- Department of ObstetricsThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing MunicipalityChongqing Medical UniversityChongqingChina
- International Collaborative Laboratory of Reproduction and Development of Chinese Ministry of EducationChongqing Medical UniversityChongqingChina
| | - Jiaxiao Yu
- Department of ObstetricsThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing MunicipalityChongqing Medical UniversityChongqingChina
- International Collaborative Laboratory of Reproduction and Development of Chinese Ministry of EducationChongqing Medical UniversityChongqingChina
| | - Xin Li
- Department of ObstetricsThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing MunicipalityChongqing Medical UniversityChongqingChina
- International Collaborative Laboratory of Reproduction and Development of Chinese Ministry of EducationChongqing Medical UniversityChongqingChina
| | - Huijia Fu
- Department of ObstetricsThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing MunicipalityChongqing Medical UniversityChongqingChina
- International Collaborative Laboratory of Reproduction and Development of Chinese Ministry of EducationChongqing Medical UniversityChongqingChina
| | - Li Wen
- Department of ObstetricsThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing MunicipalityChongqing Medical UniversityChongqingChina
- International Collaborative Laboratory of Reproduction and Development of Chinese Ministry of EducationChongqing Medical UniversityChongqingChina
| | - Hongbo Qi
- Department of ObstetricsThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing MunicipalityChongqing Medical UniversityChongqingChina
- International Collaborative Laboratory of Reproduction and Development of Chinese Ministry of EducationChongqing Medical UniversityChongqingChina
| | - Chao Tong
- Department of ObstetricsThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing MunicipalityChongqing Medical UniversityChongqingChina
- International Collaborative Laboratory of Reproduction and Development of Chinese Ministry of EducationChongqing Medical UniversityChongqingChina
| | - Richard Saffery
- International Collaborative Laboratory of Reproduction and Development of Chinese Ministry of EducationChongqing Medical UniversityChongqingChina
- Cancer, Disease and Developmental epigenetics, Murdoch Children's Research InstituteRoyal Children's HospitalMelbourneVICAustralia
| | - Mark D. Kilby
- Centre for Women's and Newborn HealthInstitute of Metabolism and Systems ResearchUniversity of BirminghamBirminghamUK
| | - Philip N. Baker
- International Collaborative Laboratory of Reproduction and Development of Chinese Ministry of EducationChongqing Medical UniversityChongqingChina
- College of Life SciencesUniversity of LeicesterLeicesterUK
| |
Collapse
|
10
|
Helvaci N, Kabacam S, Dagdelen S, Lay I, Karabulut E, Mut M, Alikasifoglu M, Erbas T. Klotho gene G395A and C1818T polymorphisms in acromegaly: Association with clinical presentation and comorbidities. Clin Endocrinol (Oxf) 2021; 94:598-605. [PMID: 33296101 DOI: 10.1111/cen.14380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 10/26/2020] [Accepted: 11/19/2020] [Indexed: 11/30/2022]
Abstract
BACKGROUND Klotho is a new identified anti-ageing gene with tumour suppressor activities. Current data suggest that there is a tight relationship between Klotho protein and growth hormone (GH)/insulin-like growth factor-1 (IGF-1) axis. PURPOSE This study aimed to investigate the possible association of Klotho gene polymorphisms with acromegaly and to assess whether these polymorphisms contribute to clinical characteristics, comorbidities and biochemical variables in these patients. METHODS The study included 52 patients with acromegaly and 52 unrelated healthy subjects. The Klotho G395A and C1818T polymorphisms were assessed by Sanger sequencing. Serum levels of sKlotho were determined by ELISA method. RESULTS Subjects carrying GA genotype of Klotho G395A polymorphism had 3.27 times higher risk of developing acromegaly [odds ratio (OR), 3.27; 95% confidence interval (CI): 1.37-7.81; p = .023]. The A allele of G395A was significantly associated with acromegaly risk (OR, 2.27; 95% CI: 1.1-4.72; p = .022). No association was observed between the studied polymorphisms and disease characteristics including age at acromegaly diagnosis, size of adenoma, baseline GH and IGF-1 concentrations, and final outcome. G395A polymorphism was associated with the presence of malignancy (OR, 2.24, 95% CI: 1.63-3.08; p = .019) and colorectal polyps (OR, 1.99; 95% CI: 1.02-3.88; p = .047) in patients with acromegaly. Serum sKlotho levels were significantly higher and correlated with GH and IGF-1 levels among acromegaly patients. There was no association between the studied polymorphisms and sKlotho levels. CONCLUSIONS Klotho G395A polymorphism is associated with acromegaly susceptibility and increased risk of malignancy and colorectal polyps in these patients.
Collapse
Affiliation(s)
- Nafiye Helvaci
- Department of Endocrinology and Metabolism, Hacettepe University School of Medicine, Ankara, Turkey
| | - Serkan Kabacam
- Department of Medical Genetics, Hacettepe University School of Medicine, Ankara, Turkey
| | - Selcuk Dagdelen
- Department of Endocrinology and Metabolism, Hacettepe University School of Medicine, Ankara, Turkey
| | - Incilay Lay
- Department of Medical Biochemistry, Hacettepe University School of Medicine, Ankara, Turkey
| | - Erdem Karabulut
- Department of Biostatistics, Hacettepe University School of Medicine, Ankara, Turkey
| | - Melike Mut
- Department of Neurosurgery, Hacettepe University School of Medicine, Ankara, Turkey
| | - Mehmet Alikasifoglu
- Department of Medical Genetics, Hacettepe University School of Medicine, Ankara, Turkey
| | - Tomris Erbas
- Department of Endocrinology and Metabolism, Hacettepe University School of Medicine, Ankara, Turkey
| |
Collapse
|
11
|
Kanbay M, Demiray A, Afsar B, Covic A, Tapoi L, Ureche C, Ortiz A. Role of Klotho in the Development of Essential Hypertension. Hypertension 2021; 77:740-750. [PMID: 33423524 DOI: 10.1161/hypertensionaha.120.16635] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Klotho has antiaging properties, and serum levels decrease with physiological aging and aging-related diseases, such as hypertension, cardiovascular, and chronic kidney disease. Klotho deficiency in mice results in accelerated aging and cardiovascular injury, whereas Klotho supplementation slows down the progression of aging-related diseases. The pleiotropic functions of Klotho include, but are not limited to, inhibition of insulin/IGF-1 (insulin-like growth factor 1) and WNT (wingless-related integration site) signaling pathways, suppression of oxidative stress and aldosterone secretion, regulation of calcium-phosphate homeostasis, and modulation of autophagy with inhibition of apoptosis, fibrosis, and cell senescence. Accumulating evidence shows an interconnection between Klotho deficiency and hypertension, and Klotho gene polymorphisms are associated with hypertension in humans. In this review, we critically review the current understanding of the role of Klotho in the development of essential hypertension and the most important underlying pathways involved, such as the FGF23 (fibroblast growth factor 23)/Klotho axis, aldosterone, Wnt5a/RhoA, and SIRT1 (Sirtuin1). Based on this critical review, we suggest avenues for further research.
Collapse
Affiliation(s)
- Mehmet Kanbay
- From the Division of Nephrology, Department of Medicine (M.K.), Koc University School of Medicine, Istanbul, Turkey
| | - Atalay Demiray
- Department of Medicine (A.D.), Koc University School of Medicine, Istanbul, Turkey
| | - Baris Afsar
- Division of Nephrology, Department of Internal Medicine, Suleyman Demirel University School of Medicine, Isparta Turkey (B.A.)
| | - Adrian Covic
- Department of Nephrology, Grigore T. Popa University of Medicine, Iasi, Romania (A.C., L.T., C.U.)
| | - Laura Tapoi
- Department of Nephrology, Grigore T. Popa University of Medicine, Iasi, Romania (A.C., L.T., C.U.)
| | - Carina Ureche
- Department of Nephrology, Grigore T. Popa University of Medicine, Iasi, Romania (A.C., L.T., C.U.)
| | - Alberto Ortiz
- Cardiovascular Diseases Institute, Grigore T. Popa University of Medicine and Pharmacy, Iasi, Romania (A.O.)
- IIS-Fundacion Jimenez Diaz, Department of Medicine, School of Medicine, Universidad Autonoma de Madrid, Spain (A.O.)
| |
Collapse
|
12
|
Hu J, Chu C, Shi T, Yan Y, Mu J. Effects of salt intervention on serum levels of Klotho influenced by salt sensitivity. J Clin Hypertens (Greenwich) 2020; 22:2051-2058. [PMID: 33164306 DOI: 10.1111/jch.14044] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/20/2020] [Accepted: 08/22/2020] [Indexed: 12/21/2022]
Affiliation(s)
- Jia‐Wen Hu
- Department of Cardiovascular Surgery First Affiliated Hospital of Medical School Xi’an Jiaotong University Xi’an China
| | - Chao Chu
- Department of Cardiology First Affiliated Hospital of Medical School Xi’an Jiaotong University Xi’an China
- Key Laboratory of Molecular Cardiology of Shaanxi Province Xi’an China
| | - Tao Shi
- Department of Cardiovascular Surgery First Affiliated Hospital of Medical School Xi’an Jiaotong University Xi’an China
| | - Yang Yan
- Department of Cardiovascular Surgery First Affiliated Hospital of Medical School Xi’an Jiaotong University Xi’an China
| | - Jian‐Jun Mu
- Department of Cardiology First Affiliated Hospital of Medical School Xi’an Jiaotong University Xi’an China
- Key Laboratory of Molecular Cardiology of Shaanxi Province Xi’an China
| |
Collapse
|
13
|
Xu X, Hao Y, Zhong Q, Hang J, Zhao Y, Qiao J. Low KLOTHO level related to aging is associated with diminished ovarian reserve. Fertil Steril 2020; 114:1250-1255. [PMID: 33153705 DOI: 10.1016/j.fertnstert.2020.06.035] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 06/19/2020] [Accepted: 06/23/2020] [Indexed: 12/31/2022]
Abstract
OBJECTIVE To explore the relationship between KLOTHO expression and diminished ovarian reserve (DOR). DESIGN A case-control study. SETTING Reproductive medicine center. PATIENT(S) A total of 157 patients with DOR and 159 control women were recruited from the Centre of Reproductive Medicine, Peking University Third Hospital. INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) The granulosa cells were isolated from follicular fluid after oocyte retrieval, and the KLOTHO level of granulosa cell was measured using a modified quantitative polymerase chain reaction technique. The serum KLOTHO level was measured by solid-phase sandwich enzyme-linked immunosorbent assay. RESULT(S) In both granulosa cells and serum derived from women with DOR, KLOTHO expressions were significantly lower compared with normal ovarian reserve controls. Moreover, KLOTHO expression diminished with advancing age. CONCLUSION(S) Diminished KLOTHO expression was associated with DOR. Further longitudinal studies in a similar population accompanying disease progression and mechanism exploration are needed to substantiate the rules of KLOTHO in reproductive aging.
Collapse
Affiliation(s)
- Xiaofei Xu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, People's Republic of China; National Clinical Research Center for Obstetrics and Gynecology, Beijing, People's Republic of China; Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, People's Republic of China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, People's Republic of China
| | - Yongxiu Hao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, People's Republic of China; National Clinical Research Center for Obstetrics and Gynecology, Beijing, People's Republic of China; Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, People's Republic of China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, People's Republic of China
| | - Qihang Zhong
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, People's Republic of China
| | - Jing Hang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, People's Republic of China; National Clinical Research Center for Obstetrics and Gynecology, Beijing, People's Republic of China; Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, People's Republic of China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, People's Republic of China
| | - Yue Zhao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, People's Republic of China; National Clinical Research Center for Obstetrics and Gynecology, Beijing, People's Republic of China; Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, People's Republic of China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, People's Republic of China
| | - Jie Qiao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, People's Republic of China; National Clinical Research Center for Obstetrics and Gynecology, Beijing, People's Republic of China; Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, People's Republic of China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, People's Republic of China; Beijing Advanced Innovation Center for Genomics, Beijing, People's Republic of China; Research Units of Comprehensive Diagnosis and Treatment of Oocyte Maturation Arrest, Beijing, People's Republic of China.
| |
Collapse
|
14
|
Tang J, Yu H, Wang Y, Duan G, Wang B, Li W, Zhu Z. microRNA-199a counteracts glucocorticoid inhibition of bone marrow mesenchymal stem cell osteogenic differentiation through regulation of Klotho expression in vitro. Cell Biol Int 2020; 44:2532-2540. [PMID: 32869899 DOI: 10.1002/cbin.11460] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 08/11/2020] [Accepted: 08/30/2020] [Indexed: 11/11/2022]
Abstract
Osteogenic differentiation (OD) of bone marrow mesenchymal stem cells (BMSCs) is critically important for mitigation of osteoporosis. Glucocorticoids (GCs) are extensively used for treating chronic inflammation, although long-term exposure to GCs is capable of triggering osteoporosis. microRNAs (miRNAs) have been reported to play a critical role in bone diseases. In the present study, we treated BMSCs with dexamethasone (DEX) during OD to stimulate GC-mediated osteoporosis. Microarray and quantitative polymerase chain reaction (Q-PCR) assays demonstrated that miR-199a was upregulated during OD of BMSCs, while DEX treatment caused a significant reduction in miR-199a. Alkaline phosphatase (ALP) activity, Alizarin red (AR) staining, and Q-PCR were applied to assess the role of miRNA-199a overexpression in DEX-triggered OD inhibition. miR-199a was able to rescue OD and ALP activity, which were inhibited by DEX. Additionally, we observed that ALP, BMP2, COL1A1, and Runx2 were increased after transfection of miRNA-199a mimics. Furthermore, we confirmed that miRNA-199a facilitates OD of BMSCs through direct inhibition of Klotho protein and messenger RNA expression affecting the downstream fibroblast growth factor receptor 1/extracellular-signal-regulated kinase and Janus kinase 1/signal transducer and activator of transcription 1 pathways. This study indicates that miR-199a plays a critical role in preventing GC-mediated osteoblast differentiation and may function as a promising miRNA biomarker for osteoporosis.
Collapse
Affiliation(s)
- Jinshan Tang
- Department of Orthopedics, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, Jiangsu, China.,Department of Orthopedics, The Second People's Hospital of Huai'an, Huai'an, Jiangsu, China
| | - Huaixi Yu
- Department of Orthopedics, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, Jiangsu, China.,Department of Orthopedics, The Second People's Hospital of Huai'an, Huai'an, Jiangsu, China
| | - Yunqing Wang
- Department of Orthopedics, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Gang Duan
- Department of Orthopedics, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Bin Wang
- Department of Orthopedics, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Wenbo Li
- Department of Orthopedics, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ziqiang Zhu
- Department of Orthopedics, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
15
|
Citterio L, Delli Carpini S, Lupoli S, Brioni E, Simonini M, Fontana S, Zagato L, Messaggio E, Barlassina C, Cusi D, Manunta P, Lanzani C. Klotho Gene in Human Salt-Sensitive Hypertension. Clin J Am Soc Nephrol 2020; 15:375-383. [PMID: 31992575 PMCID: PMC7057312 DOI: 10.2215/cjn.08620719] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 12/23/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND OBJECTIVES Hypertension is a common aging-related disorder. Salt intake is one of the main environmental factors contributing to the development of hypertension. Transgenic mice with one-half Klotho deficiency displayed a spontaneous BP increase and salt-sensitive hypertension in response to high sodium intake. Usually circulating levels of α-Klotho decrease with age, and this reduction may be stronger in patients with several aging-related diseases. This study aimed at exploring the association of Klotho with salt sensitivity in humans. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS The role of Klotho polymorphisms and α-Klotho serum levels was evaluated in patients with hypertension who were treatment naive and underwent an acute salt-sensitivity test (discovery n=673, intravenous 2 L of 0.9% saline in 2 hours). Salt sensitivity was defined as a mean BP increase of >4 mm Hg at the end of the infusion. A total of 32 single nucleotide polymorphisms in the Klotho gene (KL), previously identified with a genome-wide association study, were used in the genetic analysis and studied for a pressure-natriuresis relationship. RESULTS Of the patients with hypertension, 35% were classified as salt sensitive. The most relevant polymorphism associated with pressure natriuresis was the common missense single nucleotide polymorphism rs9536314, and the GG and GT genotypes were more represented among patients who were salt sensitive (P=0.001). Those carrying the G allele showed a less steep pressure-natriuresis relationship, meaning that a significant increase in mean BP was needed to excrete the same quantity of salt compared with patients who were salt resistant. KL rs9536314 also replicated the pressure-natriuresis association in an independent replication cohort (n=193) and in the combined analysis (n=866). There was an inverse relationship between circulating Klotho and mean BP changes after the saline infusion (r=-0.14, P=0.03). Moreover, circulating α-Klotho was directly related to kidney function at baseline eGFR (r=0.22, P<0.001). CONCLUSIONS KL rs9536314 is associated with salt-sensitive hypertension in patients with hypertension who are treatment naive. Moreover, circulating α-Klotho levels were mainly related to diastolic BP changes at the end of a salt load and to eGFR as an expression of kidney aging.
Collapse
Affiliation(s)
- Lorena Citterio
- Genomics of Renal Diseases and Hypertension Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Simona Delli Carpini
- Genomics of Renal Diseases and Hypertension Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Sara Lupoli
- Department of Health Sciences, University of Milan, Filarete Foundation, Milan, Italy
| | - Elena Brioni
- Genomics of Renal Diseases and Hypertension Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Marco Simonini
- Genomics of Renal Diseases and Hypertension Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Simone Fontana
- Genomics of Renal Diseases and Hypertension Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Laura Zagato
- Genomics of Renal Diseases and Hypertension Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Elisabetta Messaggio
- Genomics of Renal Diseases and Hypertension Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Cristina Barlassina
- Department of Health Sciences, University of Milan, Filarete Foundation, Milan, Italy
| | - Daniele Cusi
- Institute of Biomedical Technologies, National Research Council of Italy (Consiglio Nazionale delle Ricerche, CNR), Milan, Italy; and
- Bio4Dreams Scientific Unit, Bio4Dreams—Business Nursery for Life Sciences, Milan, Italy
| | - Paolo Manunta
- Genomics of Renal Diseases and Hypertension Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Chiara Lanzani
- Genomics of Renal Diseases and Hypertension Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
16
|
Scazzone C, Agnello L, Sasso BL, Ragonese P, Bivona G, Realmuto S, Iacolino G, Gambino CM, Bellia C, Salemi G, Ciaccio M. Klotho and vitamin D in multiple sclerosis: an Italian study. Arch Med Sci 2020; 16:842-847. [PMID: 32542086 PMCID: PMC7286339 DOI: 10.5114/aoms.2019.86969] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 05/01/2019] [Indexed: 12/21/2022] Open
Abstract
INTRODUCTION Low vitamin D levels have been recognised as an important risk factor for autoimmune diseases, including multiple sclerosis (MS). MS is a multifactorial disease, the pathogenesis of which contributes both to genetic and environmental factors. Polymorphisms in genes codifying molecules involved in vitamin D homeostasis have been associated with hypovitaminosis D. However, the influence of polymorphisms of Klotho, which codify a protein with a pivotal role in vitamin D metabolism, have never been investigated. The aim of this study was to evaluate the association among genetic variants of Klotho, namely rs1207568 and rs9536314, serum 25(OH)D3 levels, and multiple sclerosis (both risk and disease progression). MATERIAL AND METHODS 107 patients with MS and 133 healthy controls were enrolled in this study. Serum 25(OH)D3 levels and genotyping of Klotho SNPs were evaluated in all participants by high-performance liquid chromatography and real-time polymerase chain reaction, respectively. RESULTS Allelic and genotypic frequencies did not differ between patients and controls. Concerning rs1207568, we found a trend toward lower serum 25(OH)D3 levels in MS patients with A allele (mutant), both in heterozygosis (AG) and in homozygosis (AA), in comparison to MS patients with G allele in homozygosis (GG) (AG + AA 20.5 ±6.3 µg/l; GG 22.5 ±7.5 µg/l, p = 0.07). CONCLUSIONS Our findings did not identify a role of Klotho in the genetic susceptibility to MS.
Collapse
Affiliation(s)
- Concetta Scazzone
- Department of Biomedicine, Neuroscience, and Advanced Diagnostics, Institute of Clinical Biochemistry, Clinical Molecular Medicine, and Laboratory Medicine, University of Palermo, Palermo, Italy
| | - Luisa Agnello
- Department of Biomedicine, Neuroscience, and Advanced Diagnostics, Institute of Clinical Biochemistry, Clinical Molecular Medicine, and Laboratory Medicine, University of Palermo, Palermo, Italy
| | - Bruna Lo Sasso
- Department of Biomedicine, Neuroscience, and Advanced Diagnostics, Institute of Clinical Biochemistry, Clinical Molecular Medicine, and Laboratory Medicine, University of Palermo, Palermo, Italy
| | - Paolo Ragonese
- Department of Experimental Biomedicine and Neuroscience, University of Palermo, Palermo, Italy
| | - Giulia Bivona
- Department of Biomedicine, Neuroscience, and Advanced Diagnostics, Institute of Clinical Biochemistry, Clinical Molecular Medicine, and Laboratory Medicine, University of Palermo, Palermo, Italy
| | - Sabrina Realmuto
- Department of Experimental Biomedicine and Neuroscience, University of Palermo, Palermo, Italy
| | - Giorgia Iacolino
- Department of Biomedicine, Neuroscience, and Advanced Diagnostics, Institute of Clinical Biochemistry, Clinical Molecular Medicine, and Laboratory Medicine, University of Palermo, Palermo, Italy
| | - Caterina Maria Gambino
- Department of Biomedicine, Neuroscience, and Advanced Diagnostics, Institute of Clinical Biochemistry, Clinical Molecular Medicine, and Laboratory Medicine, University of Palermo, Palermo, Italy
| | - Chiara Bellia
- Department of Biomedicine, Neuroscience, and Advanced Diagnostics, Institute of Clinical Biochemistry, Clinical Molecular Medicine, and Laboratory Medicine, University of Palermo, Palermo, Italy
| | - Giuseppe Salemi
- Department of Experimental Biomedicine and Neuroscience, University of Palermo, Palermo, Italy
| | - Marcello Ciaccio
- Department of Biomedicine, Neuroscience, and Advanced Diagnostics, Institute of Clinical Biochemistry, Clinical Molecular Medicine, and Laboratory Medicine, University of Palermo, Palermo, Italy
- Department of Laboratory Medicine, University-Hospital, Palermo, Italy
- Corresponding author: Prof. Marcello Ciaccio MD, PhD, Department of Biomedicine, Neuroscience and Advanced Diagnostics Institute of Clinical Biochemistry, Clinical Molecular, Medicine, and Laboratory Medicine, University of Palermo, Via Del Vespro 129, 90127 Palermo, Italy, E-mail:
| |
Collapse
|
17
|
The predictive value of Klotho polymorphism, in addition to classical markers of CKD-MBD, for left ventricular hypertrophy in haemodialysis patients. Int Urol Nephrol 2019; 51:1425-1433. [DOI: 10.1007/s11255-019-02193-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 06/04/2019] [Indexed: 10/26/2022]
|
18
|
Valdivielso JM, Bozic M, Galimudi RK, Bermudez-López M, Navarro-González JF, Fernández E, Betriu À. Association of the rs495392 Klotho polymorphism with atheromatosis progression in patients with chronic kidney disease. Nephrol Dial Transplant 2018; 34:2079-2088. [DOI: 10.1093/ndt/gfy207] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 06/04/2018] [Indexed: 02/07/2023] Open
Abstract
Abstract
Background
Prevalence of atherosclerotic cardiovascular disease and its rate of progression are higher in patients with chronic kidney disease (CKD) compared with the general population. Mineral metabolism parameters have been shown to be involved in the increased velocity of atheromatosis progression. The aim of this study is to determine the role of 11 single-nucleotide polymorphisms (SNPs) of the Klotho gene on the rate of atherosclerosis progression in CKD.
Methods
This was a multicentre, prospective, observational study of 1439 CKD patients from the NEFRONA cohort. Carotid and femoral ultrasounds were performed at baseline and after 24 months in 10 arterial territories. Progression of atheromatosis was defined as an increase in the number of territories with plaque. Genotyping of 11 SNPs of the Klotho gene was performed and its association with atheromatosis progression was determined by multivariate logistic regression.
Results
Bivariate analysis showed that none of the 11 SNPs was associated with atheroma plaque prevalence, but 3 of them (rs495392, rs562020 and rs567170) showed association with atheromatosis progression. The multivariate analysis revealed that only rs495392 showed a statistically significant association with atheromatosis progression, after adjustment for several parameters known to affect it in CKD patients. Thus, the presence of one allele T was associated with a reduction of 30% of the odds of progression, whereas the presence of the two T alleles was associated with a decrease close to 50%.
Conclusions
The presence of the allele T of the SNP rs495392 of the Klotho gene is associated with a decrease in the odds of progression of atheromatosis in CKD patients.
Collapse
Affiliation(s)
- José M Valdivielso
- Vascular and Renal Translational Research Group, Biomedical Research Institute, IRBLleida, RedinRen RETIC, ISCIII, Lleida, Spain
| | - Milica Bozic
- Vascular and Renal Translational Research Group, Biomedical Research Institute, IRBLleida, RedinRen RETIC, ISCIII, Lleida, Spain
| | - Rajesh Kumar Galimudi
- Vascular and Renal Translational Research Group, Biomedical Research Institute, IRBLleida, RedinRen RETIC, ISCIII, Lleida, Spain
| | - Marcelino Bermudez-López
- Vascular and Renal Translational Research Group, Biomedical Research Institute, IRBLleida, RedinRen RETIC, ISCIII, Lleida, Spain
| | - Juan F Navarro-González
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | - Elvira Fernández
- Department of Nephrology, University Hospital Arnau de Vilanova, Lleida, Spain
| | - Àngels Betriu
- Vascular and Renal Translational Research Group, Biomedical Research Institute, IRBLleida, RedinRen RETIC, ISCIII, Lleida, Spain
| |
Collapse
|
19
|
Yu S, Chen Y, Chen S, Ye N, Li Y, Sun Y. Klotho Inhibits Proliferation and Migration of Angiotensin II-Induced Vascular Smooth Muscle Cells (VSMCs) by Modulating NF-κB p65, Akt, and Extracellular Signal Regulated Kinase (ERK) Signaling Activities. Med Sci Monit 2018; 24:4851-4860. [PMID: 30004089 PMCID: PMC6069467 DOI: 10.12659/msm.908038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Background It has been proven that phenotype shifting, from the contractile phenotype to the synthetic phenotype, of vascular smooth muscle cells (VSMCs), plays an important role in vascular diseases such as atherosclerosis, restenosis, and hypertension. Recently, accumulating evidence suggests that Klotho is associated with many cardiovascular diseases or damage. Through the estimation of the proliferation and migration of Ang II-induced VSMCs and the related intracellular signal transduction pathways, we researched the effects of Klotho on phenotype modulation in this study. Material/Methods A rat vascular smooth muscle cell line was grown in vitro with or without Ang II or Klotho, and cell proliferation and migration were evaluated. Results The dose-dependent inhibition of Ang II-induced proliferation and migration by Klotho was shown in VSMCs. The phenotype modulation was inhibited by Klotho co-treatment; this co-treatment promoted the expression of contractile phenotype marker proteins, including SM22α, and also the proliferation phenotype marker protein PCNA compared with Ang II alone, which was suppressed, and activated VSMCs. Furthermore, by reducing the expression of G0/G1-specific regulatory proteins such as cyclin D1, cyclin-dependent kinase (CDK) 4, cyclin E, and CDK2, cell cycle arrest was induced by Klotho at G0/G1 phase. Although Ang II strongly stimulated NF-κB, p65, Akt, and ERK phosphorylation, these activation events were diminished by co-treatment with Ang II and Klotho. Conclusions Phenotype modulation of Ang II-induced VSMCs and stimulation of the NF-κB, p65, Akt, and ERK signaling pathways were inhibited by Klotho, which suggests that Klotho may play an important role in the phenotype modulation of VSMCs.
Collapse
Affiliation(s)
- Shasha Yu
- Department of Cardiovascular Medicine, The First Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| | - Yintao Chen
- Department of Cardiovascular Medicine, The First Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| | - Shuang Chen
- Department of Cardiovascular Medicine, The First Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| | - Ning Ye
- Department of Cardiovascular Medicine, The First Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| | - Yan Li
- Department of Cardiovascular Medicine, The First Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| | - Yingxian Sun
- Department of Cardiovascular Medicine, The First Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| |
Collapse
|
20
|
Effects of Klotho polymorphisms on Preeclampsia risk in a case-control study. Pregnancy Hypertens 2018; 13:95-99. [DOI: 10.1016/j.preghy.2018.04.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 04/17/2018] [Accepted: 04/22/2018] [Indexed: 12/15/2022]
|
21
|
Klotho G-395A gene polymorphism: impact on progression of end-stage renal disease and development of cardiovascular complications in children on dialysis. Pediatr Nephrol 2018; 33:1019-1027. [PMID: 29313136 DOI: 10.1007/s00467-017-3877-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 11/08/2017] [Accepted: 12/06/2017] [Indexed: 12/31/2022]
Abstract
BACKGROUND Klotho G-395-A gene polymorphism may impact children with end-stage renal disease (ESRD). We investigated the relevance of Klotho G-395-A on ESRD development and progression, and its relationship with evolution of cardiovascular complications in pediatric dialysis patients. METHODS Fifty-five children with chronic kidney disease (CKD) and seventy healthy children were genotyped for Klotho G-395A. RESULTS Incidence of GA/AA genotypes and A allele were higher in ESRD patients compared with controls (54.5 vs. 7.1%, P < 0.001; 30.9 vs. 13.6%, P = 0.001, respectively). Also, children with GA/AA genotypes were 15.6 times more likely to develop ESRD than with GG genotype (95% CI 5.4-44.7, P < 0.001). A allele carriers have 2.8 times higher risk of developing ESRD than those with G allele (95% CI 1.5-5.35, P = 0.001). Also, the A allele could be considered a predictor of cardiovascular disease (CVD), as carriers have 161 times higher risk of cardiovascular complications than non-carriers (95% CI 21-1233, P < 0.001). All ESRD patients with CVD presented with left ventricular hypertrophy (LVH) and the frequency of A allele was significantly higher among ESRD children with LVH, whereas G allele frequency was significantly higher among ESRD children without LVH. CONCLUSIONS The A allele of the G-395A Klotho gene polymorphism shows a significantly higher frequency among children with CKD and those with CVD and LVH. This mutant allele could be used as a risk marker for the development of ESRD as well as a predictor of CVD in these children.
Collapse
|
22
|
Hao Q, Wang Y, Ding X, Dong B, Yang M, Dong B, Wei Y. G-395A polymorphism in the promoter region of the KLOTHO gene associates with frailty among the oldest-old. Sci Rep 2018; 8:6735. [PMID: 29712948 PMCID: PMC5928057 DOI: 10.1038/s41598-018-25040-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 04/11/2018] [Indexed: 02/05/2023] Open
Abstract
Frailty is characterized by a decline in physiological reserve and increased vulnerability. Previous studies have shown that KLOTHO (KL) plays a protective role in several age-related diseases. We hypothesize a probable protective effect of KL on frailty in the elderly population and included a cohort of Chinese nonagenarians and centenarians for our study. This study is part of a cross-sectional study and secondary analysis of the Project of Longevity and Aging in Dujiangyan (PLAD) study, which was conducted in Southwest China. Community-dwelling Chinese residents aged 90 years or older were included in this study. Frailty was determined using the FRAIL scale as proposed by the International Association of Nutrition and Aging. On the FRAIL scale, frailty was defined by a score of ≥3. G-395A (rs1207568) genotyping of the promoter region of the KL gene was performed using TaqMan allelic discrimination assay. A total of 632 participants (68.4% females; mean age: 93.5 ± 3.2 years) were included. KL G-395A polymorphism genotype frequencies were 1.7% AA, 25.6% GA, and 72.7% GG in our sample. GG genotype frequencies for the frailty and control groups were 83.6% and 71.2%, respectively. Frailty prevalence was significantly lower in the GA+AA group when compared to the GG genotype group (6.9% vs. 13.3%, P = 0.026). In addition, subjects with a GA+AA genotype had a significantly lower risk of frailty (odds ratio (OR): 0.47, 95% confidence interval (CI) 0.23 to 0.97, P = 0.040) compared to the GG genotype after adjusting for age, gender, education level, smoking, alcohol consumption, exercise, body mass index (BMI), cognitive impairment, and other potential factors. KL-395A allele carrying genotypes (GA and AA) is associated with a lower risk of frailty relative to GG genotypes in a sample of Chinese nonagenarians and centenarians.
Collapse
Affiliation(s)
- Qiukui Hao
- The Center of Gerontology and Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,National Clinical Research Center of Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuting Wang
- The Center of Gerontology and Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,National Clinical Research Center of Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiang Ding
- The Center of Gerontology and Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,National Clinical Research Center of Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Biao Dong
- National Clinical Research Center of Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ming Yang
- The Center of Gerontology and Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China. .,National Clinical Research Center of Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Birong Dong
- The Center of Gerontology and Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,National Clinical Research Center of Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuquan Wei
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
23
|
Jiang F, Liu N, Chen XZ, Han KY, Zhu CZ. Study on the correlation between KCNJ11 gene polymorphism and metabolic syndrome in the elderly. Exp Ther Med 2017; 14:2031-2035. [PMID: 28962121 PMCID: PMC5609148 DOI: 10.3892/etm.2017.4714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 06/12/2017] [Indexed: 11/06/2022] Open
Abstract
The aim of the study was to examine the correlation between KCNJ11 gene polymorphism and metabolic syndrome in elderly patients. From January 2014 to January 2015, 54 elderly patients with metabolic syndrome were enrolled in this study as the observation group. During the same period, 46 healthy elderly individuals were enrolled in this study as the control group. KCNJ11 gene polymorphism (rs28502) was analyzed using polymerase chain reaction-restriction fragment length polymorphism. The expression levels of mRNA in different genotypes were detected using FQ-PCR. ELISA was used to evaluate the KCNJ11 protein expression in different genotypes. KCNJ11 gene polymorphism and metabolic syndrome was studied by measuring the blood pressure levels in patients with different genotypes. Three genotypes of KCNJ11 gene in rs28502 were CC, CT and TT. The CC, CT and TT genotype frequencies in healthy population were 8.5, 9.2 and 82.2%, respectively, while the genotype frequencies in patients with metabolic syndrome were 42.4, 49.8 and 7.8%, respectively. There were significant differences between groups (P≤0.05). However, the genotype frequencies of C/T in healthy individuals and metabolic syndrome patients were 35.3 and 38.3%, respectively. There were no significant differences between groups (P>0.05). FQ-PCR results showed that the KCNJ11 mRNA expression levels in the control and observation groups had no significant differences (P>0.05). However, the results obtained from ELISA analysis revealed that KCNJ11 protein expression level in the observation group was significantly higher than that in the control group (P<0.05). In conclusion, KCNJ11 gene polymorphism is associated with metabolic syndrome in the elderly. Elderly patients with the CC and TT genotypes are more likely to develop metabolic syndrome.
Collapse
Affiliation(s)
- Fan Jiang
- Department of Geratology, Hainan General Hospital, Haikou, Hainan 570311, P.R. China
| | - Ning Liu
- Department of General Surgery, Hainan General Hospital, Haikou, Hainan 570311, P.R. China
| | - Xiao Zhuang Chen
- Department of Geratology, Hainan General Hospital, Haikou, Hainan 570311, P.R. China
| | - Kun Yuan Han
- Department of Geratology, Hainan General Hospital, Haikou, Hainan 570311, P.R. China
| | - Cai Zhong Zhu
- Department of Geratology, Hainan General Hospital, Haikou, Hainan 570311, P.R. China
| |
Collapse
|
24
|
Abstract
The vertebrate endoskeleton is not a mere frame for muscle attachment to facilitate locomotion, but is a massive organ integrated with many physiologic functions including mineral and energy metabolism. Mineral balance is maintained by tightly controlled ion fluxes that are external (intestine and kidney) and internal (between bone and other organs), and are regulated and coordinated by many endocrine signals between these organs. The endocrine fibroblast growth factors (FGFs) and Klotho gene families are complex systems that co-evolved with the endoskeleton. In particular, FGF23 and αKlotho which are primarily derived from bone and kidney respectively, are critical in maintaining mineral metabolism where each of these proteins serving highly diverse roles; abound with many unanswered questions regarding their upstream regulation and downstream functions. Genetic lesions of components of this network produce discreet disturbances in many facets of mineral metabolism. One acquired condition with colossal elevations of FGF23 and suppression of αKlotho is chronic kidney disease where multiple organ dysfunction contributes to the morbidity and mortality. However, the single most important group of derangements that encompasses the largest breadth of complications is mineral metabolism disorders. Mineral metabolic disorders in CKD impact negatively and significantly on the progression of renal disease as well as extra-renal complications. Knowledge of the origin, nature, and impact of phosphate, FGF23, and αKlotho derangements is pivotal to understanding the pathophysiology and treatment of CKD.
Collapse
Affiliation(s)
- Makoto Kuro-O
- Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan; Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Charles and Jane Pak Center of Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Orson W Moe
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Charles and Jane Pak Center of Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
25
|
Kim HK, Jeong BH. Lack of functional KL-VS polymorphism of the KLOTHO gene in the Korean population. Genet Mol Biol 2016; 39:370-3. [PMID: 27560364 PMCID: PMC5004824 DOI: 10.1590/1678-4685-gmb-2015-0160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 12/04/2015] [Indexed: 05/29/2023] Open
Abstract
The functional variant of the Klotho "KL-VS" stretch, which includes six
polymorphisms in linkage disequilibrium, is reportedly associated with healthy aging
and longevity in European and American populations. Among Asian populations, this
variant has been observed in the Indian population but not in the Iranian population.
An association between KL-VS polymorphism and aging has not been reported in Koreans.
To investigate whether the KL-VS polymorphism could be associated with healthy aging
and longevity in a Korean population, we analyzed genotype and allele frequencies of
the KL-VS variant in a large Korean population sample. The KL-VS variant was not
found in 874 Korean individuals. Thus, it is not possible to test its association to
aging in the East Asian populations.
Collapse
Affiliation(s)
- Hee-Kwon Kim
- Korea Zoonosis Research Institute, Chonbuk National University, Iksan, Jeonbuk, Republic of Korea.,Department of Nuclear Medicine, Molecular Imaging & Therapeutic Medicine Research Center, Biomedical Research Institute, Chonbuk National University Medical School and Hospital, Jeonju, Republic of Korea
| | - Byung-Hoon Jeong
- Korea Zoonosis Research Institute, Chonbuk National University, Iksan, Jeonbuk, Republic of Korea.,Department of Bioactive Material Sciences, Chonbuk National University, Jeonju, Jeonbuk Republic of Korea
| |
Collapse
|
26
|
Kalaitzidis RG, Duni A, Siamopoulos KC. Klotho, the Holy Grail of the kidney: from salt sensitivity to chronic kidney disease. Int Urol Nephrol 2016; 48:1657-66. [PMID: 27215557 DOI: 10.1007/s11255-016-1325-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 05/17/2016] [Indexed: 01/05/2023]
Abstract
The Klotho gene displays an extremely shortened life span with loss of function missense mutations leading to premature multiple organ failure, thus resembling human premature aging syndromes. The transmembrane form of Klotho protein functions as an obligatory co-receptor for FGF23. Klotho and FGF23 are crucial components for the regulation of vitamin D metabolism and subsequently blood phosphate levels. The secreted Klotho protein has multiple regulatory functions, including effects on electrolyte homeostasis, on growth factor pathways as well as on oxidative stress, which are currently the object of extensive research. Klotho protein deficiency is observed in many experimental and clinical disease models. Genetic polymorphisms such as the G-395A polymorphism in the promoter region of the Klotho gene have been associated with the development of essential hypertension. The kidneys are the primary site of Klotho production, and renal Klotho is decreased in CKD, followed by a reduction in plasma Klotho. Klotho deficiency has been both associated with progression of CKD as well as with its cardinal systemic manifestations, including cardiovascular disease. Thus, Klotho has been suggested both as a risk biomarker for early detection of CKD and additionally as a potential therapeutic tool in the future.
Collapse
Affiliation(s)
- Rigas G Kalaitzidis
- Department of Nephrology, University Hospital of Ioannina, Ioannina, Greece.
| | - Anila Duni
- Department of Nephrology, University Hospital of Ioannina, Ioannina, Greece
| | | |
Collapse
|
27
|
Luo L, Hao Q, Dong B, Yang M. The Klotho gene G-395A polymorphism and metabolic syndrome in very elderly people. BMC Geriatr 2016; 16:46. [PMID: 26880028 PMCID: PMC4754834 DOI: 10.1186/s12877-016-0221-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 02/04/2016] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND To investigate the possible association of the Klotho G-395A polymorphism and metabolic syndrome (MetS) among a population of Chinese nonagenarians and centenarians. METHODS Subjects were from the Project of Longevity and Aging in Dujiangyan (PLAD). The genotyping of G-395A (rs1207568) in the promoter region of the Klotho gene was performed using the TaqMan allelic discrimination assay. MetS was diagnosed according to the International Diabetes Federation criteria. RESULTS We included 695 subjects aged 93.5 ± 3.2 years. G and A allele frequencies were 0.852 and 0.148, respectively. In the whole population, the frequency of MetS was 10.8% and 5.9% in the GG and GA + AA genotype group, respectively (p = 0.004). The -395A allele carriers had significantly lower risk of MetS in the whole population (odd ratio [OR] 0.50, 95% confidential interval [CI] 0.25 to 0.98) and in women (OR 0.51, 95% CI 0.24 to 0.97), but not in men (OR 0.42, 95% CI 0.05 to 3.85). In the whole population and women, the relationship between the Klotho G-395A SNP and MetS might due to its influence on high blood pressure (OR 0.48, 95% CI 0.34 to 0.67; OR 0.47, 95% CI 0.31 to 0.71, respectively) and hypertriglyceridemia (OR 0.66, 95% CI 0.39 to 0.95; OR 0.54, 95% CI 0.31 to 0.98, respectively). In men, this relationship might due to its influence on high blood pressure (OR 0.47, 95% CI 0.25 to 0.90) and low HDL-C (OR 0.69, 95% CI 0.27 to 0.93). CONCLUSIONS The -395A allele carriers of the Klotho gene were correlated with lower risk of MetS among Chinese nonagenarians and centenarians, especially in women.
Collapse
Affiliation(s)
- Li Luo
- The Center of Gerontology and Geriatrics, West China Hospital, Sichuan University, No.37 Guoxue Lane, Chengdu, Sichuan, China.
| | - Qiukui Hao
- The Center of Gerontology and Geriatrics, West China Hospital, Sichuan University, No.37 Guoxue Lane, Chengdu, Sichuan, China.
| | - Birong Dong
- The Center of Gerontology and Geriatrics, West China Hospital, Sichuan University, No.37 Guoxue Lane, Chengdu, Sichuan, China.
| | - Ming Yang
- The Center of Gerontology and Geriatrics, West China Hospital, Sichuan University, No.37 Guoxue Lane, Chengdu, Sichuan, China.
| |
Collapse
|
28
|
Hao Q, Ding X, Gao L, Yang M, Dong B. G-395A polymorphism in the promoter region of the KLOTHO gene associates with reduced cognitive impairment among the oldest old. AGE (DORDRECHT, NETHERLANDS) 2016; 38:7. [PMID: 26732817 PMCID: PMC5005865 DOI: 10.1007/s11357-015-9869-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 12/22/2015] [Indexed: 02/05/2023]
Abstract
This study aimed to examine the possible association between G-395A polymorphism in the promoter region of the KLOTHO gene and cognitive impairment among Chinese nonagenarians and centenarians. This study is a secondary analysis of the Project of Longevity and Aging in Dujiangyan (PLAD) study. Community-dwelling Chinese people aged 90 years or older were included. G-395A (rs1207568) genotyping in the promoter region of the KLOTHO gene was performed using the TaqMan allelic discrimination assay. Cognitive function was assessed with the mini-mental status examination (MMSE). A total of 706 participants (68.0 % female; mean age 93.5 ± 3.6 years) were included. The KLOTHO G-395A polymorphism genotype frequencies for the whole sample were 2.0 % AA, 30.3 % GA, and 67.7 % GG. The GG genotype frequencies for the cognitive impairment and control groups were 70.2 and 62.7 %, respectively. Cognitive impairment prevalence was significantly lower in the GA+AA group than in the GG genotype group (61.4 vs. 69.0 %, p = 0.044). GA+AA genotype subjects had a significantly lower risk of cognitive impairment (odds ratio 0.66; 95 % confidence interval 0.44 to 0.98) than GG genotype individuals after adjusting for age, gender, and other relevant risk factors. KLOTHO G-395A polymorphism associates with reduced cognitive impairment in a sample of Chinese nonagenarians and centenarians.
Collapse
Affiliation(s)
- Qiukui Hao
- West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiang Ding
- West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Langli Gao
- West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ming Yang
- West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Birong Dong
- West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
29
|
Zhou X, Chen K, Wang Y, Schuman M, Lei H, Sun Z. Antiaging Gene Klotho Regulates Adrenal CYP11B2 Expression and Aldosterone Synthesis. J Am Soc Nephrol 2015; 27:1765-76. [PMID: 26471128 DOI: 10.1681/asn.2015010093] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 08/27/2015] [Indexed: 12/11/2022] Open
Abstract
Deficiency of the antiaging gene Klotho (KL) induces renal damage and hypertension through unknown mechanisms. In this study, we assessed whether KL regulates expression of CYP11B2, a key rate-limiting enzyme in aldosterone synthesis, in adrenal glands. We found that haplodeficiency of KL(+/-) in mice increased the plasma level of aldosterone by 16 weeks of age, which coincided with spontaneous and persistent elevation of BP. Blockade of aldosterone actions by eplerenone reversed KL deficiency-induced hypertension and attenuated the kidney damage. Protein expression of CYP11B2 was upregulated in adrenal cortex of KL(+/-) mice. KL and CYP11B2 proteins colocalized in adrenal zona glomerulosa cells. Silencing of KL upregulated and overexpression of KL downregulated CYP11B2 expression in human adrenocortical cells. Notably, silencing of KL decreased expression of SF-1, a negative transcription factor of CYP11B2, but increased phosphorylation of ATF2, a positive transcription factor of CYP11B2, which may contribute to upregulation of CYP11B2 expression. Therefore, these results show that KL regulates adrenal CYP11B2 expression. KL deficiency-induced spontaneous hypertension and kidney damage may be partially attributed to the upregulation of CYP11B2 expression and aldosterone synthesis.
Collapse
Affiliation(s)
- Xiaoli Zhou
- Department of Cardiology, First Affiliated Hospital, Chongqing Medical University, Chongqing, China; and Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Kai Chen
- Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Yongjun Wang
- Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Mariano Schuman
- Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Han Lei
- Department of Cardiology, First Affiliated Hospital, Chongqing Medical University, Chongqing, China; and
| | - Zhongjie Sun
- Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| |
Collapse
|
30
|
Abstract
The discovery of the Klotho (KL) gene, which was originally identified as a putative aging-suppressor gene, has generated tremendous interest and has advanced understanding of the aging process. In mice, the overexpression of the KL gene extends the life span, whereas mutations to the KL gene shorten the life span. The human KL gene encodes the α-Klotho protein, which is a multifunctional protein that regulates the metabolism of phosphate, calcium, and vitamin D. α-Klotho also may function as a hormone, although the α-Klotho receptor(s) has not been found. Point mutations of the KL gene in humans are associated with hypertension and kidney disease, which suggests that α-Klotho may be essential to the maintenance of normal renal function. Three α-Klotho protein types with potentially different functions have been identified: a full-length transmembrane α-Klotho, a truncated soluble α-Klotho, and a secreted α-Klotho. Recent evidence suggests that α-Klotho suppresses the insulin and Wnt signaling pathways, inhibits oxidative stress, and regulates phosphatase and calcium absorption. In this review, we provide an update on recent advances in the understanding of the molecular, genetic, biochemical, and physiological properties of the KL gene. Specifically, this review focuses on the structure of the KL gene and the factors that regulate KL gene transcription, the key sites in the regulation of α-Klotho enzyme activity, the α-Klotho signaling pathways, and the molecular mechanisms that underlie α-Klotho function. This current understanding of the molecular biology of the α-Klotho protein may offer new insights into its function and role in aging.
Collapse
Affiliation(s)
- Yuechi Xu
- Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | | |
Collapse
|
31
|
Zhang W, Xue D, Hu D, Xie T, Tao Y, Zhu T, Chen E, Pan Z. Secreted klotho protein attenuates osteogenic differentiation of human bone marrow mesenchymal stem cells in vitro via inactivation of the FGFR1/ERK signaling pathway. Growth Factors 2015; 33:356-65. [PMID: 26607681 DOI: 10.3109/08977194.2015.1108313] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Increasing evidence indicates that the osteogenic differentiation of mesenchymal stem cells (MSCs) is related to bone formation, heterotopic ossification, and even vascular calcification. Therefore, it is essential to understand the microenvironment that regulates these processes. The Klotho gene plays an important role in tissue mineralization, and its secreted protein functions as a hormone. We investigated the effects of secreted Klotho protein on the osteogenesis of human bone marrow MSC (hBMSCs). To this end, the cells received osteogenic medium with or without Klotho protein. The results showed that osteoblast-specific gene expression and mineral deposition were decreased when MSCs were incubated with Klotho. Klotho reduced the expression of fibroblast growth factor receptor 1 (FGFR1) and phosphorylated extracellular signal-regulated kinase 1/2. However, both MEK and FGFR1 inhibitors delayed bone mineral formation more than Klotho. These data suggest that secreted Klotho protein attenuates the osteogenic differentiation of hBMSCs in vitro through FGFR1/ERK signaling.
Collapse
Affiliation(s)
- Wei Zhang
- a Department of Orthopedics , Second Affiliated Hospital, School of Medicine, Zhejiang University , Hangzhou , People's Republic of China
| | - Deting Xue
- a Department of Orthopedics , Second Affiliated Hospital, School of Medicine, Zhejiang University , Hangzhou , People's Republic of China
| | - Dongcai Hu
- a Department of Orthopedics , Second Affiliated Hospital, School of Medicine, Zhejiang University , Hangzhou , People's Republic of China
| | - Tao Xie
- a Department of Orthopedics , Second Affiliated Hospital, School of Medicine, Zhejiang University , Hangzhou , People's Republic of China
| | - Yiqing Tao
- a Department of Orthopedics , Second Affiliated Hospital, School of Medicine, Zhejiang University , Hangzhou , People's Republic of China
| | - Ting Zhu
- a Department of Orthopedics , Second Affiliated Hospital, School of Medicine, Zhejiang University , Hangzhou , People's Republic of China
| | - Erman Chen
- a Department of Orthopedics , Second Affiliated Hospital, School of Medicine, Zhejiang University , Hangzhou , People's Republic of China
| | - Zhijun Pan
- a Department of Orthopedics , Second Affiliated Hospital, School of Medicine, Zhejiang University , Hangzhou , People's Republic of China
| |
Collapse
|
32
|
Zhou X, Chen K, Lei H, Sun Z. Klotho gene deficiency causes salt-sensitive hypertension via monocyte chemotactic protein-1/CC chemokine receptor 2-mediated inflammation. J Am Soc Nephrol 2014; 26:121-32. [PMID: 24904083 DOI: 10.1681/asn.2013101033] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Klotho (KL) is a newly discovered aging suppressor gene. In mice, the KL gene extends the lifespan when overexpressed and shortens the lifespan when disrupted. This study investigated if KL deficiency affects BP and salt sensitivity using KL mutant heterozygous (+/-) mice and wild-type (WT) mice (9 weeks of age, 16 mice per group). Notably, systolic BP in KL(+/-) mice began to increase at the age of 15 weeks, reached a peak level at the age of 17 weeks, and remained elevated thereafter, whereas systolic BP remained consistent in WT mice. High salt (HS) intake further increased BP in KL(+/-) mice but did not affect BP in WT mice. Blockade of CC chemokine receptor 2 (CCR2), involved in monocyte chemotaxis, by a specific CCR2 antagonist (INCB3284) abolished the HS-induced increase in BP in KL(+/-) mice. Furthermore, HS loading substantially increased the expression of monocyte chemotactic protein-1 and the infiltration of macrophages and T cells in kidneys in KL(+/-) mice, and treatment with INCB3284 abolished these effects. Treatment of KL(+/-) mice with INCB3284 also attenuated the increased renal expressions of serum glucocorticoid-regulated kinase 1, thiazide-sensitive NaCl cotransporter, and ATP synthase β along with the renal structural damage and functional impairment induced by HS loading. In conclusion, KL deficiency caused salt-sensitive hypertension and renal damage by CCR2-mediated inflammation.
Collapse
Affiliation(s)
- Xiaoli Zhou
- Department of Cardiology, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China; and Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Kai Chen
- Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Han Lei
- Department of Cardiology, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China; and
| | - Zhongjie Sun
- Department of Cardiology, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China; and Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| |
Collapse
|
33
|
Rosiglitazone increases cerebral klotho expression to reverse baroreflex in type 1-like diabetic rats. BIOMED RESEARCH INTERNATIONAL 2014; 2014:309151. [PMID: 24683546 PMCID: PMC3943406 DOI: 10.1155/2014/309151] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 01/07/2014] [Indexed: 11/23/2022]
Abstract
Reduced baroreflex sensitivity (BRS) is widely observed in diabetic human and animals. Rosiglitazone is one of the clinically used thiazolidinediones (TZD) known as PPARγ agonist. Additionally, the klotho protein produced from choroid plexus in the central nervous system is regulated by PPARγ. In an attempt to develop the new therapeutic strategy, we treated streptozotocin-induced diabetic rats (STZ) with rosiglitazone (STZ + TZD) orally at 10 mg/kg for 7 days. Also, STZ rats were subjected to intracerebroventricular (ICV) infusion of recombinant klotho at a dose of 3 μg/2.5 μL via syringe pump (8 μg/hr) daily for 7 days. The BRS and heart rate variability were then estimated under challenge with a depressor dose of sodium nitroprusside (50 μg/kg) or a pressor dose of phenylephrine (8 μg/kg) through an intravenous injection. Lower expression of klotho in medulla oblongata of diabetic rats was identified. Cerebral infusion of recombinant klotho or oral administration of rosiglitazone reversed BRS in diabetic rats. In conclusion, recovery of the decreased klotho in brain induced by rosiglitazone may restore the impaired BRS in diabetic rats. Thus, rosiglitazone is useful to reverse the reduced BRS through increasing cerebral klotho in diabetic disorders.
Collapse
|
34
|
Ko GJ, Lee EA, Jeon US, Pyo HJ, Chin HJ, Chae DW, Kim S, Kwon YJ. The association of Klotho polymorphism with disease progression and mortality in IgA nephropathy. Kidney Blood Press Res 2012; 36:191-9. [PMID: 23147162 DOI: 10.1159/000343408] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2012] [Indexed: 12/17/2022] Open
Abstract
BACKGROUNDS IgA nephropathy (IgAN) is the most common primary glomerulonephritis causing end stage renal disease (ESRD), and vasculopathy is known to involve disease progression. Klotho, a gene related to aging, has been reported to play a role in atherosclerosis and endothelial dysfunction. We investigated whether klotho gene polymorphism affect clinical course of IgAN. METHODS The data registered for PREMIER study which enrolled the patients with biopsy proven IgAN were analyzed. Two single nucleotide polymorphisms for klotho gene, G395A of promoter region and C1818T of exon 4, were examined, and investigated the association klotho genotypes with the progression of IgAN and patient survival. RESULTS Clinical data from 973 patients confirmed about survival were analyzed. The allele frequency was 0.830 and 0.170 for allele G and A, and 0.816 and 0.184 for allele C and T, which were complied with Hardy-Weinberg equilibrium (p=0.996 and 0.531 respectively). Death was observed more frequently in A-allele carriers of G395A polymorphism (0.7 vs. 2.6 %, GG vs. GA+AA, p=0.022). Renal survival in Kaplan-Meier survival curve was also worse in same group (p=0.04). CONCLUSION Klotho gene polymorphism was associated with patient survival and disease progression of IgAN.
Collapse
Affiliation(s)
- Gang Jee Ko
- Korea University Medical school, Department of Internal Medicine, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
A disproportionate expansion of white adipose tissue and abnormal recruitment of adipogenic precursor cells can not only lead to obesity but also impair glucose metabolism, which are both common causes of insulin resistance and diabetes mellitus. The development of novel and effective therapeutic strategies to slow the progression of obesity, diabetes mellitus and their associated complications will require improved understanding of adipogenesis and glucose metabolism. Klotho might have a role in adipocyte maturation and systemic glucose metabolism. Klotho increases adipocyte differentiation in vitro, and mice that lack Klotho activity are lean owing to reduced white adipose tissue accumulation; moreover, mice that lack the Kl gene (which encodes Klotho) are resistant to obesity induced by a high-fat diet. Knockout of Kl in leptin-deficient Lep(ob/ob) mice reduces obesity and increases insulin sensitivity, which lowers blood glucose levels. Energy metabolism might also be influenced by Klotho. However, further studies are needed to explore the possibility that Klotho could be a novel therapeutic target to reduce obesity and related complications, and to determine whether and how Klotho might influence the regulation and function of a related protein, β-Klotho, which is also involved in energy metabolism.
Collapse
Affiliation(s)
- M Shawkat Razzaque
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Research and Education Building, Room 304, 190 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
36
|
Abstract
The absence of Klotho (KL) from mice causes the development of disorders associated with human aging and decreased longevity, whereas increased expression prolongs lifespan. With age, KL protein levels decrease, and keeping levels consistent may promote healthier aging and be disease-modifying. Using the KL promoter to drive expression of luciferase, we conducted a high-throughput screen to identify compounds that activate KL transcription. Hits were identified as compounds that elevated luciferase expression at least 30%. Following validation for dose-dependent activation and lack of cytotoxicity, hit compounds were evaluated further in vitro by incubation with opossum kidney and Z310 rat choroid plexus cells, which express KL endogenously. All compounds elevated KL protein compared with control. To determine whether increased protein resulted in an in vitro functional change, we assayed FGF23 (fibroblast growth factor 23) signalling. Compounds G-I augmented ERK (extracellular-signal-regulated kinase) phosphorylation in FGFR (fibroblast growth factor receptor)-transfected cells, whereas co-transfection with KL siRNA (small interfering RNA) blocked the effect. These compounds will be useful tools to allow insight into the mechanisms of KL regulation. Further optimization will provide pharmacological tools for in vivo studies of KL.
Collapse
|
37
|
Expression of FGF23/KLOTHO system in human vascular tissue. Int J Cardiol 2011; 165:179-83. [PMID: 21945708 DOI: 10.1016/j.ijcard.2011.08.850] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 08/26/2011] [Accepted: 08/30/2011] [Indexed: 12/26/2022]
Abstract
BACKGROUND Fibroblast growth factor (FGF)-23 levels have been associated with impaired vasoreactivity, increased arterial stiffness, and cardiovascular morbi-mortality, whereas a protective function of KLOTHO against endothelial dysfunction has been reported. Since expression of the FGF23-KLOTHO system in human vascular tissue remains unproved, we aimed to study the expression of FGF23, FGF receptors (FGFR) and KLOTHO in human aorta. In addition, we analyzed the FGF23-KLOTHO expression in occlusive coronary thrombi. METHODS Thoracic aorta specimens from 44 patients underwent elective cardiac surgery, and thrombus material from 2 patients with acute coronary syndrome (ACS), were tested for FGF23-KLOTHO system expression. RESULTS Expression of KLOTHO (mean expression level 4.85 ± 5.43, arbitrary units) and two of the three cognate FGFR (FGFR-1 and -3) were detected and confirmed by RT-PCR, sequencing and qRT-PCR. KLOTHO expression was confirmed within occlusive coronary thrombi from patients with ACS. However, expression of FGF23 and FGFR4 was not observed. We also detected the aortic expression of membrane-anchored A Desintegrin and Metalloproteinases (ADAM)-17, the enzyme responsible for the shedding of KLOTHO from the cell surface, and the anti-inflammatory cytokine interleukin (IL)-10. Interestingly, in aortic samples there was a direct association between KLOTHO mRNA levels and those of ADAM-17 and IL-10 (r = 0.54, P<0.001; r = 0.51, P<0.01, respectively). CONCLUSIONS Human vascular tissue expresses members of the FGF23-KLOTHO system, indicating that it can be a direct target organ for FGF23. In addition, KLOTHO expression is also detected in occlusive coronary thrombi. These findings suggest a putative role of FGF23-KLOTHO axis in human vascular pathophysiology and cardiovascular disease.
Collapse
|
38
|
Bernheim J, Benchetrit S. The potential roles of FGF23 and Klotho in the prognosis of renal and cardiovascular diseases. Nephrol Dial Transplant 2011; 26:2433-8. [PMID: 21543658 DOI: 10.1093/ndt/gfr208] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Fibroblast growth factor (FGF) 23 and Klotho are two factors associated with several metabolic disorders. Similar to humans, accelerated aging processes characterized by chronic vascular disease, bone demineralization, skin atrophy and emphysema have been recognized in FGF23-null mice and Klotho-deficient mice. The role of these factors in the control of mineral metabolism homeostasis have been shown recently, particularly at the level of parathyroid cells and also in modulating active vitamin D production, two phenomena which are relevant in the presence of chronic kidney disease. In addition, the hormonal affect of circulating FGF23 and Klotho proteins on vascular reactivity, either directly on endothelial cell functions or indirectly by modulating the brain endothelin-1-dependent sympathetic nervous system activity, has contributed to understanding their role in the pathophysiology of hypertension and atherosclerotic vasculopathies. Consequently, very recent clinical investigations seem to confirm the involvement of Klotho in modulating the severity and prognosis of human cardiovascular (CV) disorders and longevity. The present review reports data related to the possible interactive effects of Klotho and FGF23 on the prognosis of renal and CV diseases.
Collapse
Affiliation(s)
- Jacques Bernheim
- Renal Physiology Research Laboratory, Department of Nephrology and Hypertension, Meir Medical Center, Kfar Saba, Israel.
| | | |
Collapse
|
39
|
Kim WJ, Oh YM, Kim TH, Lee JH, Kim EK, Lee JH, Lee SM, Shin TR, Yoon HI, Lim SY, Lee SD. Lack of Association between theKlothoGene and COPD. Tuberc Respir Dis (Seoul) 2011. [DOI: 10.4046/trd.2011.71.4.254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Woo Jin Kim
- Department of Internal Medicine, Kangwon National University, Chuncheon, Korea
| | - Yeon-Mok Oh
- Department of Pulmonary and Critical Care Medicine, and Clinical Research Center for Chronic Obstructive Airway Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Tae-Hyung Kim
- Division of Pulmonology, Department of Internal Medicine, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, Korea
| | - Ji-Hyun Lee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea
| | - Eun-Kyung Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea
| | - Jin Hwa Lee
- Department of Internal Medicine, Ewha Womans University Mokdong Hospital, Ewha Womans University College of Medicine, Seoul, Korea
| | - Sang-Min Lee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Clinical Research Institute, Seoul National University Hospital, Lung Institute, Medical Research Center, Seoul National University College of Medicine, Seoul, Korea
| | - Tae Rim Shin
- Department of Internal Medicine, Kangnam Sacred Heart Hospital, Hanllym University College of Medicine, Seoul, Korea
| | - Ho Il Yoon
- Respiratory Center, Seoul National University Bundang Hospital, Department of Internal Medicine, Seoul National University College of Medicine, Seongnam, Korea
| | - Seong-Yong Lim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sang Do Lee
- Department of Pulmonary and Critical Care Medicine, and Clinical Research Center for Chronic Obstructive Airway Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|