1
|
Yan B, Guo Y, Gui Y, Jiang ZS, Zheng XL. Multifunctional RNase MCPIP1 and its Role in Cardiovascular Diseases. Curr Med Chem 2021; 28:3385-3405. [PMID: 33191882 DOI: 10.2174/0929867327999201113100918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 09/20/2020] [Accepted: 10/09/2020] [Indexed: 11/22/2022]
Abstract
Monocyte chemoattractant protein-1 induced protein 1 (MCPIP1), one of the MCPIP family members, is characterized by the presence of both C-x8-C-x5-C-x3-H (CCCH)- type zinc finger and PilT-N-terminal domains. As a potent regulator of innate immunity, MCPIP1 exerts anti-inflammatory effects through its ribonuclease (RNase) and deubiquitinating enzyme activities to degrade cytokine mRNAs and inhibit nuclear factor- kappa B (NF-κB), respectively. MCPIP1 is expressed not only in immune cells but also in many other cell types, including cardiomyocytes, vascular endothelial cells (ECs) and smooth muscle cells (SMCs). Increasing evidence indicates that MCPIP1 plays a role in the regulation of cardiac functions and is involved in the processes of vascular diseases, such as ischemia-reperfusion (I/R) and atherosclerosis. To better understand the emerging roles of MCPIP1 in the cardiovascular system, we reviewed the current literature with respect to MCPIP1 functions and discussed its association with the pathogenesis of cardiovascular diseases and the implication as a therapeutic target.
Collapse
Affiliation(s)
- Binjie Yan
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical College, University of South China, Hengyang City, Hunan Province 421001, China
| | - Yanan Guo
- Departments of Biochemistry & Molecular Biology and Physiology & Pharmacology, Libin Cardiovascular Institute, Cumming School of Medicine, The University of Calgary, 3330 Hospital Drive N.W., Calgary, ABT2N 4N1, Canada
| | - Yu Gui
- Departments of Biochemistry & Molecular Biology and Physiology & Pharmacology, Libin Cardiovascular Institute, Cumming School of Medicine, The University of Calgary, 3330 Hospital Drive N.W., Calgary, ABT2N 4N1, Canada
| | - Zhi-Sheng Jiang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical College, University of South China, Hengyang City, Hunan Province 421001, China
| | - Xi-Long Zheng
- Departments of Biochemistry & Molecular Biology and Physiology & Pharmacology, Libin Cardiovascular Institute, Cumming School of Medicine, The University of Calgary, 3330 Hospital Drive N.W., Calgary, ABT2N 4N1, Canada
| |
Collapse
|
2
|
Li H, Zhao C, Zhao H, Liu G, Mao H, Liu Y. Elevated linc00936 or silenced microRNA-425-3p inhibits immune escape of gastric cancer cells via elevation of ZC3H12A. Int Immunopharmacol 2021; 95:107559. [PMID: 33756228 DOI: 10.1016/j.intimp.2021.107559] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 02/25/2021] [Accepted: 03/01/2021] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Gastric cancer (GC) is a malignant tumor originated from gastric mucosa. Without effective therapy, this study was to investigate the mechanism of long intergenic noncoding RNA 00936 (linc00936)/microRNA-425-3p (miR-425-3p)/monocyte chemotactic protein-induced protein 1 (ZC3H12A) axis mediating immune escape of GC cells. METHODS Peripheral blood samples, GC tissues and adjacent tissues were collected. The levels of CD3+, CD4+, and CD8+ in peripheral blood were detected. The expression levels of linc00936, miR-425-3p and ZC3H12A in GC tissues and cells were detected. The correlation between the expression of linc00936 in the tissues and the levels of CD3+, CD4+ and CD8+ in the peripheral blood of GC patients was analyzed. Cytokine-induced killer (CIK) cells were induced, and co-incubated with GC cells. BGC-823 and MKN-45 cells were screened and transfected with linc00936- or miR-425-3p-related oligonucleotides to figure out their roles in immune escape, migration, apoptosis and the cytotoxicity of CIK cells in GC cells. RESULTS Elevated miR-425-3p and reduced linc00936, and ZC3H12A expression levels were found in GC tissues and cells. Linc00936 expression was positively correlated with CD3+ and CD4+, and negatively correlated with CD8+ in peripheral blood of patients with GC. Up-regulating linc00936 or down-regulating miR-425-3p inhibited immune escape, migration, promoted apoptosis of GC cells, as well induced CIK cell cytotoxicity to GC cells. Down-regulated linc00936 or elevated miR-425-3p facilitated immune escape, migration, depressed apoptosis of GC cells, and reduced the cytotoxicity of CIK cells to GC cells. CONCLUSION The study concludes that up-regulated linc00936 or silenced miR-425-3p inhibits immune escape of GC cells via elevation of ZC3H12A.
Collapse
Affiliation(s)
- Haohao Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Chunlin Zhao
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Hongchao Zhao
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Guanghui Liu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Haoxun Mao
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Yanfen Liu
- Department of Oncology, Biological Therapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China.
| |
Collapse
|
3
|
Lin J, Li G, Xu C, Lu H, Zhang C, Pang Z, Liu Z. Monocyte Chemotactic Protein 1-Induced Protein 1 Is Highly Expressed in Inflammatory Bowel Disease and Negatively Regulates Neutrophil Activities. Mediators Inflamm 2020; 2020:8812020. [PMID: 33488293 PMCID: PMC7803109 DOI: 10.1155/2020/8812020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 11/06/2020] [Accepted: 12/09/2020] [Indexed: 01/12/2023] Open
Abstract
Monocyte chemotactic protein 1-induced protein 1 (MCPIP-1) is highly expressed in activated immune cells and plays an important role in negatively regulating immune responses. However, its role in regulating neutrophil functions in the pathogenesis of inflammatory bowel disease (IBD) is still unclear. Here, we found that MCPIP-1 was markedly increased at both the transcriptional and translational levels in inflamed mucosa of IBD patients compared with healthy controls, which was mainly expressed in neutrophils. Interestingly, MG-132, a proteasome inhibitor reducing the degradation of MCPIP-1, further facilitated neutrophils to express MCPIP-1 in vitro. Importantly, MCPIP-1 markedly downregulated the production of ROS, MPO, and proinflammatory cytokines (e.g., interleukin-1β, interleukin-6, tumor necrosis factor-α, interleukin-8, and interferon-γ) and suppressed the migration of IBD neutrophils. Consistently, the same functional changes were observed in neutrophils from mice with myeloid-targeted overexpression of MCPIP-1 as MG-132 did. Altogether, these findings suggest that MCPIP-1 plays a negative role in regulating neutrophil activities through suppressing the production of ROS, MPO, and proinflammatory cytokines and inhibiting the migration. MG-132 may partially modulate the function of neutrophils via the induction of MCPIP-1. Therefore, targeting MCPIP-1 or exogenous supplementation of MG-132 may provide a therapeutic approach in the treatment of IBD.
Collapse
Affiliation(s)
- Jian Lin
- Department of Gastroenterology, The Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
- Department of Gastroenterology, Affiliated Hospital of Putian University, Putian, China
| | - Gengfeng Li
- Department of Gastroenterology, The Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| | - Chunjin Xu
- Department of Gastroenterology, The First People's Hospital of Shangqiu City Affiliated to Xinxiang Medical University, Shangqiu, China
| | - Huiying Lu
- Department of Gastroenterology, The Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| | - Cui Zhang
- Department of Gastroenterology, The Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| | - Zhi Pang
- Department of Gastroenterology, Suzhou Municipal Hospital Affiliated to Nanjing Medical University, Suzhou, China
| | - Zhanju Liu
- Department of Gastroenterology, The Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
- Department of Gastroenterology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
4
|
Up-regulated MCPIP1 in abdominal aortic aneurysm is associated with vascular smooth muscle cell apoptosis and MMPs production. Biosci Rep 2020; 39:220754. [PMID: 31651935 PMCID: PMC6851509 DOI: 10.1042/bsr20191252] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 09/24/2019] [Accepted: 10/08/2019] [Indexed: 12/27/2022] Open
Abstract
Abdominal aortic aneurysm (AAA) is often clinically silent before rupture characterized by extensive vascular inflammation and degenerative elasticity of aortic wall. Monocyte chemotactic protein-induced protein-1 (MCPIP1) exhibits anti-infllammatory and pro-apoptotic effects involved in atherogenesis. However, little is known about the expression and the contribution of MCPIP1 in AAA. In the present study, we collected clinical AAA specimens and constructed AAA mice model through Ang-II infusion, and found apparently increased MCPIP1 expression and severe inflammatory infiltration in AAA aortic membrane as evidenced by elevated levels of monocyte chemotactic protein 1 (MCP-1), interleukin 1 β (IL-1β) and NF-κB, as well as HE staining. The elasticity of aortic tunica media was impaired along with multiple apoptosis of vascular smooth muscle cells (VSMCs) in Ang-II-induced aneurysmal mouse. In vitro Ang-II administration of VSMCs induced MCPIP1 expression, accompanied by up-regulation of matrix metalloproteinase (MMP) 2 (MMP-2) and MMP-9, as well as enhancement of VSMCs proliferation and apoptosis, which may cause damage of intima–media elasticity. Silencing MCPIP1 reversed above effects to further restore the balance of proliferation and apoptosis in VSMCs. Overall, our data indicated that up-regulation of MCPIP1 may become a promising candidate for the diagnosis of AAA, and specific knockdown of MCPIP1 in VSMCs could inhibit VSMCs apoptosis and down-regulate MMPs to maintain vascular wall elasticity. Therefore, knockdown of MCPIP1 may serve as a potential target for gene therapy of AAA.
Collapse
|
5
|
Li Z, Han S, Jia Y, Yang Y, Han F, Wu G, Li X, Zhang W, Jia W, He X, Han J, Hu D. MCPIP1 regulates RORα expression to protect against liver injury induced by lipopolysaccharide via modulation of miR-155. J Cell Physiol 2019; 234:16562-16572. [PMID: 30811042 DOI: 10.1002/jcp.28327] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/20/2019] [Accepted: 01/24/2019] [Indexed: 02/06/2023]
Abstract
Liver injury plays vital roles in the development of inflammation and organ dysfunction during sepsis. MCP-1-induced protein 1 (MCPIP1), as an endoribonuclease, is a critical regulator for the maintenance of immune homeostasis. However, whether MCPIP1 participates in the septic liver injury remains unknown. The aim of this study was to investigate the role of MCPIP1 in lipopolysaccharides-induced liver injury and the underlying modulatory mechanisms. Quantitative real-time polymerase chain reaction and immunoblotting were used to determine proinflammatory cytokines, MCPIP1, retinoid-related orphan receptor α (RORα), miR-155, and related protein from nuclear factor-κB (NF-κB) pathway expression. Dual luciferase reporter assay was used to analyze whether miR-155 regulates RORα transcription. Secretion of inflammatory cytokines into sera in mice were measured by enzyme-linked immunosorbent assay. Hematoxylin and eosin staining, alanine aminotransferase, and aspartate transaminase, assay were used to evaluate liver function. We found that MCPIP1 expression was notably upregulated and significantly downregulated inflammatory cytokine secretion and NF-κB signaling activation in macrophages following exposure to lipopolysaccharide. Moreover, miR-155, lowered by MCPIP1, directly targeted on 3'-untranslated region of RORα to activate an inflammatory response. Importantly, MCPIP1 overexpression in mice alleviated septic liver injury symptoms following lipopolysaccharides stimulation. Collectively, these data highlight MCPIP1/miR-155/RORα axis as a novel modulation of inflammation in liver injury and potential therapeutic target for future research.
Collapse
Affiliation(s)
- Zhenzhen Li
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China.,Department of Neurobiology and Institute of Neurosciences, School of Basic Medicine, Air Force Medical University, Xi'an, Shaanxi, China
| | - Shichao Han
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Yanhui Jia
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Yunshu Yang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Fu Han
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Gaofeng Wu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Xiaoqiang Li
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Wei Zhang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Wenbin Jia
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Xiang He
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Juntao Han
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Dahai Hu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
6
|
Zhuang J, Wu Y, Chen L, Liang S, Wu M, Zhou L, Fan C, Zhang Y. Single-Cell Mobility Analysis of Metastatic Breast Cancer Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1801158. [PMID: 30581709 PMCID: PMC6299679 DOI: 10.1002/advs.201801158] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 09/26/2018] [Indexed: 05/03/2023]
Abstract
Efforts have been taken to enhance the study of single-cells, however, the task remains challenging because most previous investigations cannot exclude the interactions between single cells or separately retrieved cells with specificity for further analyses. Here, a single-cell mobility analysis platform (SCM-Chip) is developed that can not only real-time monitor single-cell migration in independent niches but can also selectively recover target cells one by one. The design of each channel with a single-cell capture unit and an outlet enables the system to place single cells in different isolated niches with fluidic capture and to respectively collect target cells based on mobilities. SCM-Chip characterization of breast cancer cells reveals the presence of high- and low-migratory populations. Whole-cell transcriptome analysis establishes that monocyte chemotactic protein induced protein 1 (MCPIP1) is related with cell mobility; cells with a high expression of MCPIP1 exhibit low mobility in vitro and metastasis in vivo. The SCM platform provides a generic tool for accurate single-cell isolation and differentiation that can be readily adapted for the study of cancer and drug development.
Collapse
Affiliation(s)
- Jialang Zhuang
- School of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhou510006P. R. China
| | - Yongjian Wu
- Department of ImmunologyZhongshan School of MedicineSun Yat‐sen University74 Zhongshan 2nd RoadGuangzhou510080P. R. China
| | - Liang Chen
- School of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhou510006P. R. China
| | - Siping Liang
- Department of ImmunologyZhongshan School of MedicineSun Yat‐sen University74 Zhongshan 2nd RoadGuangzhou510080P. R. China
| | - Minhao Wu
- Department of ImmunologyZhongshan School of MedicineSun Yat‐sen University74 Zhongshan 2nd RoadGuangzhou510080P. R. China
| | - Ledu Zhou
- Department of General SurgeryXiangya HospitalCentral South UniversityChangshaHunan410008P. R. China
| | - Chunhai Fan
- Laboratory of Physical BiologyShanghai Institute of Applied PhysicsChinese Academy of SciencesShanghai201800P. R. China
| | - Yuanqing Zhang
- School of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhou510006P. R. China
| |
Collapse
|
7
|
Monin L, Gaffen SL. Interleukin 17 Family Cytokines: Signaling Mechanisms, Biological Activities, and Therapeutic Implications. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a028522. [PMID: 28620097 DOI: 10.1101/cshperspect.a028522] [Citation(s) in RCA: 227] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The cytokines of the interleukin 17 (IL-17) family play a central role in the control of infections, especially extracellular fungi. Conversely, if unrestrained, these inflammatory cytokines contribute to the pathology of numerous autoimmune and chronic inflammatory conditions. Recent advances have led to the approval of IL-17A-blocking biologics for the treatment of moderate to severe plaque psoriasis, but much remains to be understood about the biological functions, regulation, and signaling pathways downstream of these factors. In this review, we outline the current knowledge of signal transduction and known physiological activities of IL-17 family cytokines. We will highlight in particular the current understanding of these cytokines in the context of skin manifestations of disease.
Collapse
Affiliation(s)
- Leticia Monin
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Sarah L Gaffen
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| |
Collapse
|
8
|
Monin L, Gudjonsson JE, Childs EE, Amatya N, Xing X, Verma AH, Coleman BM, Garg AV, Killeen M, Mathers A, Ward NL, Gaffen SL. MCPIP1/Regnase-1 Restricts IL-17A- and IL-17C-Dependent Skin Inflammation. THE JOURNAL OF IMMUNOLOGY 2016; 198:767-775. [PMID: 27920272 DOI: 10.4049/jimmunol.1601551] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 11/04/2016] [Indexed: 12/14/2022]
Abstract
The IL-17 family cytokines IL-17A and IL-17C drive the pathogenesis of psoriatic skin inflammation, and anti-IL-17A Abs were recently approved to treat human psoriasis. Little is known about mechanisms that restrain IL-17 cytokine-mediated signaling, particularly IL-17C. In this article, we show that the endoribonuclease MCP-1-induced protein 1 (MCPIP1; also known as regnase-1) is markedly upregulated in human psoriatic skin lesions. Similarly, MCPIP1 was overexpressed in the imiquimod (IMQ)-driven mouse model of cutaneous inflammation. Mice with an MCPIP1 deficiency (Zc3h12a+/-) displayed no baseline skin inflammation, but they showed exacerbated pathology following IMQ treatment. Pathology in Zc3h12a+/- mice was associated with elevated expression of IL-17A- and IL-17C-dependent genes, as well as with increased accumulation of neutrophils in skin. However, IL-17A and IL-17C expression was unaltered, suggesting that the increased inflammation in Zc3h12a+/- mice was due to enhanced downstream IL-17R signaling. Radiation chimeras demonstrated that MCPIP1 in nonhematopoietic cells is responsible for controlling skin pathology. Moreover, Zc3h12a+/-Il17ra-/- mice given IMQ showed almost no disease. To identify which IL-17RA ligand was essential, Zc3h12a+/-Il17a-/- and Zc3h12a+/-Il17c-/- mice were given IMQ; these mice had reduced but not fully abrogated pathology, indicating that MCPIP1 inhibits IL-17A and IL-17C signaling. Confirming this hypothesis, Zc3h12a-/- keratinocytes showed increased responsiveness to IL-17A and IL-17C stimulation. Thus, MCPIP1 is a potent negative regulator of psoriatic skin inflammation through IL-17A and IL-17C. Moreover, to our knowledge, MCPIP1 is the first described negative regulator of IL-17C signaling.
Collapse
Affiliation(s)
- Leticia Monin
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, PA 15260
| | | | - Erin E Childs
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, PA 15260
| | - Nilesh Amatya
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, PA 15260
| | - Xianying Xing
- Department of Dermatology, University of Michigan, Ann Arbor, MI 48109
| | - Akash H Verma
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, PA 15260
| | - Bianca M Coleman
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, PA 15260
| | - Abhishek V Garg
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, PA 15260
| | - Meaghan Killeen
- Department of Dermatology, University of Pittsburgh, Pittsburgh, PA 15260; and
| | - Alicia Mathers
- Department of Dermatology, University of Pittsburgh, Pittsburgh, PA 15260; and
| | - Nicole L Ward
- Department of Dermatology, Case Western Reserve University, Cleveland, OH 44106
| | - Sarah L Gaffen
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, PA 15260;
| |
Collapse
|
9
|
Gurianova V, Stroy D, Ciccocioppo R, Gasparova I, Petrovic D, Soucek M, Dosenko V, Kruzliak P. Stress response factors as hub-regulators of microRNA biogenesis: implication to the diseased heart. Cell Biochem Funct 2015; 33:509-18. [PMID: 26659949 DOI: 10.1002/cbf.3151] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 09/21/2015] [Accepted: 10/02/2015] [Indexed: 12/21/2022]
Abstract
MicroRNAs (miRNAs) are important regulators of heart function and then an intriguing therapeutic target for plenty of diseases. The problem raised is that many data in this area are contradictory, thus limiting the use of miRNA-based therapy. The goal of this review is to describe the hub-mechanisms regulating the biogenesis and function of miRNAs, which could help in clarifying some contradictions in the miRNA world. With this scope, we analyse an array of factors, including several known agents of stress response, mediators of epigenetic changes, regulators of alternative splicing, RNA editing, protein synthesis and folding and proteolytic systems. All these factors are important in cardiovascular function and most of them regulate miRNA biogenesis, but their influence on miRNAs was shown for non-cardiac cells or some specific cardiac pathologies. Finally, we consider that studying the stress response factors, which are upstream regulators of miRNA biogenesis, in the diseased heart could help in (1) explaining some contradictions concerning miRNAs in heart pathology, (2) making the role of miRNAs in pathogenesis of cardiovascular disease more clear, and therefore, (3) getting powerful targets for its molecular therapy.
Collapse
Affiliation(s)
- Veronika Gurianova
- Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kiev, Ukraine
| | - Dmytro Stroy
- Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kiev, Ukraine
| | - Rachele Ciccocioppo
- Clinica Medica I; Fondazione IRCCS Policlinico San Matteo, Università degli Studi di Pavia, Italy
| | - Iveta Gasparova
- Institute of Biology, Genetics and Medical Genetics, Faculty of Medicine, Comenius University and University Hospital, Bratislava, Slovak Republic
| | - Daniel Petrovic
- Institute of Histology and Embryology, Medical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Miroslav Soucek
- Second Department of Internal Medicine, St. Anne's University Hospital and Masaryk University, Brno, Czech Republic
| | - Victor Dosenko
- Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kiev, Ukraine
| | - Peter Kruzliak
- Second Department of Internal Medicine, St. Anne's University Hospital and Masaryk University, Brno, Czech Republic.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Bratislava, Slovak Republic.,Laboratory of Structural Biology and Proteomics, Faculty of Pharmacy, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| |
Collapse
|
10
|
He M, Liang X, He L, Wen W, Zhao S, Wen L, Liu Y, Shyy JYJ, Yuan Z. Endothelial dysfunction in rheumatoid arthritis: the role of monocyte chemotactic protein-1-induced protein. Arterioscler Thromb Vasc Biol 2013; 33:1384-91. [PMID: 23580143 DOI: 10.1161/atvbaha.113.301490] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Patients with rheumatoid arthritis are prone to atherosclerosis. We explored the role of elevated level of monocyte chemotactic protein-1 (MCP-1)-induced protein (MCPIP) in endothelial dysfunction associated with rheumatoid arthritis. APPROACH AND RESULTS The level of MCP-1 was elevated in sera from mice with collagen-induced arthritis (CIA) and was negatively correlated with endothelium-dependent vessel dilation. Aortas from CIA mice showed increased expression of MCPIP but decreased bioavailability of endothelial NO synthase-derived NO. Administering MCP-1 neutralizing antibody to CIA mice decreased the MCPIP level in aortas and alleviated endothelial dysfunction. In vitro, treating cultured vascular endothelial cells with MCP-1 or sera from CIA mice or rheumatoid arthritis patients increased the expression of MCPIP but inhibited endothelial NO synthase phosphorylation. These detrimental effects were reproduced in endothelial cells overexpressing MCPIP, with elevated redox stress. Small interfering RNA knockdown of MCPIP restored the endothelial NO synthase-derived NO bioavailability. Administering simvastatin to CIA mice ameliorated the endothelial dysfunction, with attendant decreased aortic level of MCPIP. The beneficial effect of the statin was mediated by inhibiting nuclear factor κB binding to the MCPIP gene enhancer. CONCLUSIONS Increased MCPIP is found in rheumatoid arthritis leading to endothelial dysfunction. Statin treatment or MCP-1 neutralizing antibody administration antagonizes MCPIP expression, thereby attenuating the endothelial dysfunction.
Collapse
Affiliation(s)
- Ming He
- Department of Cardiovascular Medicine, First Affiliated Hospital of Medical School, Cardiovascular Research Center, Medical School, Xi'an Jiaotong University, Xi'an, China
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
MicroRNAs (miRNAs) function as 21-24 nucleotide guide RNAs that use partial base-pairing to recognize target messenger RNAs and repress their expression. As a large fraction of protein-coding genes are under miRNA control, production of the appropriate level of specific miRNAs at the right time and in the right place is integral to most gene regulatory pathways. MiRNA biogenesis initiates with transcription, followed by multiple processing steps to produce the mature miRNA. Every step of miRNA production is subject to regulation and disruption of these control mechanisms has been linked to numerous human diseases, where the balance between the expression of miRNAs and their targets becomes distorted. Here we review the basic steps of miRNA biogenesis and describe the various factors that control miRNA transcription, processing, and stability in animal cells. The tremendous effort put into producing the appropriate type and level of specific miRNAs underscores the critical role of these small RNAs in gene regulation.
Collapse
Affiliation(s)
- Emily F Finnegan
- Division of Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | | |
Collapse
|
12
|
Jura J, Skalniak L, Koj A. Monocyte chemotactic protein-1-induced protein-1 (MCPIP1) is a novel multifunctional modulator of inflammatory reactions. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:1905-13. [PMID: 22771441 DOI: 10.1016/j.bbamcr.2012.06.029] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 06/21/2012] [Accepted: 06/25/2012] [Indexed: 01/01/2023]
Abstract
The generalized inflammatory response leads to activation of hundreds of genes transcribed in an established sequence in specialized cells. Transcriptome analysis of human monocyte-derived cells stimulated with IL-1beta or with monocyte chemotactic protein-1 (MCP-1) has led to the identification of a new inflammation-related gene ZC3H12A encoding a chain of 599 amino acids corresponding to a 66-kDa protein. The protein, given a provisional name of MCPIP1 (monocyte chemotactic protein-induced protein-1), is expressed in several human and murine tissues such as bone marrow, spleen, heart and placenta. In in vivo studies, mice with inactivated MCPIP1-encoding gene showed growth retardation, lymphadenopathy, splenomegaly and enhanced inflammatory symptoms. Principal molecular features of MCPIP1 include a single zinc finger motif, an RNase-like PIN domain and ubiquitin-binding domain. Reports from independent laboratories suggest that MCPIP1 may function also as a deubiquitinase. Although MCPIP1 is regarded by some authors as a new transcription factor or cell differentiation factor modulating angiogenesis or adipogenesis, its principal function appears to be downregulation of inflammatory responses through at least two independent mechanisms: increased degradation of cytokine mRNAs and inhibition of LPS- and IL-1-induced NF-kappaB signaling pathway. The interference with NF-kappaB activation is highly complex and includes TRAF6 and TANK interaction with the ubiquitin-associated (UBA) domain of MCPIP1. Purified MCPIP1 protein was reported to degrade specific mRNA and cleave K48- and K63-linked polyubiquitin chains. Although some structural features and the mechanism of action of MCPIP1 are not fully explained yet, its importance in the regulation of inflammatory reactions has been firmly established.
Collapse
Affiliation(s)
- Jolanta Jura
- Department of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | | | | |
Collapse
|