1
|
Luna-Luna M, Franco M, Carreón-Torres E, Pérez-Hernández N, Fragoso JM, Bautista-Pérez R, Pérez-Méndez Ó. Total Outflow of High-Density Lipoprotein-Cholesteryl Esters from Plasma Is Decreased in a Model of 3/4 Renal Mass Reduction. Int J Mol Sci 2023; 24:17090. [PMID: 38069414 PMCID: PMC10707367 DOI: 10.3390/ijms242317090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023] Open
Abstract
(1) Background: Previous studies have enriched high-density lipoproteins (HDL) using cholesteryl esters in rabbits with a three-quarter reduction in functional renal mass, suggesting that the kidneys participate in the cholesterol homeostasis of these lipoproteins. However, the possible role of the kidneys in lipoprotein metabolism is still controversial. To understand the role of the kidneys in regulating the HDL lipid content, we determined the turnover of HDL-cholesteryl esters in rabbits with a three-quarter renal mass reduction. (2) Methods: HDL subclass characterization was conducted, and the kinetics of plasma HDL-cholesteryl esters, labeled with tritium, were studied in rabbits with a 75% reduction in functional renal mass (Ntx). (3) Results: The reduced renal mass triggered the enrichment of cholesterol, specifically cholesteryl esters, in HDL subclasses. The exchange of cholesteryl esters between HDL and apo B-containing lipoproteins (VLDL/LDL) was not significantly modified in Ntx rabbits. Moreover, the cholesteryl esters of HDL and VLDL/LDL fluxes from the plasmatic compartment tended to decrease, but they only reached statistical significance when both fluxes were added to the Nxt group. Accordingly, the fractional catabolic rate (FCR) of the HDL-cholesteryl esters was lower in Ntx rabbits, concomitantly with its accumulation in HDL subclasses, probably because of the reduced mass of renal cells requiring this lipid from lipoproteins.
Collapse
Affiliation(s)
- María Luna-Luna
- Department of Molecular Biology, Instituto Nacional de Cardiologia “Ignacio Chavez”, Mexico City 14080, Mexico; (M.L.-L.); (E.C.-T.); (N.P.-H.); (J.M.F.); (R.B.-P.)
| | - Martha Franco
- Department of Nephrology, Instituto Nacional de Cardiologia “Ignacio Chavez”, Mexico City 14080, Mexico;
| | - Elizabeth Carreón-Torres
- Department of Molecular Biology, Instituto Nacional de Cardiologia “Ignacio Chavez”, Mexico City 14080, Mexico; (M.L.-L.); (E.C.-T.); (N.P.-H.); (J.M.F.); (R.B.-P.)
| | - Nonanzit Pérez-Hernández
- Department of Molecular Biology, Instituto Nacional de Cardiologia “Ignacio Chavez”, Mexico City 14080, Mexico; (M.L.-L.); (E.C.-T.); (N.P.-H.); (J.M.F.); (R.B.-P.)
| | - José Manuel Fragoso
- Department of Molecular Biology, Instituto Nacional de Cardiologia “Ignacio Chavez”, Mexico City 14080, Mexico; (M.L.-L.); (E.C.-T.); (N.P.-H.); (J.M.F.); (R.B.-P.)
| | - Rocío Bautista-Pérez
- Department of Molecular Biology, Instituto Nacional de Cardiologia “Ignacio Chavez”, Mexico City 14080, Mexico; (M.L.-L.); (E.C.-T.); (N.P.-H.); (J.M.F.); (R.B.-P.)
| | - Óscar Pérez-Méndez
- Department of Molecular Biology, Instituto Nacional de Cardiologia “Ignacio Chavez”, Mexico City 14080, Mexico; (M.L.-L.); (E.C.-T.); (N.P.-H.); (J.M.F.); (R.B.-P.)
- Tecnologico de Monterrey, Campus Ciudad de Mexico, Mexico City 14380, Mexico
| |
Collapse
|
2
|
Jieni L, Yazhi X, Xiaorong Z, Dan L, Yusheng M, Jiahuan R, Bin Z, Li L, Zhigang G. Effect of renal function on high-density lipoprotein particles in patients with coronary heart disease. BMC Cardiovasc Disord 2021; 21:534. [PMID: 34772349 PMCID: PMC8588638 DOI: 10.1186/s12872-021-02354-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 10/25/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Although renal insufficiency and dyslipidemia are known to be closely associated, the effect of kidney function on the size and clinical value of high-density lipoprotein (HDL) particles remains largely unknown, especially in patients with coronary heart disease. METHODS A total of 419 coronary heart disease patients and 105 non-coronary heart disease patients were included. HDL particle size, represented by HDL-C/apoA-I, was compared between groups stratified by estimated glomerular filtration rate (eGFR) and Gensini scores using standard Student's t test and one-way ANOVA. Pearson's correlation test was performed to analyze the association between eGFR and HDL-C/apoA-I in patients with coronary heart disease. The relationship between HDL particle size and the occurrence of coronary heart disease was explored using Univariate logistic regression analysis. RESULTS In patients with coronary heart disease, between-group analysis revealed that HDL-C/apoA-I increased as eGFR declined, and significance appeared as eGFR declined to under 60 ml/min·1.73 m2 (P < 0.001), and Pearson's correlation test also confirmed an inverse correlation between eGFR and HDL-C/apoA-I levels in coronary heart disease patients. When stratified by Gensini scores, in coronary heart disease patients with eGFR ≥ 90 mL/(min·1.73 m2), those with higher Gensini scores had smaller HDL-C/apoA-I. However, with or without kidney insufficiency, smaller HDL-C/apoA-I was associated with a higher occurrence of coronary heart disease (P < 0.05). CONCLUSION With the presence of renal insufficiency, HDL-C/apoA1 was higher in patients with coronary heart disease. Lower HDL-C/apoA1 was still associated with a higher occurrence of coronary heart disease, but the original association between lower HDL-C/apoA1 and more severe coronary artery stenosis was lost in patients with renal insufficiency.
Collapse
Affiliation(s)
- Long Jieni
- Huiqiao Medical Center, Standardized General Practice Training Site, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, China
| | - Xue Yazhi
- Huiqiao Medical Center, Standardized General Practice Training Site, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, China
| | - Zeng Xiaorong
- Huiqiao Medical Center, Standardized General Practice Training Site, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, China
| | - Liu Dan
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, China
| | - Ma Yusheng
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, China
| | - Rao Jiahuan
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, China
| | - Zhang Bin
- Huiqiao Medical Center, Standardized General Practice Training Site, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, China
| | - Li Li
- Huiqiao Medical Center, Standardized General Practice Training Site, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, China.
| | - Guo Zhigang
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, China.
| |
Collapse
|
3
|
Coimbra S, Reis F, Valente MJ, Rocha S, Catarino C, Rocha-Pereira P, Sameiro-Faria M, Bronze-da-Rocha E, Belo L, Santos-Silva A. Subpopulations of High-Density Lipoprotein: Friends or Foes in Cardiovascular Disease Risk in Chronic Kidney Disease? Biomedicines 2021; 9:554. [PMID: 34065648 PMCID: PMC8157071 DOI: 10.3390/biomedicines9050554] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 12/23/2022] Open
Abstract
Dyslipidemia is a major traditional risk factor for cardiovascular disease (CVD) in chronic kidney disease (CKD) patients, although the altered lipid profile does not explain the number and severity of CVD events. High-density lipoprotein (HDL) is a heterogeneous (size, composition, and functionality) population of particles with different atherogenic or atheroprotective properties. HDL-cholesterol concentrations per se may not entirely reflect a beneficial or a risk profile for CVD. Large HDL in CKD patients may have a unique proteome and lipid composition, impairing their cholesterol efflux capacity. This lack of HDL functionality may contribute to the paradoxical coexistence of increased large HDL and enhanced risk for CVD events. Moreover, CKD is associated with inflammation, oxidative stress, diabetes, and/or hypertension that are able to interfere with the anti-inflammatory, antioxidative, and antithrombotic properties of HDL subpopulations. How these changes interfere with HDL functions in CKD is still poorly understood. Further studies are warranted to fully clarify if different HDL subpopulations present different functionalities and/or atheroprotective effects. To achieve this goal, the standardization of techniques would be valuable.
Collapse
Affiliation(s)
- Susana Coimbra
- UCIBIO\REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (M.J.V.); (C.C.); (P.R.-P.); (M.S.-F.); (E.B.-d.-R.); (L.B.); (A.S.-S.)
- CESPU, Institute of Research and Advanced Training in Health Sciences and Technologies (IINFACTS), 4585-116 Gandra-Paredes, Portugal
| | - Flávio Reis
- Institute of Pharmacology & Experimental Therapeutics, & Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal;
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3004-504 Coimbra, Portugal
| | - Maria João Valente
- UCIBIO\REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (M.J.V.); (C.C.); (P.R.-P.); (M.S.-F.); (E.B.-d.-R.); (L.B.); (A.S.-S.)
| | - Susana Rocha
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
| | - Cristina Catarino
- UCIBIO\REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (M.J.V.); (C.C.); (P.R.-P.); (M.S.-F.); (E.B.-d.-R.); (L.B.); (A.S.-S.)
| | - Petronila Rocha-Pereira
- UCIBIO\REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (M.J.V.); (C.C.); (P.R.-P.); (M.S.-F.); (E.B.-d.-R.); (L.B.); (A.S.-S.)
- Chemistry Department, University of Beira Interior, 6201-001 Covilhã, Portugal
| | - Maria Sameiro-Faria
- UCIBIO\REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (M.J.V.); (C.C.); (P.R.-P.); (M.S.-F.); (E.B.-d.-R.); (L.B.); (A.S.-S.)
- Hemodialysis Clinic Hospital Agostinho Ribeiro, 4610-106 Felgueiras, Portugal
| | - Elsa Bronze-da-Rocha
- UCIBIO\REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (M.J.V.); (C.C.); (P.R.-P.); (M.S.-F.); (E.B.-d.-R.); (L.B.); (A.S.-S.)
| | - Luís Belo
- UCIBIO\REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (M.J.V.); (C.C.); (P.R.-P.); (M.S.-F.); (E.B.-d.-R.); (L.B.); (A.S.-S.)
| | - Alice Santos-Silva
- UCIBIO\REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (M.J.V.); (C.C.); (P.R.-P.); (M.S.-F.); (E.B.-d.-R.); (L.B.); (A.S.-S.)
| |
Collapse
|
4
|
Current Understanding of the Relationship of HDL Composition, Structure and Function to Their Cardioprotective Properties in Chronic Kidney Disease. Biomolecules 2020; 10:biom10091348. [PMID: 32967334 PMCID: PMC7564231 DOI: 10.3390/biom10091348] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 12/27/2022] Open
Abstract
In the general population, the ability of high-density lipoproteins (HDLs) to promote cholesterol efflux is a predictor of cardiovascular events, independently of HDL cholesterol levels. Although patients with chronic kidney disease (CKD) have a high burden of cardiovascular morbidity and mortality, neither serum levels of HDL cholesterol, nor cholesterol efflux capacity associate with cardiovascular events. Important for the following discussion on the role of HDL in CKD is the notion that traditional atherosclerotic cardiovascular risk factors only partially account for this increased incidence of cardiovascular disease in CKD. As a potential explanation, across the spectrum of cardiovascular disease, the relative contribution of atherosclerotic cardiovascular disease becomes less important with advanced CKD. Impaired renal function directly affects the metabolism, composition and functionality of HDL particles. HDLs themselves are a heterogeneous population of particles with distinct sizes and protein composition, all of them affecting the functionality of HDL. Therefore, a more specific approach investigating the functional and compositional features of HDL subclasses might be a valuable strategy to decipher the potential link between HDL, cardiovascular disease and CKD. This review summarizes the current understanding of the relationship of HDL composition, metabolism and function to their cardio-protective properties in CKD, with a focus on CKD-induced changes in the HDL proteome and reverse cholesterol transport capacity. We also will highlight the gaps in the current knowledge regarding important aspects of HDL biology.
Collapse
|
5
|
Kidney as modulator and target of "good/bad" HDL. Pediatr Nephrol 2019; 34:1683-1695. [PMID: 30291429 PMCID: PMC6450786 DOI: 10.1007/s00467-018-4104-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/25/2018] [Accepted: 09/27/2018] [Indexed: 10/28/2022]
Abstract
The strong inverse relationship between low levels of high-density lipoproteins (HDLs) and atherosclerotic cardiovascular disease (CVD) led to the designation of HDL as the "good" cholesterol. The atheroprotection is thought to reflect HDL's capacity to efflux cholesterol from macrophages, followed by interaction with other lipoproteins in the plasma, processing by the liver and excretion into bile. However, pharmacologic increases in HDL-C levels have not led to expected clinical benefits, giving rise to the concept of dysfunctional HDL, in which increases in serum HDL-C are not beneficial due to lost or altered HDL functions and transition to "bad" HDL. It is now understood that the cholesterol in HDL, measured by HDL-C, is neither a marker nor the mediator of HDL function, including cholesterol efflux capacity. It is also understood that besides cholesterol efflux, HDL functionality encompasses many other potentially beneficial functions, including antioxidant, anti-inflammatory, antithrombotic, anti-apoptotic, and vascular protective effects that may be critical protective pathways for various cells, including those in the kidney parenchyma. This review highlights advances in our understanding of the role kidneys play in HDL metabolism, including the effects on levels, composition, and functionality of HDL particles, particularly the main HDL protein, apolipoprotein AI (apoAI). We suggest that normal apoAI/HDL in the glomerular filtrate provides beneficial effects, including lymphangiogenesis, that promote resorption of renal interstitial fluid and biological particles. In contrast, dysfunctional apoAI/HDL activates detrimental pathways in tubular epithelial cells and lymphatics that lead to interstitial accumulation of fluid and harmful particles that promote progressive kidney damage.
Collapse
|
6
|
Lipoprotein modulation of proteinuric renal injury. J Transl Med 2019; 99:1107-1116. [PMID: 31019291 PMCID: PMC6658349 DOI: 10.1038/s41374-019-0253-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 02/08/2019] [Accepted: 03/04/2019] [Indexed: 12/14/2022] Open
Abstract
High-density lipoprotein (HDL) and its main protein, apolipoprotein AI (apoAI), have established benefits in various cells, but whether these cytoprotective effects of HDL pertain to renal cells is unclear. We investigated the in vitro consequences of exposing damaged podocytes to normal apoAI, HDL, and apoAI mimetic (L-4F), and the in vivo effects of L-4F on kidney and atherosclerotic injury in a podocyte-specific injury model of proteinuria. In vitro, primary mouse podocytes were injured by puromycin aminonucleoside (PAN). Cellular viability, migration, production of reactive oxygen species (ROS), apoptosis, and the underlying signaling pathway were assessed. In vivo, we used a proteinuric model, Nphs1-hCD25 transgenic (NEP25+) mice, which express human CD25 on podocytes. Podocyte injury was induced by using immunotoxin (LMB2) and generated a proteinuric atherosclerosis model, NEP25+:apoE-/- mice, was generated by mating apoE-deficient (apoE-/-) mice with NEP25+ mice. Animals received L-4F or control vehicle. Renal function, podocyte injury, and atherosclerosis were assessed. PAN reduced podocyte viability, migration, and increased ROS production, all significantly lessened by apoAI, HDL, and L-4F. L-4F attenuated podocyte apoptosis and diminished PAN-induced inactivation of Janus family protein kinase-2/signal transducers and activators of transcription 3. In NEP25+ mice, L-4F significantly lessened overall proteinuria, and preserved podocyte expression of synaptopodin and cell density. Proteinuric NEP25+:apoE-/- mice had more atherosclerosis than non-proteinuric apoE-/- mice, and these lesions were significantly decreased by L-4F. Normal human apoAI, HDL, and apoAI mimetic protect against podocyte damage. ApoAI mimetic provides in vivo beneficial effects on podocytes that culminate in reduced albuminuria and atherosclerosis. The results suggest supplemental apoAI/apoAI mimetic may be a novel candidate to lessen podocyte damage and its complications.
Collapse
|
7
|
Martínez-Ramírez M, Flores-Castillo C, Sánchez-Lozada LG, Bautista-Pérez R, Carreón-Torres E, Fragoso JM, Rodriguez-Pérez JM, García-Arroyo FE, López-Olmos V, Luna-Luna M, Vargas-Alarcón G, Franco M, Pérez-Méndez O. Hyperuricemia is Associated with Increased Apo AI Fractional Catabolic Rates and Dysfunctional HDL in New Zealand Rabbits. Lipids 2017; 52:999-1006. [PMID: 28940111 DOI: 10.1007/s11745-017-4301-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 09/14/2017] [Indexed: 12/16/2022]
Abstract
The potential cause-effect relationship between uric acid plasma concentrations and HDL functionality remains elusive. Therefore, this study aimed to explore the effect of oxonic acid (OA)-induced hyperuricemia on the HDL size distribution, lipid content of HDL subclasses, and apo AI turnover, as well as HDL functionality in New Zealand white rabbits. Experimental animals received OA 750 mg/kg/day by oral gavage during 21 days. The HDL-apo AI fractional catabolic rate (FCR) was determined by exogenous labeling with 125I, and HDL subclasses were determined by sequential ultracentrifugation and PAGE. Paraoxonase-1 activity (PON-1) and the effect of HDL on relaxation of aorta rings in vitro were determined as an indication of HDL functionality. Oxonic acid induced a sixfold increase of uricemia (0.84 ± 0.06 vs. 5.24 ± 0.12 mg/dL, P < 0.001), and significant decreases of triglycerides and phospholipids of HDL subclasses, whereas HDL size distribution and HDL-cholesterol remained unchanged. In addition, HDL-apo AI FCR was significantly higher in hyperuricemic rabbits than in the control group (0.03697 ± 0.0038 vs. 0.02605 ± 0.0017 h-1 respectively, P < 0.05). Such structural and metabolic changes were associated with lower levels of PON-1 activities and deleterious effects of HDL particles on endothelium-mediated vasodilation. In conclusion, hyperuricemia is associated with structural and metabolic modifications of HDL that result in impaired functionality of these lipoproteins. Our data strongly suggest that uric acid per se exerts deleterious effects on HDL that contribute to increase the risk of atherosclerosis.
Collapse
Affiliation(s)
- Miriam Martínez-Ramírez
- Department of Molecular Biology, Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano 1, Sección XVI, 14080, Mexico City, Mexico
| | - Cristóbal Flores-Castillo
- Department of Molecular Biology, Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano 1, Sección XVI, 14080, Mexico City, Mexico
| | | | - Rocío Bautista-Pérez
- Department of Molecular Biology, Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano 1, Sección XVI, 14080, Mexico City, Mexico
| | - Elizabeth Carreón-Torres
- Department of Molecular Biology, Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano 1, Sección XVI, 14080, Mexico City, Mexico
| | - José Manuel Fragoso
- Department of Molecular Biology, Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano 1, Sección XVI, 14080, Mexico City, Mexico
| | - José Manuel Rodriguez-Pérez
- Department of Molecular Biology, Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano 1, Sección XVI, 14080, Mexico City, Mexico
| | | | - Victoria López-Olmos
- Department of Molecular Biology, Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano 1, Sección XVI, 14080, Mexico City, Mexico
| | - María Luna-Luna
- Department of Molecular Biology, Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano 1, Sección XVI, 14080, Mexico City, Mexico
| | - Gilberto Vargas-Alarcón
- Department of Molecular Biology, Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano 1, Sección XVI, 14080, Mexico City, Mexico
| | - Martha Franco
- Nephrology Department, Instituto Nacional de Cardiología "Ignacio Chávez", Mexico City, Mexico
| | - Oscar Pérez-Méndez
- Department of Molecular Biology, Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano 1, Sección XVI, 14080, Mexico City, Mexico.
| |
Collapse
|
8
|
Yang H, Fogo AB, Kon V. Kidneys: key modulators of high-density lipoprotein levels and function. Curr Opin Nephrol Hypertens 2017; 25:174-9. [PMID: 27008596 DOI: 10.1097/mnh.0000000000000217] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE OF REVIEW The review will examine advances in our understanding of the role kidneys play in high-density lipoprotein (HDL) metabolism and the effect on levels, composition, and function of HDL particles. RECENT FINDINGS Components of the HDL particles can cross the glomerular filtration barrier. Some of these components, including apolipoproteins and enzymes involved in lipid metabolism, are taken up by the proximal tubule and degraded, modified, salvaged/returned to the circulation, or lost in the urine. Injury of the glomerular capillaries or tubules can affect these intrarenal processes and modify HDL. Changes in the plasma and urine levels of HDL may be novel markers of kidney damage or mechanism(s) of kidney disease. SUMMARY The kidneys have a significant role in the metabolism of individual HDL components, which in turn modulate HDL levels, composition, and functionality of HDL particles. These intrarenal effects may be useful markers of kidney damage and have consequences on kidney-related perturbations in HDL.
Collapse
Affiliation(s)
- Haichun Yang
- aDepartments of Pediatrics, Microbiology, and Immunology bDepartments of Medicine, Microbiology, and Immunology cDepartments of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | | | | |
Collapse
|
9
|
Quintanilla-Cantú A, Peña-de-la-Sancha P, Flores-Castillo C, Mejía-Domínguez AM, Posadas-Sánchez R, Pérez-Hernández N, Bautista-Pérez R, Enriquez-Calderón RE, Juárez-Oropeza MA, Fragoso JM, Vargas-Alarcón G, Pérez-Méndez O. Small HDL subclasses become cholesterol-poor during postprandial period after a fat diet intake in subjects with high triglyceridemia increases. Clin Chim Acta 2016; 464:98-105. [PMID: 27847194 DOI: 10.1016/j.cca.2016.11.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/08/2016] [Accepted: 11/11/2016] [Indexed: 12/17/2022]
Abstract
BACKGROUND Postprandial triglyceridemia may transitory affect the structure of HDL subclasses and probably their antiatherogenic properties but little is known in this field. We analyzed the HDL subclasses lipid content along postprandial period. METHODS Fifteen metabolic syndrome (MS) patients and 15 healthy controls were enrolled. HDL were isolated from plasma samples obtained at fasting and every 2-h up to 8-h, after a 75-g fat meal. Cholesterol (C), triglycerides (TAG), and phospholipid (Ph) plasma concentrations of five HDL subclasses were determined by densitometry of electrophoresis gels enzymatically stained. RESULTS The increase of postprandial triglyceridemia expressed as the incremental area under the curve (iAUC) was twice in MS patients than in controls. Only large HDL2b-TAG were higher in MS than controls at 4, 6 and 8h after meal intake, whereas cholesterol of HDL2a, 3a and 3b were lower at 8h. HDL size distribution shifted towards large HDL and HDL3a-, 3b- and 3c-subclasses had a lower content of cholesterol (estimated by the C-to-Ph ratio) in subjects whose iAUC>289.5mgh/dl (n=15) in comparison with those subjects with iAUC below this cutoff point (n=15), independently of the MS status and fasting TAG. Triglycerides content of HDL subclasses changed only discreetly along the postprandial period, whereas paraoxonase-1 remained unchanged. CONCLUSIONS A high postprandial triglyceridemia conditions the shift of HDL size distribution towards large particles and the decrease of cholesterol in HDL3 subclasses. These data demonstrate that postprandial hypertriglyceridemia contributes to a transitory hypoalphalipoproteinemia that may increase the risk of cardiovascular disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Rocío Bautista-Pérez
- Molecular Biology, Instituto Nacional de Cardiología "Ignacio Chávez", Mexico City, Mexico
| | | | | | - José Manuel Fragoso
- Molecular Biology, Instituto Nacional de Cardiología "Ignacio Chávez", Mexico City, Mexico
| | | | - Oscar Pérez-Méndez
- Molecular Biology, Instituto Nacional de Cardiología "Ignacio Chávez", Mexico City, Mexico.
| |
Collapse
|
10
|
Rysz-Górzyńska M, Banach M. Subfractions of high-density lipoprotein (HDL) and dysfunctional HDL in chronic kidney disease patients. Arch Med Sci 2016; 12:844-9. [PMID: 27478466 PMCID: PMC4947629 DOI: 10.5114/aoms.2016.60971] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 04/28/2016] [Indexed: 01/29/2023] Open
Abstract
A number of studies have shown that chronic kidney disease (CKD) is associated with increased risk for cardiovascular disease (CVD). Chronic kidney disease is characterized by significant disturbances in lipoprotein metabolism, including differences in quantitative and qualitative content of high-density lipoprotein (HDL) particles. Recent studies have revealed that serum HDL cholesterol levels do not predict CVD in CKD patients; thus CKD-induced modifications in high-density lipoprotein (HDL) may be responsible for the increase in CV risk in CKD patients. Various methods are available to separate several subclasses of HDL and confirm their atheroprotective properties. However, under pathological conditions associated with inflammation and oxidation, HDL can progressively lose normal biological activities and be converted into dysfunctional HDL. In this review, we highlight the current state of knowledge on subfractions of HDL and HDL dysfunction in CKD.
Collapse
Affiliation(s)
- Magdalena Rysz-Górzyńska
- Department of Nephrology, Hypertension and Family Medicine, Healthy Aging Research Center, Medical University of Lodz, Lodz, Poland
| | - Maciej Banach
- Department of Hypertension, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
11
|
López-Olmos V, Carreón-Torres E, Luna-Luna M, Flores-Castillo C, Martínez-Ramírez M, Bautista-Pérez R, Franco M, Sandoval-Zárate J, Roldán FJ, Aranda-Fraustro A, Soria-Castro E, Muñoz-Vega M, Fragoso JM, Vargas-Alarcón G, Pérez-Méndez O. Increased HDL Size and Enhanced Apo A-I Catabolic Rates Are Associated With Doxorubicin-Induced Proteinuria in New Zealand White Rabbits. Lipids 2016; 51:311-20. [PMID: 26781765 DOI: 10.1007/s11745-016-4120-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 12/24/2015] [Indexed: 11/24/2022]
Abstract
The catabolism and structure of high-density lipoproteins (HDL) may be the determining factor of their atheroprotective properties. To better understand the role of the kidney in HDL catabolism, here we characterized HDL subclasses and the catabolic rates of apo A-I in a rabbit model of proteinuria. Proteinuria was induced by intravenous administration of doxorubicin in New Zealand white rabbits (n = 10). HDL size and HDL subclass lipids were assessed by electrophoresis of the isolated lipoproteins. The catabolic rate of HDL-apo A-I was evaluated by exogenous radiolabelling with iodine-131. Doxorubicin induced significant proteinuria after 4 weeks (4.47 ± 0.55 vs. 0.30 ± 0.02 g/L of protein in urine, P < 0.001) associated with increased uremia, creatininemia, and cardiotoxicity. Large HDL2b augmented significantly during proteinuria, whereas small HDL3b and HDL3c decreased compared to basal conditions. HDL2b, HDL2a, and HDL3a subclasses were enriched with triacylglycerols in proteinuric animals as determined by the triacylglycerol-to-phospholipid ratio; the cholesterol content in HDL subclasses remained unchanged. The fractional catabolic rate (FCR) of [(131)I]-apo A-I in the proteinuric rabbits was faster (FCR = 0.036 h(-1)) compared to control rabbits group (FCR = 0.026 h(-1), P < 0.05). Apo E increased and apo A-I decreased in HDL, whereas PON-1 activity increased in proteinuric rabbits. Proteinuria was associated with an increased number of large HDL2b particles and a decreased number of small HDL3b and 3c. Proteinuria was also connected to an alteration in HDL subclass lipids, apolipoprotein content of HDL, high paraoxonase-1 activity, and a rise in the fractional catabolic rate of the [(131)I]-apo A-I.
Collapse
Affiliation(s)
- Victoria López-Olmos
- Molecular Biology Department, Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano 1, Section XVI, 14080, México D.F., Mexico
| | - Elizabeth Carreón-Torres
- Molecular Biology Department, Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano 1, Section XVI, 14080, México D.F., Mexico.,Atherosclerosis Study Group, Instituto Nacional de Cardiología "Ignacio Chávez", México D.F., Mexico
| | - María Luna-Luna
- Molecular Biology Department, Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano 1, Section XVI, 14080, México D.F., Mexico
| | - Cristobal Flores-Castillo
- Molecular Biology Department, Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano 1, Section XVI, 14080, México D.F., Mexico
| | - Miriam Martínez-Ramírez
- Molecular Biology Department, Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano 1, Section XVI, 14080, México D.F., Mexico
| | - Rocío Bautista-Pérez
- Molecular Biology Department, Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano 1, Section XVI, 14080, México D.F., Mexico.,Atherosclerosis Study Group, Instituto Nacional de Cardiología "Ignacio Chávez", México D.F., Mexico
| | - Martha Franco
- Atherosclerosis Study Group, Instituto Nacional de Cardiología "Ignacio Chávez", México D.F., Mexico.,Nephrology Department, Instituto Nacional de Cardiología "Ignacio Chávez", México D.F., Mexico
| | - Julio Sandoval-Zárate
- Atherosclerosis Study Group, Instituto Nacional de Cardiología "Ignacio Chávez", México D.F., Mexico.,Cardiopulmonary Department, Instituto Nacional de Cardiología "Ignacio Chávez", México D.F., Mexico
| | - Francisco-Javier Roldán
- Outpatient Care Department, Instituto Nacional de Cardiología "Ignacio Chávez", México D.F., Mexico
| | - Alberto Aranda-Fraustro
- Pathology Department, Instituto Nacional de Cardiología "Ignacio Chávez", México D.F., Mexico
| | - Elizabeth Soria-Castro
- Pathology Department, Instituto Nacional de Cardiología "Ignacio Chávez", México D.F., Mexico
| | - Mónica Muñoz-Vega
- Molecular Biology Department, Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano 1, Section XVI, 14080, México D.F., Mexico
| | - José-Manuel Fragoso
- Molecular Biology Department, Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano 1, Section XVI, 14080, México D.F., Mexico.,Atherosclerosis Study Group, Instituto Nacional de Cardiología "Ignacio Chávez", México D.F., Mexico
| | - Gilberto Vargas-Alarcón
- Molecular Biology Department, Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano 1, Section XVI, 14080, México D.F., Mexico.,Atherosclerosis Study Group, Instituto Nacional de Cardiología "Ignacio Chávez", México D.F., Mexico
| | - Oscar Pérez-Méndez
- Molecular Biology Department, Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano 1, Section XVI, 14080, México D.F., Mexico. .,Atherosclerosis Study Group, Instituto Nacional de Cardiología "Ignacio Chávez", México D.F., Mexico.
| |
Collapse
|
12
|
Kon V, Yang H, Fazio S. Residual Cardiovascular Risk in Chronic Kidney Disease: Role of High-density Lipoprotein. Arch Med Res 2015; 46:379-91. [PMID: 26009251 DOI: 10.1016/j.arcmed.2015.05.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 05/12/2015] [Indexed: 12/20/2022]
Abstract
Although reducing low-density lipoprotein-cholesterol (LDL-C) levels with lipid-lowering agents (statins) decreases cardiovascular disease (CVD) risk, a substantial residual risk (up to 70% of baseline) remains after treatment in most patient populations. High-density lipoprotein (HDL) is a potential contributor to residual risk, and low HDL-cholesterol (HDL-C) is an established risk factor for CVD. However, in contrast to conventional lipid-lowering therapies, recent studies show that pharmacologic increases in HDL-C levels do not bring about clinical benefits. These observations have given rise to the concept of dysfunctional HDL where increases in serum HDL-C may not be beneficial because HDL loss of function is not corrected by or even intensified by the therapy. Chronic kidney disease (CKD) increases CVD risk, and patients whose CKD progresses to end-stage renal disease (ESRD) requiring dialysis are at the highest CVD risk of any patient type studied. The ESRD population is also unique in its lack of significant benefit from standard lipid-lowering interventions. Recent studies indicate that HDL-C levels do not predict CVD in the CKD population. Moreover, CKD profoundly alters metabolism and composition of HDL particles and impairs their protective effects on functions such as cellular cholesterol efflux, endothelial protection, and control of inflammation and oxidation. Thus, CKD-induced perturbations in HDL may contribute to the excess CVD in CKD patients. Understanding the mechanisms of vascular protection in renal disease can present new therapeutic targets for intervention in this population.
Collapse
Affiliation(s)
- Valentina Kon
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
| | - Haichun Yang
- Pathology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Sergio Fazio
- Center for Preventive Cardiology, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon, USA
| |
Collapse
|
13
|
Aseem O, Smith BT, Cooley MA, Wilkerson BA, Argraves KM, Remaley AT, Argraves WS. Cubilin maintains blood levels of HDL and albumin. J Am Soc Nephrol 2013; 25:1028-36. [PMID: 24357674 DOI: 10.1681/asn.2013060671] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Cubilin is an endocytic receptor highly expressed in renal proximal tubules, where it mediates uptake of albumin and filtered forms of apoA-I/HDL. Cubilin deficiency leads to urinary loss of albumin and apoA-I; however, the consequences of cubilin loss on the homeostasis of blood albumin and apoA-I/HDL have not been studied. Using mice heterozygous for cubilin gene deletion (cubilin HT mice), we show that cubilin haploinsufficiency leads to reduced renal proximal tubular uptake of albumin and apoA-I and significantly increased urinary loss of albumin and apoA-I. Moreover, cubilin HT mice displayed significantly decreased blood levels of albumin, apoA-I, and HDL. The levels of albumin and apoA-I protein or mRNA expressed in the liver, kidney, or intestine of cubilin HT mice did not change significantly. The clearance rate of small HDL3 particles (density>1.13 g/ml) from the blood increased significantly in cubilin HT mice. In contrast, the rate of clearance of larger HDL2 particles from the blood did not change significantly, indicating a decreased half-life for HDL particles capable of filtering through the glomerulus. On the basis of these findings, we conclude that cubilin deficiency reduces renal salvage and delivery back to the blood of albumin and apoA-I, which decreases blood levels of albumin and apoA-I/HDL. These findings raise the possibility that therapeutic increase of renal cubilin expression might reduce proteinuria and increase blood levels of albumin and HDL.
Collapse
Affiliation(s)
- Obaidullah Aseem
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina; Charleston, South Carolina, and
| | - Brian T Smith
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina; Charleston, South Carolina, and
| | - Marion A Cooley
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina; Charleston, South Carolina, and
| | - Brent A Wilkerson
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina; Charleston, South Carolina, and
| | - Kelley M Argraves
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina; Charleston, South Carolina, and
| | - Alan T Remaley
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - W Scott Argraves
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina; Charleston, South Carolina, and
| |
Collapse
|
14
|
Pérez-Méndez Ó, Pacheco HG, Martínez-Sánchez C, Franco M. HDL-cholesterol in coronary artery disease risk: function or structure? Clin Chim Acta 2013; 429:111-22. [PMID: 24333390 DOI: 10.1016/j.cca.2013.12.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 11/29/2013] [Accepted: 12/01/2013] [Indexed: 12/29/2022]
Abstract
High-density lipoproteins (HDL) are inversely related with coronary artery disease (CAD) and HDL-cholesterol is the only standardized and reproducible parameter available to estimate plasma concentration of these lipoproteins. However, pharmacological interventions intended to increase HDL-cholesterol have not been consistently associated to an effective CAD risk reduction. Among patients with a myocardial infarction, 43 and 44% of men and women, respectively, had normal plasma levels of HDL-cholesterol, whereas genetic studies have failed to show a causal association between HDL-cholesterol and CAD risk. Instead, HDL functionality seems to be the target to be evaluated, but the existing methods are still poorly reproducible and far to be adapted to the clinical laboratory. HDL subclasses rise as a potential alternative for the evaluation of CAD risk; HDL subclasses are a surrogate of intravascular metabolism of these lipoproteins and probably of their functionality. Low levels of large HDL and increased proportions of small particles are the most remarkable features associated to an increased risk of type 2 diabetes mellitus (T2DM) or CAD. However, inflammation and other environmental factors are related with abnormal HDL structure, and, as a consequence, more prospective studies are needed to better support the clinical usefulness of HDL subclasses. New insights from proteome and lipidome profiles of HDL will provide potential HDL-related biomarkers in the coming years.
Collapse
Affiliation(s)
- Óscar Pérez-Méndez
- Department of Molecular Biology, National Institute of Cardiology "Ignacio Chávez", Mexico, DF, Mexico.
| | - Héctor González Pacheco
- Department of Emergency, National Institute of Cardiology "Ignacio Chávez", Mexico, DF, Mexico
| | - Carlos Martínez-Sánchez
- Department of Emergency, National Institute of Cardiology "Ignacio Chávez", Mexico, DF, Mexico
| | - Martha Franco
- Department of Molecular Biology, National Institute of Cardiology "Ignacio Chávez", Mexico, DF, Mexico
| |
Collapse
|