1
|
Yang F, Song H, Wu W, Guo J. Targets and promising adjuvants for improving breast tumor response to radiotherapy. Bioorg Chem 2025; 162:108582. [PMID: 40393355 DOI: 10.1016/j.bioorg.2025.108582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 05/08/2025] [Accepted: 05/10/2025] [Indexed: 05/22/2025]
Abstract
Breast cancer ranks among the most common cancers globally, with significant mortality rates in advanced stages. Despite progress in treatment, therapy resistance, particularly to radiotherapy, remains a major challenge. Radiosensitization offers a promising solution to enhance radiotherapy effectiveness. This approach specifically increases tumor cells' vulnerability to IR. Recent research has explored molecular targets and strategies to improve radiosensitivity in breast cancer. Examples include inhibiting DNA repair pathways, altering the TME, targeting signaling pathways, and using immunomodulators. These strategies not only amplify destructive effects of IR but may also reduce required radiation doses, thereby minimizing normal tissue injury. This review examines promising molecular targets and combination therapies to boost radiosensitivity in breast cancer. It also highlights recent advances in immune modulation, TME remodeling, targeted molecular therapy, and metabolic pathway targeting. These advancements offer insights into the future of radiosensitization research. By systematically analyzing these strategies, the article aims to provide a comprehensive understanding of radiosensitization's current state and future potential in breast cancer treatment.
Collapse
Affiliation(s)
- Fusen Yang
- Department of Pharmacy, The Affiliated Taian City Central Hospital of Qingdao University, Taian 271000, China
| | - Hui Song
- Department of Traditional Chinese Medicine, The Affiliated Taian City Central Hospital of Qingdao University, Taian 271000, China
| | - Weihong Wu
- Chinese Medicine Teaching and Research Group, Medical Advanced Vocational School of Shandong, Jinan, Shandong 250002, China
| | - Junmei Guo
- Department of Traditional Chinese Medicine, The Affiliated Taian City Central Hospital of Qingdao University, Taian 271000, China.
| |
Collapse
|
2
|
Aliyev KA, Asanova ER, Makalish TP, Zyablitskaya EY. Morphological assessment of angiogenesis factor expression in tumor and microenvironment of breast fibroadenoma and ductal carcinoma: An observational cohort study. KUBAN SCIENTIFIC MEDICAL BULLETIN 2024; 31:26-40. [DOI: 10.25207/1608-6228-2024-31-5-26-40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Background. Angiogenesis plays a crucial role in the progression of breast cancer. Identifying and investigating the key components of this process, focused on phenotype as well as microenvironment of the tumor, is considered highly relevant for understanding tumor biology. Studies into the expression of angiogenesis-related factors by means of immunohistochemical methods appear valuable for both assessing conventional chemotherapy options and identifying new targets in targeted therapy for breast cancer. Objectives. To investigate angiogenesis in breast ductal carcinoma by assessing the expression of vascular endothelial growth factor, angiopoietin-2, and hypoxia-inducible factor alpha in the context of various therapeutic strategies. Methods. An observational cohort study was conducted using biopsy samples from female patients with confirmed diagnoses of “fibroadenoma” and “ductal carcinoma of the breast,” residents of the Republic of Crimea, who applied to oncological hospitals in Simferopol from January 2021 to January 2023. Examination involved histological sections of breast tumor tissue from 68 patients with verified diagnoses of “ductal carcinoma” and “fibroadenoma” (the mean age of the patients was 65 ± 5). The following cohorts were formed in the study: control group, consisting of patients with breast fibroadenoma (n = 20); two subgroups of patients with ductal carcinoma of the breast (n = 48), including Group I — patients with ductal carcinoma of the breast who had not received chemotherapy (n = 23), Group II — patients with ductal carcinoma of the breast, who underwent surgery following one or more courses of chemotherapy (n = 25). The study involved examining the tumor tissue sections obtained from paraffin blocks, assessing the expression of angiogenesis markers via immunohistochemistry using primary antibodies against vascular endothelial growth factor, angiopoietin 2, and hypoxia-inducible factor alpha. Statistical analysis was carried out using Statistica 10.0 (StatSoft, USA). Differences were considered significant at error probability p ≤ 0.05. The value of p < 0.05 was deemed statistically significant for all types of analysis. Results. The expression of hypoxia-inducible and vascular growth factors differed significantly between both groups with breast ductal carcinoma as well as when compared to the control group. The hypoxia-inducible factor having cytoplasmic localization was detected in the control group with benign processes, whereas the nuclear expression was noted in the breast ductal carcinoma groups. Significant differences in the nuclear expression of hypoxia-inducible factor have been established among groups of patients with confirmed ductal carcinoma of the breast: in Group II, which underwent chemotherapy, expression was notably higher in both the tumor stroma and in the stroma of tumor-free areas. The hypoxia-inducible factor expression was significantly greater at the demarcation zone than that observed in samples from surgically treated women in Group I (p = 0.033; p = 0.034, p < 0.001, respectively). In the tumor epithelium of patients with breast ductal carcinoma, vascular endothelial growth factor was expressed significantly more intensively in the group who did not receive chemotherapy compared to the other group (p < 0.001). Conversely, in the tumor stroma, angiopoietin exhibited significantly higher expression levels among patients who underwent chemotherapy compared to those who received no treatment; this was observed in both the tumor areas due to endothelial cell involvement (p = 0.004) and in conditionally healthy regions of the breast (p < 0.001). In the control group represented by fibroadenoma patients, the expression of the studied factors is more pronounced than in the groups with ductal carcinoma of the breast. Conclusion. The obtained data indicate the activation of angiogenesis processes in the group of patients after chemotherapy, as evidenced by the increased expression of hypoxia-inducible factor, vascular endothelial growth factor, and angiopoietin. This result is associated with the high prevalence of resistant forms of breast ductal carcinoma in Group II. The study of the signaling pathways of angiogenesis and its components provides valuable insights into patterns of occurrence and strategies to overcome chemotherapy resistance in ductal carcinoma of the breast.
Collapse
Affiliation(s)
- K. A. Aliyev
- Georgievsky Medical Academy, V.I. Vernadsky Crimean Federal University
| | - E. R. Asanova
- Georgievsky Medical Academy, V.I. Vernadsky Crimean Federal University
| | - T. P. Makalish
- Georgievsky Medical Academy, V.I. Vernadsky Crimean Federal University
| | | |
Collapse
|
3
|
Zhi S, Chen C, Huang H, Zhang Z, Zeng F, Zhang S. Hypoxia-inducible factor in breast cancer: role and target for breast cancer treatment. Front Immunol 2024; 15:1370800. [PMID: 38799423 PMCID: PMC11116789 DOI: 10.3389/fimmu.2024.1370800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/26/2024] [Indexed: 05/29/2024] Open
Abstract
Globally, breast cancer stands as the most prevalent form of cancer among women. The tumor microenvironment of breast cancer often exhibits hypoxia. Hypoxia-inducible factor 1-alpha, a transcription factor, is found to be overexpressed and activated in breast cancer, playing a pivotal role in the anoxic microenvironment by mediating a series of reactions. Hypoxia-inducible factor 1-alpha is involved in regulating downstream pathways and target genes, which are crucial in hypoxic conditions, including glycolysis, angiogenesis, and metastasis. These processes significantly contribute to breast cancer progression by managing cancer-related activities linked to tumor invasion, metastasis, immune evasion, and drug resistance, resulting in poor prognosis for patients. Consequently, there is a significant interest in Hypoxia-inducible factor 1-alpha as a potential target for cancer therapy. Presently, research on drugs targeting Hypoxia-inducible factor 1-alpha is predominantly in the preclinical phase, highlighting the need for an in-depth understanding of HIF-1α and its regulatory pathway. It is anticipated that the future will see the introduction of effective HIF-1α inhibitors into clinical trials, offering new hope for breast cancer patients. Therefore, this review focuses on the structure and function of HIF-1α, its role in advancing breast cancer, and strategies to combat HIF-1α-dependent drug resistance, underlining its therapeutic potential.
Collapse
Affiliation(s)
| | | | | | | | - Fancai Zeng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Shujun Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
4
|
Cao Q, Mushajiang M, Tang CQ, Ai XQ. Role of hypoxia-inducible factor-1α and survivin in breast cancer recurrence and prognosis. Heliyon 2023; 9:e14132. [PMID: 36950571 PMCID: PMC10025039 DOI: 10.1016/j.heliyon.2023.e14132] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/04/2023] Open
Abstract
Objective To analyze the expression of hypoxia-inducible factor-1α (HIF-1α) and survivin in breast cancer, and different molecular subtypes of breast cancer and to assess their relationship with recurrence and prognosis. Methods The expression levels of HIF-1α and survivin genes in breast cancer were investigated using bioinformatics. Their protein expression levels were then verified through immunohistochemistry (IHC), and their relationship with recurrence and prognosis was assessed. Results Expression levels of HIF-1α and survivin genes and proteins were increased in breast cancer tissues compared with normal tissues. Both were associated with clinical features of breast cancer and differentially expressed in different molecular subtypes of breast cancer, and both are related to the signal pathway of breast cancer growth and invasion. HIF-1α and survivin gene and protein expression levels were correlated, and both were associated with breast cancer recurrence (R = 0.380, P < 0.05; R = 0.673, P < 0.05, respectively). According to The Cancer Genome Atlas (TCGA) database, HIF1A and BIRC5 gene were not associated with breast cancer prognosis (P ≥ 0.05); however, HIF-1α and survivin protein were associated with recurrence patient's overall survival (OS) (P < 0.05). Conclusion HIF-1α and survivin are highly expressed in breast cancer and can be used as potential biomarkers to predict recurrence and assess prognosis.
Collapse
Affiliation(s)
- Qian Cao
- Department of Breast Radiotherapy, The Third Affiliated Teaching Hospital of Xinjiang Medical University (Affiliated Cancer Hospital), Urumqi, 830011, Xinjiang, China
| | - Munire Mushajiang
- Department of Breast Radiotherapy, The Third Affiliated Teaching Hospital of Xinjiang Medical University (Affiliated Cancer Hospital), Urumqi, 830011, Xinjiang, China
| | - Cheng-qiong Tang
- Department of Radiological Physics and Technology, The Third Affiliated Teaching Hospital of Xinjiang Medical University (Affiliated Cancer Hospital), Urumqi, 830011, Xinjiang, China
| | - Xiu-qing Ai
- Department of Breast Radiotherapy, The Third Affiliated Teaching Hospital of Xinjiang Medical University (Affiliated Cancer Hospital), Urumqi, 830011, Xinjiang, China
- Corresponding author. Department of Breast Radiotherapy, The Third Affiliated Teaching Hospital of Xinjiang Medical University(Affiliated Cancer Hospital), No. 789, Suzhou East Street, Xinshi District, Urumqi, 830011 Xinjiang, China
| |
Collapse
|
5
|
Li J, Yan Y, Wang G, Huang Z. Hypoxia-inducible factor-2α and its missense mutations: potential role in HCC diagnosis, progression, and prognosis and underlying mechanism. ONCOLOGY AND TRANSLATIONAL MEDICINE 2022; 8:267-275. [DOI: 10.1007/s10330-022-0598-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 12/01/2022] [Indexed: 01/04/2025]
Abstract
Abstract
Objective
This study aims to gain further the potential mechanisms of HIF-2α in tumor progression and tumorigenesis.
Methods
Mined The Cancer Genome Atlas (TCGA) dataset. In total, 421 participants were enrolled in the TCGAHepatocellular Carcinoma (HCC) study, comprising 371 patients with cancer and 50 healthy controls. From the 371 tumor samples, three samples containing the missense mutation of the HIF-2α gene were compared with 368 wild-type samples to identify differentially expressed genes (DEGs).
Results
After filtering, univariate Cox regression and multivariate Cox regression analyses showed that the differentially expressed genes (DEGs) progestagen-associated endometrial protein (PAEP) PNLIPRP2, MIR147B, and pregnancy zone protein (PZP) were significantly correlated with the survival times of patients with HCC. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed using the Database for Annotation, Visualization, and Integrated Discovery (DAVID) v6.8 database to detect the functional annotation of these four DEGs as well as hub genes obtained from protein-protein interaction (PPI) network analysis using the STRING v10 database. Our analysis focused on the PAEP and PZP genes, whose protein expressions were downregulated in samples with HIF-2α missense mutation. The hub genes of PAEP and PZP were identified using PPI network analysis. Subsequent Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that PAEP and its hub genes were highly enriched in the TGF-β pathway, which is consistent with the analysis of PZP.
Conclusion
Our study proved that the missense mutation of HIF-2α induces the upregulation of PAEP, which is positively related to the poor prognosis of patients with HCC, as it may upregulate the TGF-β pathway. In contrast, PZP downregulation showed the opposite phenomenon, as it may downregulate the TGF-β pathway.
Collapse
Affiliation(s)
- Jun Li
- Emergency Department, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, China
| | - Yibo Yan
- Division of Cardiology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, China
| | - Ganxin Wang
- Division of Oncology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, China
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zaozao Huang
- Yangchunhu Community Hospital, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, China
| |
Collapse
|
6
|
Chan YY, Chan MC. Pharmacological Activation of the HIF Pathway Exerts Distinct Proliferative Effects in MDA‐MB‐231 and MCF7 cells**. ChemistrySelect 2022. [DOI: 10.1002/slct.202200698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yan Ying Chan
- Department of Molecular Medicine Faculty of Medicine Universiti Malaya 50603 Kuala Lumpur Malaysia
| | - Mun Chiang Chan
- Department of Molecular Medicine Faculty of Medicine Universiti Malaya 50603 Kuala Lumpur Malaysia
| |
Collapse
|
7
|
Hypoxia and anaerobic metabolism relate with immunologically cold breast cancer and poor prognosis. Breast Cancer Res Treat 2022; 194:13-23. [PMID: 35482128 DOI: 10.1007/s10549-022-06609-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 04/13/2022] [Indexed: 11/02/2022]
Abstract
PURPOSE Hypoxia-Inducible Factor HIF1α and lactate dehydrogenase LDHA drive anaerobic tumor metabolism and define clinical aggressiveness. We investigated their expression in breast cancer and their role in immune response and prognosis of breast cancer. METHODS Tissue material from 175 breast cancer patients treated in a prospective study were analyzed with immunohistochemistry for HIF1α and LDH5 expression, in parallel with the tumor-infiltrating lymphocyte TIL-density and tertiary lymphoid structure TLS-density. RESULTS High LDH5 expression was noted in 48/175 tumors, and this was related to HIF1α overexpression (p < 0.0001), triple-negative TNBC histology (p = 0.01), poor disease-specific survival (p < 0.007), metastasis (p < 0.01), and locoregional recurrence (p = 0.03). High HIF1α expression, noted in 39/175 cases, was linked with low steroid receptor expression (p < 0.05), her2 overexpression (p = 0.01), poor survival (p < 0.04), and high metastasis rates (p < 0.004). High TIL-density in the invading tumor front (TILinv) was linked with low LDH5 and HIF expression (p < 0.0001) and better prognosis (p < 0.02). High TIL-density in inner tumor areas (TILinn) was significantly linked with TNBC. Multivariate analysis showed that PgR-status (p = 0.003, HR 2.99, 95% CI 1.4-6.0), TILinv (p = 0.02, HR 2.31, 95% CI 1.1-4.8), LDH5 (p = 0.01, HR 2.43, 95% CI 1.2-5.0), N-stage (p = 0.04, HR 2.42, 95% CI 1.0-5.8), T-stage (p = 0.04, HR 2.31, 95% CI 1.0-5.1), and her2 status (p = 0.05, HR 2.01, 95% CI 1.0-4.2) were independent variables defining death events. CONCLUSION Overexpression of LDH5, an event directly related to HIF1α overexpression, characterizes a third of breast tumors, which is more frequent in TNBC. Both HIF1α and LDH5 define cold breast cancer microenvironment and poor prognosis. A rational is provided to study further whether metabolic manipulations targeting HIF and LDH5 may enhance the antitumor immune response in breast cancer.
Collapse
|
8
|
Collin LJ, Maliniak ML, Cronin-Fenton DP, Ahern TP, Christensen KB, Ulrichsen SP, Damkier P, Hamilton-Dutoit S, Yacoub R, Christiansen PM, Sørensen HT, Lash TL. Hypoxia-inducible factor-1α expression and breast cancer recurrence in a Danish population-based case control study. Breast Cancer Res 2021; 23:103. [PMID: 34736510 PMCID: PMC8567651 DOI: 10.1186/s13058-021-01480-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 10/23/2021] [Indexed: 12/27/2022] Open
Abstract
Background Hypoxia-inducible factor-1α (HIF-1α) is a transcription factor that facilitates the adaptation of cancer cells to hypoxic conditions and may be prognostic of breast cancer recurrence. We evaluated the association of HIF-1α expression with breast cancer recurrence, and its association with timing of breast cancer recurrence. Methods In this population-based case-control study, we included women diagnosed with stage I–III breast cancer between 1985 and 2001, aged 35–69 years, registered in the Danish Breast Cancer Group. We identified 541 cases of breast cancer recurrence among women with estrogen receptor (ER)-positive disease who were treated with tamoxifen for at least 1 year (ER+ TAM+). We also enrolled 300 breast cancer recurrence cases among women with ER-negative disease, not treated with tamoxifen, who survived at least 1 year (ER−/TAM−). Controls were recurrence-free breast cancer patients at the time of case diagnosis, matched to recurrence cases on ER/TAM status, date of surgery, menopausal status, cancer stage, and county of residence. Expression of HIF-1α was measured by immunohistochemistry on tissue microarrays. We fitted logistic regression models to compute odds ratios (ORs) and 95% confidence intervals (CIs) associating HIF-1α expression with recurrence, and with timing of recurrence. Results HIF-1α expression was observed in 23% of cases and 20% of controls in the ER+/TAM+ stratum, and in 47% of cases and 48% of controls in the ER−/TAM− stratum. We observed a near-null association between HIF-1α expression in both ER/TAM groups (ER+/TAM+ OR = 1.21, 95%CI 0.88, 1.67 and ER−/TAM− OR = 0.97, 95%CI 0.68, 1.39). HIF-1α expression was not associated with time to recurrence among women in the ER+/TAM+ stratum, but was associated with early recurrence among women in the ER−/TAM− stratum. Conclusion In this study, HIF-1α expression was not associated with breast cancer recurrence overall but may be associated with early recurrence among women diagnosed with ER− breast cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s13058-021-01480-1.
Collapse
Affiliation(s)
- Lindsay J Collin
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA. .,Department of Clinical Epidemiology, Aarhus University Hospital, Aarhus, Denmark. .,Department of Population Health Sciences, Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope Drive, Room 4746, Salt Lake City, UT, 84112, USA.
| | - Maret L Maliniak
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | | | - Thomas P Ahern
- Department of Surgery, The Robert Larner, M.D. College of Medicine, The University of Vermont, Burlington, VT, USA
| | | | - Sinna P Ulrichsen
- Department of Clinical Epidemiology, Aarhus University Hospital, Aarhus, Denmark
| | - Per Damkier
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark.,Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | | | - Rami Yacoub
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Peer M Christiansen
- Department of Plastic and Breast Surgery, Aarhus University Hospital, Aarhus, Denmark.,The Danish Breast Cancer Group, Aarhus, Denmark
| | - Henrik Toft Sørensen
- Department of Clinical Epidemiology, Aarhus University Hospital, Aarhus, Denmark
| | - Timothy L Lash
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| |
Collapse
|
9
|
Whately KM, Voronkova MA, Maskey A, Gandhi J, Loskutov J, Choi H, Yanardag S, Chen D, Wen S, Margaryan NV, Smolkin MB, Purazo ML, Hu G, Pugacheva EN. Nuclear Aurora-A kinase-induced hypoxia signaling drives early dissemination and metastasis in breast cancer: implications for detection of metastatic tumors. Oncogene 2021; 40:5651-5664. [PMID: 34326467 PMCID: PMC9511212 DOI: 10.1038/s41388-021-01969-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 07/13/2021] [Accepted: 07/19/2021] [Indexed: 11/09/2022]
Abstract
Metastatic breast cancer causes most breast cancer-associated deaths, especially in triple negative breast cancers (TNBC). The metastatic drivers of TNBCs are still poorly understood, and effective treatment non-existent. Here we reveal that the presence of Aurora-A Kinase (AURKA) in the nucleus and metastatic dissemination are molecularly connected through HIF1 (Hypoxia-Inducible Factor-1) signaling. Nuclear AURKA activates transcription of "hypoxia-induced genes" under normoxic conditions (pseudohypoxia) and without upregulation of oxygen-sensitive HIF1A subunit. We uncover that AURKA preferentially binds to HIF1B and co-localizes with the HIF complex on DNA. The mass-spectrometry analysis of the AURKA complex further confirmed the presence of CBP and p300 along with other TFIIB/RNApol II components. Importantly, the expression of multiple HIF-dependent genes induced by nuclear AURKA (N-AURKA), including migration/invasion, survival/death, and stemness, promote early cancer dissemination. These results indicate that nuclear, but not cytoplasmic, AURKA is a novel driver of early metastasis. Analysis of clinical tumor specimens revealed a correlation between N-AURKA presence and decreased patient survival. Our results establish a mechanistic link between two critical pathways in cancer metastasis, identifying nuclear AURKA as a crucial upstream regulator of the HIF1 transcription complex and a target for anti-metastatic therapy.
Collapse
Affiliation(s)
- Kristina M Whately
- Department of Biochemistry, West Virginia University, Morgantown, WV, USA
- WVU Cancer Institute, School of Medicine, West Virginia University, Morgantown, WV, USA
| | - Maria A Voronkova
- Department of Biochemistry, West Virginia University, Morgantown, WV, USA
- WVU Cancer Institute, School of Medicine, West Virginia University, Morgantown, WV, USA
| | - Abha Maskey
- Department of Biochemistry, West Virginia University, Morgantown, WV, USA
- WVU Cancer Institute, School of Medicine, West Virginia University, Morgantown, WV, USA
| | - Jasleen Gandhi
- Department of Microbiology, Immunology & Cell Biology, West Virginia University, Morgantown, WV, USA
| | - Juergen Loskutov
- Department of Biochemistry, West Virginia University, Morgantown, WV, USA
- WVU Cancer Institute, School of Medicine, West Virginia University, Morgantown, WV, USA
| | - Hyeran Choi
- Department of Biochemistry, West Virginia University, Morgantown, WV, USA
| | - Sila Yanardag
- Department of Biochemistry, West Virginia University, Morgantown, WV, USA
- WVU Cancer Institute, School of Medicine, West Virginia University, Morgantown, WV, USA
| | - Dongquan Chen
- Department of Medicine, Division of Preventive Medicine, UAB Comprehensive Cancer Center, Birmingham, AL, USA
| | - Sijin Wen
- WVU Cancer Institute, School of Medicine, West Virginia University, Morgantown, WV, USA
- Department of Biostatistics, School of Public Health, West Virginia University, Morgantown, WV, USA
| | - Naira V Margaryan
- Department of Biochemistry, West Virginia University, Morgantown, WV, USA
| | - Matthew B Smolkin
- Department of Pathology, West Virginia University, Morgantown, WV, USA
| | - Marc L Purazo
- Department of Biochemistry, West Virginia University, Morgantown, WV, USA
- WVU Cancer Institute, School of Medicine, West Virginia University, Morgantown, WV, USA
| | - Gangqing Hu
- WVU Cancer Institute, School of Medicine, West Virginia University, Morgantown, WV, USA
- Department of Microbiology, Immunology & Cell Biology, West Virginia University, Morgantown, WV, USA
| | - Elena N Pugacheva
- Department of Biochemistry, West Virginia University, Morgantown, WV, USA.
- WVU Cancer Institute, School of Medicine, West Virginia University, Morgantown, WV, USA.
| |
Collapse
|
10
|
Sfifou F, Hakkou EM, Bouaiti ELA, Slaoui M, Errihani H, Al Bouzidi A, Abouqal R, El Ouahabi A, Cherradi N. Correlation of immunohistochemical expression of HIF-1alpha and IDH1 with clinicopathological and therapeutic data of moroccan glioblastoma and survival analysis. Ann Med Surg (Lond) 2021; 69:102731. [PMID: 34466221 PMCID: PMC8384773 DOI: 10.1016/j.amsu.2021.102731] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/15/2021] [Accepted: 08/15/2021] [Indexed: 11/27/2022] Open
Abstract
INTRODUCTION Glioblastomas are aggressive primary intracranial tumours of the central nervous system causing significant mortality and morbidity worldwide. OBJECTIVE This study aims to evaluate the prognostic value of tissue expression by immunostaining of hypoxia-inducible factor (HIF-1α), isocitrate dehydrogenase 1 (IDH1), and tumour protein p53 in glioblastoma in Moroccan patients. The association of HIF-1α, IDH1, and p53 expression with the clinicopathological data and overall patient survival (OS) was also evaluated. MATERIALS AND METHODS Confirmed glioblastomas were included in this study. Twenty-two tissue samples were obtained by neurosurgical intervention resulting from total resection, and subtotal resection or biopsy. Karnofsky index, histological type of tumour, and the status of IDH1, p53 protein, and HIF-1α expression by immunostaining were reported. RESULTS The majority of the patients were males (64%) with a sex ratio of 1.75. The average age was 54 ± 13. Median follow-up was 10.10 months and median overall survival was 10 months. The expression of HIF-1α was high in 10 samples (45%) and low in 12 (55%). There was a statistically significant difference in OS of 85% at 12 months for the subgroup of patients "HIF-1α negative IDH1 positive" p = 0.038, the unadjusted analysis showed that the group "HIF-1α positive, IDH1 positive" was a poor prognostic factor, the HR was 0.08 (95% CI: 0.009-0.756, p = 0.027). CONCLUSION Patients with negative HIF-1α expression and positive IDH1 expression have a better prognosis, suggesting that these two biomarkers may be useful in the search for new approaches for targeted therapy in glioblastoma.
Collapse
Affiliation(s)
- Fatima Sfifou
- Research's Pedagogic Unit of Pathological Anatomy, Laboratory of Pathological Anatomy. Research Team in Tumour Pathology, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
- Pathological Anatomy Department, Hospital of Specialities in Rabat, Morocco
| | - El Mehdi Hakkou
- Neurosurgery Department, Hospital of Specialities in Rabat, Morocco
| | - EL Arbi Bouaiti
- Laboratory of Biostatistics, Clinical Research and Epidemiology, Rabat Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
| | - Meriem Slaoui
- Research's Pedagogic Unit of Pathological Anatomy, Laboratory of Pathological Anatomy. Research Team in Tumour Pathology, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
| | - Hassan Errihani
- National Oncology Centre Sidi Mohamed Ben Abdallah in Rabat, Morocco
| | - Abderrahmane Al Bouzidi
- Research's Pedagogic Unit of Pathological Anatomy, Laboratory of Pathological Anatomy. Research Team in Tumour Pathology, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
| | - Redouane Abouqal
- Laboratory of Biostatistics, Clinical Research and Epidemiology, Rabat Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
| | | | - Nadia Cherradi
- Research's Pedagogic Unit of Pathological Anatomy, Laboratory of Pathological Anatomy. Research Team in Tumour Pathology, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
- Pathological Anatomy Department, Hospital of Specialities in Rabat, Morocco
| |
Collapse
|
11
|
Poon DJJ, Tay LM, Ho D, Chua MLK, Chow EKH, Yeo ELL. Improving the therapeutic ratio of radiotherapy against radioresistant cancers: Leveraging on novel artificial intelligence-based approaches for drug combination discovery. Cancer Lett 2021; 511:56-67. [PMID: 33933554 DOI: 10.1016/j.canlet.2021.04.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/14/2021] [Accepted: 04/25/2021] [Indexed: 12/15/2022]
Abstract
Despite numerous advances in cancer radiotherapy, tumor radioresistance remain one of the major challenges limiting treatment efficacy of radiotherapy. Conventional strategies to overcome radioresistance involve understanding the underpinning molecular mechanisms, and subsequently using combinatorial treatment strategies involving radiation and targeted drug combinations against these radioresistant tumors. These strategies exploit and target the molecular fingerprint and vulnerability of the radioresistant clones to achieve improved efficacy in tumor eradication. However, conventional drug-screening approaches for the discovery of new drug combinations have been proven to be inefficient, limited and laborious. With the increasing availability of computational resources in recent years, novel approaches such as Quadratic Phenotypic Optimization Platform (QPOP), CURATE.AI and Drug Combination and Prediction and Testing (DCPT) platform have emerged to aid in drug combination discovery and the longitudinally optimized modulation of combination therapy dosing. These platforms could overcome the limitations of conventional screening approaches, thereby facilitating the discovery of more optimal drug combinations to improve the therapeutic ratio of combinatorial treatment. The use of better and more accurate models and methods with rapid turnover can thus facilitate a rapid translation in the clinic, hence, resulting in a better patient outcome. Here, we reviewed the clinical observations, molecular mechanisms and proposed treatment strategies for tumor radioresistance and discussed how novel approaches may be applied to enhance drug combination discovery, with the aim to further improve the therapeutic ratio and treatment efficacy of radiotherapy against radioresistant cancers.
Collapse
Affiliation(s)
- Dennis Jun Jie Poon
- Division of Radiation Oncology, National Cancer Centre Singapore, 11 Hospital Crescent, 169610, Singapore.
| | - Li Min Tay
- Cancer Science Institute, Yong Loo Lin School of Medicine, National University of Singapore, 117599, Singapore.
| | - Dean Ho
- The N.1 Institute of Health (N.1), National University of Singapore, 117456, Singapore; Department of Bioengineering, National University of Singapore, 117583, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore; The Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, 117456, Singapore.
| | - Melvin Lee Kiang Chua
- Division of Radiation Oncology, National Cancer Centre Singapore, 11 Hospital Crescent, 169610, Singapore; Division of Medical Sciences, National Cancer Centre Singapore, 11 Hospital Crescent, 169610, Singapore; Oncology Academic Clinical Program, Duke-NUS Medical School, 8 College Road, 169857, Singapore.
| | - Edward Kai-Hua Chow
- Cancer Science Institute, Yong Loo Lin School of Medicine, National University of Singapore, 117599, Singapore; The N.1 Institute of Health (N.1), National University of Singapore, 117456, Singapore; Department of Bioengineering, National University of Singapore, 117583, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore; The Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, 117456, Singapore.
| | - Eugenia Li Ling Yeo
- Division of Medical Sciences, National Cancer Centre Singapore, 11 Hospital Crescent, 169610, Singapore.
| |
Collapse
|
12
|
Shamis SAK, McMillan DC, Edwards J. The relationship between hypoxia-inducible factor 1α (HIF-1α) and patient survival in breast cancer: Systematic review and meta-analysis. Crit Rev Oncol Hematol 2021; 159:103231. [PMID: 33482350 DOI: 10.1016/j.critrevonc.2021.103231] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 01/06/2021] [Accepted: 01/16/2021] [Indexed: 01/16/2023] Open
Abstract
INTRODUCTION Hypoxia is a characteristic of many solid tumours and results in an increase in expression of HIF-1α. Many studies have investigated the prognostic value of HIF-1α expression in breast cancer (BC), however, the prognostic value remains unclear. Therefore, a systematic review and meta-analysis was undertaken to determine the prognostic value of HIF-1α in BC patients. METHODS The electronic databases PubMed and Web of science were systematically searched to identify relevant papers. The clinical outcomes included disease-free survival (DFS), recurrence-free survival (RFS) and overall survival (OS) in BC patients. Review Manager version 5.4 was employed to analysis data from 30 eligible studies (containing 6201patients). RESULTS High expression of HIF-1α was associated with poorer DFS and OS. There was an effect of survival analysis, study region, antibodies used, scoring and threshold methods on HIF-1α expression. CONCLUSION HIF-1α overexpression was significantly associated with poorer DFS and OS in breast cancer patients.
Collapse
Affiliation(s)
- Suad A K Shamis
- Academic Unit of Surgery, College of Medical, Veterinary and Life Sciences- University of Glasgow, Royal Infirmary, Glasgow, UK; Unit of Experimental Therapeutics, Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences-University of Glasgow, Glasgow, UK.
| | - Donald C McMillan
- Academic Unit of Surgery, College of Medical, Veterinary and Life Sciences- University of Glasgow, Royal Infirmary, Glasgow, UK
| | - Joanne Edwards
- Unit of Experimental Therapeutics, Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences-University of Glasgow, Glasgow, UK
| |
Collapse
|
13
|
Petrenko M, Güttler A, Funtan A, Keßler J, Emmerich D, Paschke R, Vordermark D, Bache M. Combined 3-O-acetylbetulin treatment and carbonic anhydrase IX inhibition results in additive effects on human breast cancer cells. Chem Biol Interact 2021; 333:109326. [PMID: 33245928 DOI: 10.1016/j.cbi.2020.109326] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/11/2020] [Accepted: 11/20/2020] [Indexed: 12/18/2022]
Abstract
Hypoxia plays a key role in tumor progression and resistance to radiotherapy. Expression of the transmembrane-tethered enzyme carbonic anhydrase IX (CA IX) is strongly induced by hypoxia. High CA IX expression levels correlate with poor prognosis in cancer patients. Previously, we showed that the downregulation of CA IX expression by siRNA interference and the inhibition of CA IX activity results in increased cytotoxicity, inhibition of migration and radiosensitization of hypoxic cancer cells. Betulinic acid (BA) is a natural compound derived from birch bark. It has shown promising anti-tumor effects due to its cancer cell specific cytotoxic properties. We have shown that BA inhibits the HIF-1α pathway, resulting in apoptosis, inhibition of migration and enhanced cytotoxicity of breast cancer cells. In this study, we investigate the effects of the novel betulin derivative 3-O-acetylbetulin (3-AC) and carbonic anhydrase inhibitors (CAI) octyl disulfamate (OCT) or 4-(3-[4-fluorophenyl]ureido)benzenesulfonamide (SLC-0111), on cellular and radiobiological parameters in MDA-MB-231 and MCF-7 cells. Treatment with 3-AC or OCT alone only caused moderate cytotoxicity, reduction in cell migration, ROS production and DNA damage. However, the combined treatment with 3-AC and CAI strongly enhanced radiosensitivity, increased cytotoxicity, inhibited cell motility and enhanced DNA damage. Our findings suggest that the combination of two bioactive drugs 3-AC and a CAI, such as OCT or SLC-0111, could be a promising therapeutic approach for targeting hypoxic tumor cells.
Collapse
Affiliation(s)
- Marina Petrenko
- Department of Radiotherapy, Martin Luther University Halle-Wittenberg, Ernst Grube Straße 40, D-06120, Halle, Germany.
| | - Antje Güttler
- Department of Radiotherapy, Martin Luther University Halle-Wittenberg, Ernst Grube Straße 40, D-06120, Halle, Germany.
| | - Anne Funtan
- Biozentrum, Martin Luther University Halle-Wittenberg, Weinbergweg 22, D-06120, Halle, Germany.
| | - Jacqueline Keßler
- Department of Radiotherapy, Martin Luther University Halle-Wittenberg, Ernst Grube Straße 40, D-06120, Halle, Germany.
| | - Daniel Emmerich
- Biozentrum, Martin Luther University Halle-Wittenberg, Weinbergweg 22, D-06120, Halle, Germany.
| | - Reinhard Paschke
- Biozentrum, Martin Luther University Halle-Wittenberg, Weinbergweg 22, D-06120, Halle, Germany.
| | - Dirk Vordermark
- Department of Radiotherapy, Martin Luther University Halle-Wittenberg, Ernst Grube Straße 40, D-06120, Halle, Germany.
| | - Matthias Bache
- Department of Radiotherapy, Martin Luther University Halle-Wittenberg, Ernst Grube Straße 40, D-06120, Halle, Germany.
| |
Collapse
|
14
|
Hamad HA, Enezei HH, Alrawas A, Zakuan NM, Abdullah NA, Cheah YK, Hashim NFM. Identification of Potential Chemical Substrates as Fuel for Hypoxic Tumors That May Be Linked to Invadopodium Formation in Hypoxia-Induced MDA-MB-231 Breast-Cancer Cell Line. Molecules 2020; 25:E3876. [PMID: 32858793 PMCID: PMC7503683 DOI: 10.3390/molecules25173876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/17/2020] [Accepted: 07/23/2020] [Indexed: 12/24/2022] Open
Abstract
Hypoxia plays a significant role in solid tumors by the increased expression of hypoxia-inducible factor-1α (HIF-1α), which is known to promote cancer invasion and metastasis. Cancer-cell invasion dynamically begins with the degradation of the extracellular matrix (ECM) via invadopodia formation. The chemical substrates that are utilized by hypoxic cells as fuel to drive invadopodia formation are still not fully understood. Therefore, the aim of the study was to maintain MDA-MB-231 cells under hypoxia conditions to allow cells to form a large number of invadopodia as a model, followed by identifying their nutrient utilization. The results of the study revealed an increase in the number of cells forming invadopodia under hypoxia conditions. Moreover, Western blot analysis confirmed that essential proteins for hypoxia and invadopodia, including HIF-1α, vascular endothelial growth factor (VEGF), metallopeptidase-2 (MMP-2), and Rho guanine nucleotide exchange factor 7 (β-PIX), significantly increased under hypoxia. Interestingly, phenotype microarray showed that only 11 chemical substrates from 367 types of substrates were significantly metabolized in hypoxia compared to in normoxia. This is thought to be fuel for hypoxia to drive the invasion process. In conclusion, we found 11 chemical substrates that could have potential energy sources for hypoxia-induced invadopodia formation of these cells. This may in part be a target in the hypoxic tumor and invadopodia formation. Additionally, these findings can be used as potential carrier targets in cancer-drug discovery, such as the usage of dextrin.
Collapse
Affiliation(s)
- Hamad Ali Hamad
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43300, Malaysia; (H.A.H.); (A.A.); (N.A.A.); (Y.K.C.)
- Research and Training Unit, Anbar Cancer Centre, Anbar Health Directorate, Ramadi 31001, Iraq
| | - Hamid Hammad Enezei
- Department of Oral and Maxillofacial Surgery, Collage of Dentistry, Anbar University, Ramadi 31001, Iraq;
| | - Anmar Alrawas
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43300, Malaysia; (H.A.H.); (A.A.); (N.A.A.); (Y.K.C.)
| | - Noraina Muhamad Zakuan
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43300, Malaysia; (H.A.H.); (A.A.); (N.A.A.); (Y.K.C.)
| | - Nurul Akmaryanti Abdullah
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43300, Malaysia; (H.A.H.); (A.A.); (N.A.A.); (Y.K.C.)
| | - Yoke Kqueen Cheah
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43300, Malaysia; (H.A.H.); (A.A.); (N.A.A.); (Y.K.C.)
| | - Nur Fariesha Md Hashim
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43300, Malaysia; (H.A.H.); (A.A.); (N.A.A.); (Y.K.C.)
| |
Collapse
|
15
|
Joshi S. Targeting the Tumor Microenvironment in Neuroblastoma: Recent Advances and Future Directions. Cancers (Basel) 2020; 12:E2057. [PMID: 32722460 PMCID: PMC7465822 DOI: 10.3390/cancers12082057] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 12/30/2022] Open
Abstract
Neuroblastoma (NB) is the most common pediatric tumor malignancy that originates from the neural crest and accounts for more than 15% of all the childhood deaths from cancer. The neuroblastoma cancer research has long been focused on the role of MYCN oncogene amplification and the contribution of other genetic alterations in the progression of this malignancy. However, it is now widely accepted that, not only tumor cells, but the components of tumor microenvironment (TME), including extracellular matrix, stromal cells and immune cells, also contribute to tumor progression in neuroblastoma. The complexity of different components of tumor stroma and their resemblance with surrounding normal tissues pose huge challenges for therapies targeting tumor microenvironment in NB. Hence, the detailed understanding of the composition of the TME of NB is crucial to improve existing and future potential immunotherapeutic approaches against this childhood cancer. In this review article, I will discuss different components of the TME of NB and the recent advances in the strategies, which are used to target the tumor microenvironment in neuroblastoma.
Collapse
Affiliation(s)
- Shweta Joshi
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, Moores Cancer Center, University of California San Diego, La Jolla, CA 92093-0815, USA
| |
Collapse
|
16
|
Clinicopathological and prognostic value of hypoxia-inducible factor-1α in breast cancer: a meta-analysis including 5177 patients. Clin Transl Oncol 2020; 22:1892-1906. [PMID: 32166713 DOI: 10.1007/s12094-020-02332-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 02/25/2020] [Indexed: 12/12/2022]
Abstract
PURPOSE Mounting studies have investigated the clinicopathological and prognostic value of hypoxia-inducible factor-1α (HIF-1α) in breast cancer (BC), yet conclusions remain controversial. Therefore, we conducted this meta-analysis to clarify this issue. METHODS All relevant studies were searched using Cochrane Library, Web of Science, PubMed, and EMBASE online databases. Pooled odds ratios (ORs) and hazard ratios (HRs) with 95% confidence intervals (CIs) were applied to evaluate the clinicopathological and prognostic value of HIF-1α, respectively. Subgroup analysis and sensitivity analysis were performed to investigate heterogeneity and stability of the results. Begg's funnel plot and Egger's test were used to examine publication bias. RESULTS A total of 31 eligible studies including 5177 subjects were enrolled. Of these, 25 studies assessed the prognostic role of HIF-1α and included 4546 individuals. Twenty-three studies involving 3277 individuals evaluated the clinicopathological significance of HIF-1α. High expression level of HIF-1α was correlated with poor overall survival (OS) (HR = 1.59, 95% CI = 1.40-1.80, P < 0.001), disease-free survival (DFS) (HR = 1.87, 95% CI = 1.53-2.28, P < 0.001), relapse-free survival (HR = 1.36, 95% CI = 1.07-1.73, P = 0.001), and cancer-specific survival (HR = 1.55, 95% CI = 1.10-2.19, P = 0.012). Pooled data from studies using multivariate survival analysis also showed that HIF-1α expression was associated with worse OS (HR = 1.59, 95% CI = 1.32-1.92, P < 0.001) and DFS (HR = 1.60, 95% CI = 1.39-1.84, P < 0.001). Additionally, high HIF-1α expression was associated with advanced tumor-node-metastasis stage, positive lymph-node status, negative ER status, ductal type, advanced histologic grade, high Ki67 expression, and strong VEGF expression. CONCLUSION HIF-1α might serve as an independent prognostic biomarker and a promising therapeutic target for BC. Future large-scale prospective randomized trials are needed to confirm our findings.
Collapse
|
17
|
Gunawan I, Hatta M, Fachruddin Benyamin A, Asadul Islam A. The Hypoxic Response Expression as a Survival Biomarkers in Treatment-Naive Advanced Breast Cancer. Asian Pac J Cancer Prev 2020; 21:629-637. [PMID: 32212787 PMCID: PMC7437329 DOI: 10.31557/apjcp.2020.21.3.629] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 03/13/2020] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE Hypoxia-associated biomarkers profiling may provide information for prognosis, staging, and subsequent therapy. We aim to evaluate whether the quantitative gene and protein expression of hypoxic response tumor markers - carbonic anhydrase IX (CAIX) and hypoxia- inducible factor 1 alpha (HIF1A) - may have a role in predicting survival in advanced breast cancer of Indonesian population. METHODS Tumor tissues and peripheral blood samples were collected from treatment - naïve locally advanced (LABC) or metastatic breast cancer patients (MBC) at Wahidin Sudirohusodo General Hospital (Makassar, South Sulawesi) and its referral network hospitals from July 2017 to March 2019. The level of mRNA (of blood and tumor tissue samples) and soluble protein (of blood samples) of CAIX and HIF1A were measured by RT-qPCR and ELISA methods, respectively, besides the standard histopathological grading and molecular subtype assessment. The CAIX and HIF1A expression, patients' age, tumor characteristics, surgery status, and neoadjuvant chemotherapy drug classes were further involved in survival analyses for overall survival (OS) and progression-free survival (PFS). RESULTS Forty (30 LABC, 10 MBC) eligible patients examined were 21 hormone-receptors positives (15 Luminal A, 6 Luminal B) and 19 hormone-receptors negatives (10 HER2-enriched, 9 triple-negative). The CAIX blood mRNA and CAIX soluble protein levels in hormone-receptors negative patients were higher than in hormone-receptor-positive patients (p < 0.05). In univariate analysis, both CAIX and HIF1A levels predict OS (except HIF1A protein) with CAIX tissue mRNA has the highest hazard ratio (HR 8.04, 95%CI:2.45-26.39), but not PFS. Cox proportional hazard model confirmed that CAIX tissue mRNA is the independent predictor of OS (HR 6.10, 95%CI: 1.16-32.13) along with surgical status and tumor advancement type (LABC or MBC). CONCLUSIONS CAIX mRNA expression of tumor tissue in treatment-naïve advanced breast cancer has a predictive value for OS. .
Collapse
Affiliation(s)
| | | | | | - Andi Asadul Islam
- 4Department of Surgery, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia.
| |
Collapse
|
18
|
Hait NC, Maiti A, Xu P, Qi Q, Kawaguchi T, Okano M, Takabe K, Yan L, Luo C. Regulation of hypoxia-inducible factor functions in the nucleus by sphingosine-1-phosphate. FASEB J 2020; 34:4293-4310. [PMID: 32017264 PMCID: PMC10112293 DOI: 10.1096/fj.201901734rr] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 01/03/2020] [Accepted: 01/09/2020] [Indexed: 12/14/2022]
Abstract
Sphingosine kinase 2 (SphK2) is known to phosphorylate the nuclear sphingolipid metabolite to generate sphingosine-1-phosphate (S1P). Nuclear S1P is involved in epigenetic regulation of gene expression; however, the underlying mechanisms are not well understood. In this work, we have identified the role of nuclear S1P and SphK2 in regulating hypoxia-responsive master transcription factors hypoxia-inducible factor (HIF)-1α/2α, and their functions in breast cancer, with a focus on triple-negative breast cancer (TNBC). We have shown SphK2 is associated with HIF-1α in protein complexes, and is enriched at the promoters of HIF target genes, including vascular endothelial growth factor (VEGF), where it enhances local histone H3 acetylation and transcription. S1P specifically binds to the PAS domains of HIF-1α. SphK2, and HIF-1α expression levels are elevated in metastatic estrogen receptor-positive (ER+) and TNBC clinical tissue specimens compared to healthy breast tissue samples. To determine if S1P formation in the nucleus by SphK2 is a key regulator of HIF functions, we found using a preclinical TNBC xenograft mouse model, and an existing selective SphK2 inhibitor K-145, that nuclear S1P, histone acetylation, HIF-1α expression, and TNBC tumor growth were all reduced in vivo. Our results suggest that S1P and SphK2 in the nucleus are linked to the regulation of HIF-1α/2α functions associated with breast cancer progression, and may provide potential therapeutic targets.
Collapse
Affiliation(s)
- Nitai C Hait
- Division of Breast Surgery and Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.,Department of Molecular & Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Aparna Maiti
- Division of Breast Surgery and Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.,Department of Molecular & Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Pan Xu
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| | - Qianya Qi
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Tsutomu Kawaguchi
- Division of Breast Surgery and Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Maiko Okano
- Division of Breast Surgery and Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Kazuaki Takabe
- Division of Breast Surgery and Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Li Yan
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Cheng Luo
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
19
|
Jögi A, Ehinger A, Hartman L, Alkner S. Expression of HIF-1α is related to a poor prognosis and tamoxifen resistance in contralateral breast cancer. PLoS One 2019; 14:e0226150. [PMID: 31821370 PMCID: PMC6903737 DOI: 10.1371/journal.pone.0226150] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 11/20/2019] [Indexed: 01/13/2023] Open
Abstract
Background Adjuvant endocrine treatment improves survival after estrogen receptor (ER) positive breast cancer. Recurrences occur, and most patients with metastatic breast cancer develop treatment resistance and incurable disease. An influential factor in relation to endocrine treatment resistance is tumor hypoxia and the hypoxia inducible transcription factors (HIFs). Poor perfusion makes tumors hypoxic and induces the HIFs, which promote cell survival. We previously showed that hypoxic breast cancer cells are tamoxifen-resistant, and that HIF-inhibition restored tamoxifen-sensitivity. We found that HIF-induced tamoxifen-resistance involve cross-talk with epithelial growth factor receptor (EGFR), which itself is linked to tamoxifen resistance. Contralateral breast cancer (CBC), i.e. development of a second breast cancer in the contralateral breast despite adjuvant tamoxifen treatment is in essence a human in vivo-model for tamoxifen-resistance that we explore here to find molecular pathways of tamoxifen-resistance. Methods We constructed a tissue-microarray including tumor-tissue from a large well-defined cohort of CBC-patients, a proportion of which got their second breast cancer despite ongoing adjuvant therapy. Using immunohistochemistry >500 patients were evaluable for HIF-1α and EGFR in both tumors, and correlations to treatment, patient outcome, prognostic and predictive factors were analyzed. Results We found an increased proportion of HIF-1α-positive tumors in tamoxifen-resistant (CBC during adjuvant tamoxifen) compared to naïve tumors (CBC without prior tamoxifen). Tumor HIF-1α-positivity correlated to increased breast cancer mortality, and negative prognostic factors including low age at diagnosis and ER-negativity. There was a covariance of HIF-1α- and EGFR-expression and also EGFR-expression correlated to poor prognosis. Conclusions The increased percentage of HIF-1α-positive tumors formed during adjuvant tamoxifen suggests a role for HIF-1α in escaping tamoxifen’s restraining effects on breast cancer. Implicating a potential benefit of HIF-inhibitors in targeting breast cancers resistant to endocrine therapy.
Collapse
Affiliation(s)
- Annika Jögi
- Department of Laboratory Medicine, Translational Cancer Research, Lund University Cancer Center at Medicon Village, Lund University, Lund, Sweden
- * E-mail:
| | - Anna Ehinger
- Lund University, Skåne University Hospital, Department of Clinical Sciences Lund, Division of Oncology and Pathology, Lund, Sweden
- Lund University, Department of Clinical Genetics and Pathology, Medical Service, Regional Laboratories, Lund, Sweden
| | - Linda Hartman
- Lund University, Skåne University Hospital, Department of Clinical Sciences Lund, Division of Oncology and Pathology, Lund, Sweden
| | - Sara Alkner
- Lund University, Skåne University Hospital, Department of Clinical Sciences Lund, Division of Oncology and Pathology, Lund, Sweden
| |
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW We discuss recent discoveries in hypoxic cellular pathophysiology and explore the interplay between hypoxic malignant cells and other stromal elements. This review will provide an update on the effects of hypoxia on cancer outcomes and therapeutic resistance. RECENT FINDINGS Hypoxia has been discovered to be a key driver for tumor progression, both because of impacts on tumor cells and separately on the wider tumor microenvironment. The latter effects occur via epithelial mesenchymal transition, autophagy and metabolic switching. Through epithelial mesenchymal transition, hypoxia both drives metastasis and renders key target tissues receptive to metastasis. Autophagy is a double-edged sword which requires greater understanding to ascertain when it is a threat. Metabolic switching allows tumor cells to access hypoxic survival mechanisms even under normoxic conditions.Every element of the malignant stroma contributes to hypoxia-driven progression. Exosomal transfer of molecules from hypoxic tumor cells to target stromal cell types and the importance of microRNAs in intercellular communication have emerged as key themes.Antiangiogenic resistance can be caused by hypoxia-driven vasculogenic mimicry. Beyond this, hypoxia contributes to resistance to virtually all oncological treatment modalities. SUMMARY Recent advances have moved us closer to being able to exploit hypoxic mechanisms to overcome hypoxia-driven progression and therapy failure.
Collapse
Affiliation(s)
- Andrew Redfern
- School of Medicine, The University of Western Australia, Perth
| | - Veenoo Agarwal
- Department of Medical Oncology, Fiona Stanley Hospital, Murdoch, Western Australia
| | - Erik W Thompson
- Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane
- Translational Research Institute, Woolloongabba, Australia
| |
Collapse
|
21
|
Gu J, Xu T, Huang QH, Zhang CM, Chen HY. HMGB3 silence inhibits breast cancer cell proliferation and tumor growth by interacting with hypoxia-inducible factor 1α. Cancer Manag Res 2019; 11:5075-5089. [PMID: 31213919 PMCID: PMC6549700 DOI: 10.2147/cmar.s204357] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 04/10/2019] [Indexed: 01/18/2023] Open
Abstract
Background: Breast cancer is the most common malignant tumor that affects women with higher incidence. High-mobility group box 3 (HMGB3) plays critical functions in DNA repair, recombination, transcription and replication. This study aimed to investigate the effects of HMGB3 silence on mammosphere formation and tumor growth of breast cancer. Methods: LV5-HMGB3 and LV3-siHMGB3 vectors were transfected into MCF10A, MDA-MB-231, HCC1937, ZR-75-1 and MCF7 cells. Cell counting kit-8 (CCK-8) assay was used to evaluate cell proliferation. Xenograft tumor mice model was established by injection of MDA-MB-231. qRT-PCR and western blot were used to examine the expression of Nanog, Sox2 and OCT-4. Mammosphere forming assay was employed to evaluate mammosphere formation both in vivo and in vitro. Dual luciferase assay was utilized to verify the interaction between HMGB3 and hypoxia-inducible factor 1α (HIF1α). CD44+/CD24− was assessed with flow cytometry. Results: HMGB3 expression was higher significantly (p<0.05) in cancer cells compared to normal cells. HMGB3 overexpression significantly (p<0.05) enhanced and HMGB3 silence reduced cell proliferative mice compared to MCF10A and MDA-MB-231, respectively. HMGB3 overexpression enhanced and HMGB3 silence inhibited mammosphere formation. HMGB3 overexpression upregulated and HMGB3 silence downregulated Nanog, SOX2 and OCT-4 genes/proteins in MCF10A and MDA-MB-231 cells, respectively. HMGB3 silence reduced CD44+/CD24− levels in cancer cells. Silence of HMGB3 strengthened reductive effects of PTX on tumor sizes, iPSC biomarkers and mammosphere amounts in xenograft tumor mouse models. HMGB3 silence inhibited mammoshpere formation, cell proliferation and CD44+CD24− by interacting with HIF1α. Conclusion: HMGB3 silence could inhibit the cell proliferation in vitro and suppress tumor growth in vivo levels. The antitumor effects of HMGB3 silence were mediated by interacting with the HIF1α.
Collapse
Affiliation(s)
- Jun Gu
- Department of Health Check-Up Center, Jinshan Hospital, Fudan University, Shanghai 201508, People's Republic of China
| | - Tao Xu
- Department of Health Check-Up Center, Jinshan Hospital, Fudan University, Shanghai 201508, People's Republic of China
| | - Qin-Hua Huang
- Department of Health Check-Up Center, Jinshan Hospital, Fudan University, Shanghai 201508, People's Republic of China
| | - Chu-Miao Zhang
- Department of Health Check-Up Center, Jinshan Hospital, Fudan University, Shanghai 201508, People's Republic of China
| | - Hai-Yan Chen
- Department of Health Check-Up Center, Jinshan Hospital, Fudan University, Shanghai 201508, People's Republic of China
| |
Collapse
|
22
|
Campbell EJ, Dachs GU, Morrin HR, Davey VC, Robinson BA, Vissers MCM. Activation of the hypoxia pathway in breast cancer tissue and patient survival are inversely associated with tumor ascorbate levels. BMC Cancer 2019; 19:307. [PMID: 30943919 PMCID: PMC6448303 DOI: 10.1186/s12885-019-5503-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 03/21/2019] [Indexed: 12/21/2022] Open
Abstract
Background The transcription factor hypoxia inducible factor (HIF) -1 drives tumor growth and metastasis and is associated with poor prognosis in breast cancer. Ascorbate can moderate HIF-1 activity in vitro and is associated with HIF pathway activation in a number of cancer types, but whether tissue ascorbate levels influence the HIF pathway in breast cancer is unknown. In this study we investigated the association between tumor ascorbate levels and HIF-1 activation and patient survival in human breast cancer. Methods In a retrospective analysis of human breast cancer tissue, we analysed primary tumor and adjacent uninvolved tissue from 52 women with invasive ductal carcinoma. We measured HIF-1α, HIF-1 gene targets CAIX, BNIP-3 and VEGF, and ascorbate content. Patient clinical outcomes were evaluated against these parameters. Results HIF-1 pathway proteins were upregulated in tumor tissue and increased HIF-1 activation was associated with higher tumor grade and stage, with increased vascular invasion and necrosis, and with decreased disease-free and disease-specific survival. Grade 1 tumors had higher ascorbate levels than did grade 2 or 3 tumors. Higher ascorbate levels were associated with less tumor necrosis, with lower HIF-1 pathway activity and with increased disease-free and disease-specific survival. Conclusions Our findings indicate that there is a direct correlation between intracellular ascorbate levels, activation of the HIF-1 pathway and patient survival in breast cancer. This is consistent with the known capacity of ascorbate to stimulate the activity of the regulatory HIF hydroxylases and suggests that optimisation of tumor ascorbate could have clinical benefit via modulation of the hypoxic response.
Collapse
Affiliation(s)
- Elizabeth J Campbell
- Mackenzie Cancer Research Group, Department of Pathology and Biomedical Science, University of Otago, Christchurch, 8011, New Zealand.,Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago, Christchurch, 8140, New Zealand
| | - Gabi U Dachs
- Mackenzie Cancer Research Group, Department of Pathology and Biomedical Science, University of Otago, Christchurch, 8011, New Zealand
| | - Helen R Morrin
- Mackenzie Cancer Research Group, Department of Pathology and Biomedical Science, University of Otago, Christchurch, 8011, New Zealand.,Cancer Society Tissue Bank, University of Otago, Christchurch, 8011, New Zealand
| | - Valerie C Davey
- Christchurch Breast Cancer Patient Register, Christchurch Hospital, Christchurch, 8011, New Zealand
| | - Bridget A Robinson
- Mackenzie Cancer Research Group, Department of Pathology and Biomedical Science, University of Otago, Christchurch, 8011, New Zealand.,Canterbury Regional Cancer and Haematology Service, Canterbury District Health Board, Christchurch, and Department of Medicine, University of Otago, Christchurch, 8011, New Zealand
| | - Margreet C M Vissers
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago, Christchurch, 8140, New Zealand.
| |
Collapse
|
23
|
Albuquerque APB, Balmaña M, Mereiter S, Pinto F, Reis CA, Beltrão EIC. Hypoxia and serum deprivation induces glycan alterations in triple negative breast cancer cells. Biol Chem 2019; 399:661-672. [PMID: 29894296 DOI: 10.1515/hsz-2018-0121] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 04/27/2018] [Indexed: 12/26/2022]
Abstract
Triple negative breast cancer (TNBC) is a major global public health problem. The lack of targeted therapy and the elevated mortality evidence the need for better knowledge of the tumor biology. Hypoxia and aberrant glycosylation are associated with advanced stages of malignancy, tumor progression and treatment resistance. Importantly, serum deprivation regulates the invasive phenotype and favors TNBC cell survival. However, in TNBC, the role of hypoxia and serum deprivation in the regulation of glycosylation remains largely unknown. The effects of hypoxia and serum deprivation on the expression of glycosyltransferases and glycan profile were evaluated in the MDA-MB-231 cell line. We showed that the overexpression of HIF-1α was accompanied by acquisition of epithelial-mesenchimal transition features. Significant upregulation of fucosyl- and sialyltransferases involved in the synthesis of tumor-associated carbohydrate antigens was observed together with changes in fucosylation and sialylation detected by Aleuria aurantia lectin and Sambucus nigra agglutinin lectin blots. Bioinformatic analysis further indicated a mechanism by which HIF-1α can regulate ST3GAL6 expression and the relationship within the intrinsic characteristics of TNBC tumors. In conclusion, our results showed the involvement of hypoxia and serum deprivation in glycosylation profile regulation of TNBC cells triggering breast cancer aggressive features and suggesting glycosylation as a potential diagnostic and therapeutic target.
Collapse
Affiliation(s)
- Amanda P B Albuquerque
- Biomarkers in Cancer Research Group (BmC) - Federal University of Pernambuco (UFPE), 50670-901 Recife, Pernambuco, Brazil.,Department of Biochemistry, Federal University of Pernambuco (UFPE), 50670-901 Recife, Pernambuco, Brazil
| | - Meritxell Balmaña
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.,Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal
| | - Stefan Mereiter
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.,Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal
| | - Filipe Pinto
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.,Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal
| | - Celso A Reis
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.,Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal.,Institute of Biomedical Sciences Abel Salazar, University of Porto, 4050-313 Porto, Portugal.,Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Eduardo I C Beltrão
- Biomarkers in Cancer Research Group (BmC) - Federal University of Pernambuco (UFPE), 50670-901 Recife, Pernambuco, Brazil.,Department of Biochemistry, Federal University of Pernambuco (UFPE), 50670-901 Recife, Pernambuco, Brazil
| |
Collapse
|
24
|
Jarman EJ, Ward C, Turnbull AK, Martinez-Perez C, Meehan J, Xintaropoulou C, Sims AH, Langdon SP. HER2 regulates HIF-2α and drives an increased hypoxic response in breast cancer. Breast Cancer Res 2019; 21:10. [PMID: 30670058 PMCID: PMC6343358 DOI: 10.1186/s13058-019-1097-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 01/04/2019] [Indexed: 12/21/2022] Open
Abstract
Background Tumour hypoxia is a driver of breast cancer progression associated with worse prognosis and more aggressive disease. The cellular response to hypoxia is mediated by the hypoxia-inducible transcription factors HIF-1 and HIF-2, whose transcriptional activity is canonically regulated through their oxygen-labile HIF-α subunits. These are constitutively degraded in the presence of oxygen; however, HIF-1α can be stabilised, even at high oxygen concentrations, through the activation of HER receptor signalling. Despite this, there is still limited understanding on how HER receptor signalling interacts with HIF activity to contribute to breast cancer progression in the context of tumour hypoxia. Methods 2D and 3D cell line models were used alongside microarray gene expression analysis and meta-analysis of publicly available gene expression datasets to assess the impact of HER2 overexpression on HIF-1α/HIF-2α regulation and to compare the global transcriptomic response to acute and chronic hypoxia in an isogenic cell line model of HER2 overexpression. Results HER2 overexpression in MCF7 cells leads to an increase in HIF-2α but not HIF-1α expression in normoxia and an increased upregulation of HIF-2α in hypoxia. Global gene expression analysis showed that HER2 overexpression in these cells promotes an exaggerated transcriptional response to both short-term and long-term hypoxia, with increased expression of numerous hypoxia response genes. HIF-2α expression is frequently higher in HER2-overexpressing tumours and is associated with worse disease-specific survival in HER2-positive breast cancer patients. HER2-overexpressing cell lines demonstrate an increased sensitivity to targeted HIF-2α inhibition through either siRNA or the use of a small molecule inhibitor of HIF-2α translation. Conclusions This study suggests an important interplay between HER2 expression and HIF-2α in breast cancer and highlights the potential for HER2 to drive the expression of numerous hypoxia response genes in normoxia and hypoxia. Overall, these findings show the importance of understanding the regulation of HIF activity in a variety of breast cancer subtypes and points to the potential of targeting HIF-2α as a therapy for HER2-positive breast cancer. Electronic supplementary material The online version of this article (10.1186/s13058-019-1097-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Edward J Jarman
- Cancer Research UK Edinburgh Centre and Division of Pathology Laboratory, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK. .,Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh, EH4 2XU, UK.
| | - Carol Ward
- Cancer Research UK Edinburgh Centre and Division of Pathology Laboratory, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Arran K Turnbull
- Cancer Research UK Edinburgh Centre and Division of Pathology Laboratory, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Carlos Martinez-Perez
- Cancer Research UK Edinburgh Centre and Division of Pathology Laboratory, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - James Meehan
- Cancer Research UK Edinburgh Centre and Division of Pathology Laboratory, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Chrysi Xintaropoulou
- Cancer Research UK Edinburgh Centre and Division of Pathology Laboratory, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Andrew H Sims
- Applied Bioinformatics of Cancer, University of Edinburgh Cancer Research Centre, MRC Institute of Genetics and Molecular Medicine, Edinburgh, EH4 2XR, UK
| | - Simon P Langdon
- Cancer Research UK Edinburgh Centre and Division of Pathology Laboratory, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
| |
Collapse
|
25
|
Yeh CC, Luo JL, Nhut Phan N, Cheng YC, Chow LP, Tsai MH, Chuang EY, Lai LC. Different effects of long noncoding RNA NDRG1-OT1 fragments on NDRG1 transcription in breast cancer cells under hypoxia. RNA Biol 2018; 15:1487-1498. [PMID: 30497328 DOI: 10.1080/15476286.2018.1553480] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Hypoxia plays a crucial role in the aggressiveness of solid tumors by driving multiple signaling pathways. Recently, long non-coding RNA (lncRNA) has been reported to promote or inhibit tumor aggressiveness by regulating gene expression. Previous studies in our laboratory found that the lncRNA NDRG1-OT1 is significantly up-regulated under hypoxia and inhibits its target gene NDRG1 at both the mRNA and protein levels. At the protein level, NDRG1-OT1 increases NDRG1 degradation via ubiquitin-mediated proteolysis. However, the repressive mechanism of NDRG1 at the RNA level is still unknown. Therefore, the purpose of this study was to study how NDRG1-OT1 transcriptionally regulates its target gene NDRG1. Luciferase reporter assays showed that NDRG1-OT1 decreased NDRG1 promoter activities. Mass spectrometry, bioinformatics tools, genetic manipulation, and immunoblotting were used to identify the interacting proteins. Surprisingly, different fragments of NDRG1-OT1 had opposite effects on NDRG1. The first quarter fragment (1-149 nt) of NDRG1-OT1 had no effect on the NDRG1 promoter; the second quarter fragment (150-263 nt) repressed NDRG1 by increasing the binding affinity of HNRNPA1; the third quarter fragment (264-392 nt) improved NDRG1 promoter activity by recruiting HIF-1α; the fourth quarter fragment (393-508 nt) down-regulated NDRG1 promoter activity via down-regulation of KHSRP under hypoxia. In summary, we have found a novel mechanism by which different fragments of the same lncRNA can cause opposite effects within the same target gene.
Collapse
Affiliation(s)
- Ching-Ching Yeh
- a Graduate Institute of Physiology, College of Medicine , National Taiwan University , Taipei , Taiwan
| | - Jun-Liang Luo
- a Graduate Institute of Physiology, College of Medicine , National Taiwan University , Taipei , Taiwan
| | - Nam Nhut Phan
- b Bioinformatics Program, Taiwan International Graduate Program, Institute of Information Science , Academia Sinica , Taipei , Taiwan.,c Graduate Institute of Biomedical Electronics and Bioinformatics , National Taiwan University , Taipei , Taiwan
| | - Yi-Chun Cheng
- a Graduate Institute of Physiology, College of Medicine , National Taiwan University , Taipei , Taiwan
| | - Lu-Ping Chow
- d Graduate Institute of Biochemistry and Molecular Biology, College of Medicine , National Taiwan University , Taipei , Taiwan
| | - Mong-Hsun Tsai
- e Institute of Biotechnology , National Taiwan University , Taipei , Taiwan.,f Bioinformatics and Biostatistics Core, Center of Genomic and Precision Medicine , National Taiwan University , Taipei , Taiwan
| | - Eric Y Chuang
- c Graduate Institute of Biomedical Electronics and Bioinformatics , National Taiwan University , Taipei , Taiwan.,f Bioinformatics and Biostatistics Core, Center of Genomic and Precision Medicine , National Taiwan University , Taipei , Taiwan
| | - Liang-Chuan Lai
- a Graduate Institute of Physiology, College of Medicine , National Taiwan University , Taipei , Taiwan.,f Bioinformatics and Biostatistics Core, Center of Genomic and Precision Medicine , National Taiwan University , Taipei , Taiwan
| |
Collapse
|
26
|
Vissers MCM, Das AB. Potential Mechanisms of Action for Vitamin C in Cancer: Reviewing the Evidence. Front Physiol 2018; 9:809. [PMID: 30018566 PMCID: PMC6037948 DOI: 10.3389/fphys.2018.00809] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 06/08/2018] [Indexed: 12/12/2022] Open
Abstract
Whether vitamin C (ascorbate) has a role to play as an anti-cancer agent has been debated for decades. Ascorbate has been used by cancer patients in an unregulated environment, either as a dietary supplement or in pharmacological doses administered by infusion, with numerous reports of clinical benefit, but in the absence of rigorous clinical trial data. The design of appropriate clinical trials has been hindered by a lack of understanding of the mechanism(s) of action that would inform the choice of effective dose, timing of administration and likely responsive cancer models. More recently, expanded understanding of the biological activities of ascorbate has led to a number of plausible hypotheses for mechanisms of anti-cancer activity. Prominent among these are the generation of significant quantities of hydrogen peroxide by the autoxidation of supra-physiological concentrations of ascorbate and stimulation of the 2-oxoglutarate-dependent dioxygenase family of enzymes (2-OGDDs) that have a cofactor requirement for ascorbate. Hydrogen peroxide generation is postulated to generate oxidative stress that preferentially targets cancer cells. The 2-OGDDs include the hydroxylases that regulate the hypoxic response, a major driver of tumor survival, angiogenesis, stem cell phenotype and metastasis, and the epigenetic histone and DNA demethylases. The latter are of particular interest, with recent studies suggesting a promising role for ascorbate in the regulation of the ten-eleven translocase (TET) DNA demethylases in hematological cancers. Support for these proposed mechanisms has come from many in vitro studies, and xenograft animal models have consistently shown an anti-cancer effect of ascorbate administration. However, decisive evidence for any particular mechanism(s) of action is not yet available from an in vivo setting. With a number of early phase clinical trials currently underway, evidence for potential mechanism(s) of action is required to inform the most appropriate study design and choice of cancer model. Hopefully such information will result in sound clinical data that will avert adding any further controversy to this already contentious debate.
Collapse
Affiliation(s)
- Margreet C M Vissers
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago, Christchurch, Christchurch, New Zealand
| | - Andrew B Das
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago, Christchurch, Christchurch, New Zealand
| |
Collapse
|
27
|
Ampuja M, Rantapero T, Rodriguez-Martinez A, Palmroth M, Alarmo EL, Nykter M, Kallioniemi A. Integrated RNA-seq and DNase-seq analyses identify phenotype-specific BMP4 signaling in breast cancer. BMC Genomics 2017; 18:68. [PMID: 28077088 PMCID: PMC5225521 DOI: 10.1186/s12864-016-3428-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 12/16/2016] [Indexed: 02/07/2023] Open
Abstract
Background Bone morphogenetic protein 4 (BMP4) plays an important role in cancer pathogenesis. In breast cancer, it reduces proliferation and increases migration in a cell line-dependent manner. To characterize the transcriptional mediators of these phenotypes, we performed RNA-seq and DNase-seq analyses after BMP4 treatment in MDA-MB-231 and T-47D breast cancer cells that respond to BMP4 with enhanced migration and decreased cell growth, respectively. Results The RNA-seq data revealed gene expression changes that were consistent with the in vitro phenotypes of the cell lines, particularly in MDA-MB-231, where migration-related processes were enriched. These results were confirmed when enrichment of BMP4-induced open chromatin regions was analyzed. Interestingly, the chromatin in transcription start sites of differentially expressed genes was already open in unstimulated cells, thus enabling rapid recruitment of transcription factors to the promoters as a response to stimulation. Further analysis and functional validation identified MBD2, CBFB, and HIF1A as downstream regulators of BMP4 signaling. Silencing of these transcription factors revealed that MBD2 was a consistent activator of target genes in both cell lines, CBFB an activator in cells with reduced proliferation phenotype, and HIF1A a repressor in cells with induced migration phenotype. Conclusions Integrating RNA-seq and DNase-seq data showed that the phenotypic responses to BMP4 in breast cancer cell lines are reflected in transcriptomic and chromatin levels. We identified and experimentally validated downstream regulators of BMP4 signaling that relate to the different in vitro phenotypes and thus demonstrate that the downstream BMP4 response is regulated in a cell type-specific manner. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3428-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- M Ampuja
- BioMediTech, University of Tampere, Tampere, Finland. .,Fimlab Laboratories, Tampere, Finland.
| | - T Rantapero
- BioMediTech, University of Tampere, Tampere, Finland
| | - A Rodriguez-Martinez
- BioMediTech, University of Tampere, Tampere, Finland.,Fimlab Laboratories, Tampere, Finland
| | - M Palmroth
- BioMediTech, University of Tampere, Tampere, Finland
| | - E L Alarmo
- BioMediTech, University of Tampere, Tampere, Finland
| | - M Nykter
- BioMediTech, University of Tampere, Tampere, Finland
| | - A Kallioniemi
- BioMediTech, University of Tampere, Tampere, Finland.,Fimlab Laboratories, Tampere, Finland
| |
Collapse
|
28
|
Simmons A, Burrage PM, Nicolau DV, Lakhani SR, Burrage K. Environmental factors in breast cancer invasion: a mathematical modelling review. Pathology 2017; 49:172-180. [PMID: 28081961 DOI: 10.1016/j.pathol.2016.11.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 11/07/2016] [Accepted: 11/13/2016] [Indexed: 12/17/2022]
Abstract
This review presents a brief overview of breast cancer, focussing on its heterogeneity and the role of mathematical modelling and simulation in teasing apart the underlying biophysical processes. Following a brief overview of the main known pathophysiological features of ductal carcinoma, attention is paid to differential equation-based models (both deterministic and stochastic), agent-based modelling, multi-scale modelling, lattice-based models and image-driven modelling. A number of vignettes are presented where these modelling approaches have elucidated novel aspects of breast cancer dynamics, and we conclude by offering some perspectives on the role mathematical modelling can play in understanding breast cancer development, invasion and treatment therapies.
Collapse
Affiliation(s)
- Alex Simmons
- School of Mathematical Sciences, and ARC Centre of Excellence for Mathematical and Statistical Frontiers, Queensland University of Technology, Gardens Point, Brisbane, Qld, Australia
| | - Pamela M Burrage
- School of Mathematical Sciences, and ARC Centre of Excellence for Mathematical and Statistical Frontiers, Queensland University of Technology, Gardens Point, Brisbane, Qld, Australia
| | - Dan V Nicolau
- School of Mathematical Sciences, and ARC Centre of Excellence for Mathematical and Statistical Frontiers, Queensland University of Technology, Gardens Point, Brisbane, Qld, Australia; Mathematical Institute, University of Oxford, Oxford, United Kingdom; Molecular Sense Ltd, Oxford, United Kingdom
| | - Sunil R Lakhani
- The University of Queensland, Centre for Clinical Research and School of Medicine and Pathology Queensland, The Royal Brisbane and Women's Hospital, Brisbane, Qld, Australia
| | - Kevin Burrage
- School of Mathematical Sciences, and ARC Centre of Excellence for Mathematical and Statistical Frontiers, Queensland University of Technology, Gardens Point, Brisbane, Qld, Australia; Department of Computer Science, University of Oxford, United Kingdom.
| |
Collapse
|
29
|
Kotta-Loizou I, Vasilopoulos SN, Coutts RHA, Theocharis S. Current Evidence and Future Perspectives on HuR and Breast Cancer Development, Prognosis, and Treatment. Neoplasia 2016; 18:674-688. [PMID: 27764700 PMCID: PMC5071540 DOI: 10.1016/j.neo.2016.09.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 09/14/2016] [Accepted: 09/19/2016] [Indexed: 12/20/2022] Open
Abstract
Hu-antigen R (HuR) is an RNA-binding posttranscriptional regulator that belongs to the Hu/ELAV family. HuR expression levels are modulated by a variety of proteins, microRNAs, chemical compounds, or the microenvironment, and in turn, HuR affects mRNA stability and translation of various genes implicated in breast cancer formation, progression, metastasis, and treatment. The aim of the present review is to critically summarize the role of HuR in breast cancer development and its potential as a prognosticator and a therapeutic target. In this aspect, all the existing English literature concerning HuR expression and function in breast cancer cell lines, in vivo animal models, and clinical studies is critically presented and summarized. HuR modulates many genes implicated in biological processes crucial for breast cancer formation, growth, and metastasis, whereas the link between HuR and these processes has been demonstrated directly in vitro and in vivo. Additionally, clinical studies reveal that HuR is associated with more aggressive forms of breast cancer and is a putative prognosticator for patients' survival. All the above indicate HuR as a promising drug target for cancer therapy; nevertheless, additional studies are required to fully understand its potential and determine against which types of breast cancer and at which stage of the disease a therapeutic agent targeting HuR would be more effective.
Collapse
Affiliation(s)
- Ioly Kotta-Loizou
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, United Kingdom; First Department of Pathology, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece.
| | - Spyridon N Vasilopoulos
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Robert H A Coutts
- Geography, Environment and Agriculture Division, Department of Biological and Environmental Sciences, School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, United Kingdom
| | - Stamatios Theocharis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
| |
Collapse
|
30
|
Fontelles CC, Carney E, Clarke J, Nguyen NM, Yin C, Jin L, Cruz MI, Ong TP, Hilakivi-Clarke L, de Assis S. Paternal overweight is associated with increased breast cancer risk in daughters in a mouse model. Sci Rep 2016; 6:28602. [PMID: 27339599 PMCID: PMC4919621 DOI: 10.1038/srep28602] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 06/07/2016] [Indexed: 12/17/2022] Open
Abstract
While many studies have shown that maternal weight and nutrition in pregnancy affects offspring's breast cancer risk, no studies have investigated the impact of paternal body weight on daughters' risk of this disease. Here, we show that diet-induced paternal overweight around the time of conception can epigenetically reprogram father's germ-line and modulate their daughters' birth weight and likelihood of developing breast cancer, using a mouse model. Increased body weight was associated with changes in the miRNA expression profile in paternal sperm. Daughters of overweight fathers had higher rates of carcinogen-induced mammary tumors which were associated with delayed mammary gland development and alterations in mammary miRNA expression. The hypoxia signaling pathway, targeted by miRNAs down-regulated in daughters of overweight fathers, was activated in their mammary tissues and tumors. This study provides evidence that paternal peri-conceptional body weight may affect daughters' mammary development and breast cancer risk and warrants further studies in other animal models and humans.
Collapse
Affiliation(s)
- Camile Castilho Fontelles
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA.,Departament of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo and Food Research Center, São Paulo, SP, Brazil
| | - Elissa Carney
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Johan Clarke
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Nguyen M Nguyen
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Chao Yin
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Lu Jin
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - M Idalia Cruz
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Thomas Prates Ong
- Departament of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo and Food Research Center, São Paulo, SP, Brazil
| | - Leena Hilakivi-Clarke
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Sonia de Assis
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| |
Collapse
|
31
|
Hirst AM, Frame FM, Arya M, Maitland NJ, O'Connell D. Low temperature plasmas as emerging cancer therapeutics: the state of play and thoughts for the future. Tumour Biol 2016; 37:7021-31. [PMID: 26888782 PMCID: PMC4875936 DOI: 10.1007/s13277-016-4911-7] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 01/22/2016] [Indexed: 12/19/2022] Open
Abstract
The field of plasma medicine has seen substantial advances over the last decade, with applications developed for bacterial sterilisation, wound healing and cancer treatment. Low temperature plasmas (LTPs) are particularly suited for medical purposes since they are operated in the laboratory at atmospheric pressure and room temperature, providing a rich source of reactive oxygen and nitrogen species (RONS). A great deal of research has been conducted into the role of reactive species in both the growth and treatment of cancer, where long-established radio- and chemo-therapies exploit their ability to induce potent cytopathic effects. In addition to producing a plethora of RONS, LTPs can also create strong electroporative fields. From an application perspective, it has been shown that LTPs can be applied precisely to a small target area. On this basis, LTPs have been proposed as a promising future strategy to accurately and effectively control and eradicate tumours. This review aims to evaluate the current state of the literature in the field of plasma oncology and highlight the potential for the use of LTPs in combination therapy. We also present novel data on the effect of LTPs on cancer stem cells, and speculatively outline how LTPs could circumvent treatment resistance encountered with existing therapeutics.
Collapse
Affiliation(s)
- Adam M Hirst
- Department of Physics, York Plasma Institute, University of York, Heslington, UK
| | - Fiona M Frame
- YCR Cancer Research Unit, Department of Biology, University of York, Heslington, UK
| | | | - Norman J Maitland
- YCR Cancer Research Unit, Department of Biology, University of York, Heslington, UK
| | - Deborah O'Connell
- Department of Physics, York Plasma Institute, University of York, Heslington, UK.
| |
Collapse
|
32
|
Abstract
Black et al. demonstrate that hypoxia induces transient, site-specific copy gains in primary, nontransformed, and transformed human cells. Hypoxia-driven copy gains are dependent on the KDM4A histone demethylase and are blocked by inhibition of KDM4A with a small molecule or the natural metabolite succinate. Copy number heterogeneity is a prominent feature within tumors. The molecular basis for this heterogeneity remains poorly characterized. Here, we demonstrate that hypoxia induces transient site-specific copy gains (TSSGs) in primary, nontransformed, and transformed human cells. Hypoxia-driven copy gains are not dependent on HIF1α or HIF2α; however, they are dependent on the KDM4A histone demethylase and are blocked by inhibition of KDM4A with a small molecule or the natural metabolite succinate. Furthermore, this response is conserved at a syntenic region in zebrafish cells. Regions with site-specific copy gain are also enriched for amplifications in hypoxic primary tumors. These tumors exhibited amplification and overexpression of the drug resistance gene CKS1B, which we recapitulated in hypoxic breast cancer cells. Our results demonstrate that hypoxia provides a biological stimulus to create transient site-specific copy alterations that could result in heterogeneity within tumors and cell populations. These findings have major implications in our understanding of copy number heterogeneity and the emergence of drug resistance genes in cancer.
Collapse
|