1
|
Gu X, Mo W, Zhuang G, Shi C, Wei T, Zhang J, Tu C, Cai Y, Liao B, Hao H. Visualization of argininosuccinate synthetase by in silico analysis: novel insights into citrullinemia type I disorders. Front Mol Biosci 2024; 11:1482773. [PMID: 39649700 PMCID: PMC11621003 DOI: 10.3389/fmolb.2024.1482773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/21/2024] [Indexed: 12/11/2024] Open
Abstract
Background Citrullinemia type I disorders (CTLN1) is a genetic metabolic disease caused by argininosuccinate synthetase (ASS1) gene mutation. To date, the human genome mutation database has documented over 100 variants of the ASS1 gene. This study reported a novel deletion-insertion variant of ASS1 gene and employed various prediction tools to determine its pathogenicity. Methods We reported a case of early-onset CTLN1. Whole exome sequencing was conducted to identify genetic mutations. We employed various structure prediction tools to generate accurate 3D models and utilized computational biology tools to elucidate the disparities between the wild-type and mutant proteins. Results The patient was characterized by severe clinical manifestations, including poor responsiveness, lethargy, convulsions, and cardiac arrest. Notably, the patient exhibited significantly elevated blood ammonia levels (655 μmol/L; normal reference: 10-30 μmol/L) and increased citrulline concentrations (936 μmol/L; normal reference: 5-25 μmol/L). Whole exome sequencing revealed a in-frame deletion-insertion mutation c.1128_1134delinsG in the ASS1 gene of unknown significance, which has not been previously reported. Our finding indicated that the C- terminal helix domain of the mutant protein structure, which was an important structure for ASS1 protein to form protein tetramers, was indeed more unstable than that of the wild-type protein structure. Conclusion Through conducting an in silico analysis on this unique in-frame deletion-insertion variant of ASS1, our aim was to enhance understanding regarding its structure-function relationship as well as unraveling the molecular mechanism underlying CTLN1.
Collapse
Affiliation(s)
- Xia Gu
- Department of Neonatology, The Sixth Affiliated Hospital, Sun-Yat-Sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wenhui Mo
- Department of Neonatology, Foshan Fosun Chancheng Hospital, Foshan, China
| | - Guiying Zhuang
- Department of Neonatology, The Maternal and Child Health Care Hospital of Huadu, Guangzhou, China
| | - Congcong Shi
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Inborn Errors of Metabolism Laboratory, The Sixth Affiliated Hospital, Sun-Yat-Sen University, Guangzhou, China
| | - Tao Wei
- Guangdong Shaohe Biotechnology Co., LTD., Guangzhou, China
| | - Jinze Zhang
- Guangdong Shaohe Biotechnology Co., LTD., Guangzhou, China
| | - Chiaowen Tu
- Department of Neonatology, Foshan Fosun Chancheng Hospital, Foshan, China
| | - Yao Cai
- Department of Neonatology, The Sixth Affiliated Hospital, Sun-Yat-Sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Biwen Liao
- Department of Neonatology, Foshan Fosun Chancheng Hospital, Foshan, China
| | - Hu Hao
- Department of Neonatology, The Sixth Affiliated Hospital, Sun-Yat-Sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
2
|
Lisjak M, Iaconcig A, Guarnaccia C, Vicidomini A, Moretti L, Collaud F, Ronzitti G, Zentilin L, Muro AF. Lethality rescue and long-term amelioration of a citrullinemia type I mouse model by neonatal gene-targeting combined to SaCRISPR-Cas9. Mol Ther Methods Clin Dev 2023; 31:101103. [PMID: 37744006 PMCID: PMC10514469 DOI: 10.1016/j.omtm.2023.08.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/25/2023] [Indexed: 09/26/2023]
Abstract
Citrullinemia type I is a rare autosomal-recessive disorder caused by deficiency of argininosuccinate synthetase (ASS1). The clinical presentation includes the acute neonatal form, characterized by ammonia and citrulline accumulation in blood, which may lead to encephalopathy, coma, and death, and the milder late-onset form. Current treatments are unsatisfactory, and the only curative treatment is liver transplantation. We permanently modified the hepatocyte genome in lethal citrullinemia mice (Ass1fold/fold) by inserting the ASS1 cDNA into the albumin locus through the delivery of two AAV8 vectors carrying the donor DNA and the CRISPR-Cas9 platform. The neonatal treatment completely rescued mortality ensuring survival up to 5 months of age, with plasma citrulline levels significantly decreased, while plasma ammonia levels remained unchanged. In contrast, neonatal treatment with a liver-directed non-integrative AAV8-AAT-hASS1 vector failed to improve disease parameters. To model late-onset citrullinemia, we dosed postnatal day (P) 30 juvenile animals using the integrative approach, resulting in lifespan improvement and a minor reduction in disease markers. Conversely, treatment with the non-integrative vector completely rescued mortality, reducing plasma ammonia and citrulline to wild-type values. In summary, the integrative approach in neonates is effective, although further improvements are required to fully correct the phenotype. Non-integrative gene therapy application to juvenile mice ensures a stable and very efficient therapeutic effect.
Collapse
Affiliation(s)
- Michela Lisjak
- International Centre for Genetic Engineering and Biotechnology, 34149 Trieste, Italy
| | - Alessandra Iaconcig
- International Centre for Genetic Engineering and Biotechnology, 34149 Trieste, Italy
| | - Corrado Guarnaccia
- International Centre for Genetic Engineering and Biotechnology, 34149 Trieste, Italy
| | - Antonio Vicidomini
- International Centre for Genetic Engineering and Biotechnology, 34149 Trieste, Italy
| | - Laura Moretti
- International Centre for Genetic Engineering and Biotechnology, 34149 Trieste, Italy
| | - Fanny Collaud
- Généthon, 91000 Évry, France
- Université Paris-Saclay, Université d’Évry, Inserm, Généthon, Integrare Research Unit UMR_S951, 91000 Évry, France
| | - Giuseppe Ronzitti
- Généthon, 91000 Évry, France
- Université Paris-Saclay, Université d’Évry, Inserm, Généthon, Integrare Research Unit UMR_S951, 91000 Évry, France
| | - Lorena Zentilin
- International Centre for Genetic Engineering and Biotechnology, 34149 Trieste, Italy
| | - Andrés F. Muro
- International Centre for Genetic Engineering and Biotechnology, 34149 Trieste, Italy
| |
Collapse
|
3
|
Chen HA, Hsu RH, Chang KL, Huang YC, Chiang YC, Lee NC, Hwu WL, Chiu PC, Chien YH. Asymptomatic ASS1 carriers with high blood citrulline levels. Mol Genet Genomic Med 2022; 10:e2007. [PMID: 35726796 PMCID: PMC9482393 DOI: 10.1002/mgg3.2007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/28/2022] [Accepted: 06/08/2022] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION Citrullinemia Type 1 (CTLN1) is an autosomal recessive disorder caused by variants in the ASS1 gene. This study intends to clarify the etiology of false positives in newborn screening for citrullinemia. METHOD Newborns who had elevated dried-blood spot citrulline levels were enrolled, and medical records were reviewed retrospectively. Common ASS1 variants were screened using high-resolution melting analysis. RESULT Between 2011 and 2021, 130 newborns received confirmatory testing for citrullinemia, 4 were found to be patients for CTLN1; 11 were patients with citrin deficiency; and 49 newborns were confirmed to be carrying one pathogenic ASS1 variant. The incidence of CTLN1 was 1 in 188,380 (95% confidence interval: 1 in 73,258 to 1 in 484,416). All ASS1 variants studied in this cohort were located in exons 11 to 15, which encode the tetrameric interface regions of the ASS1 protein. Among 10 ASS1 carriers with elevated citrulline levels and complete sequence data, four (40%) revealed additional non-benign ASS1 variants; in contrast, only 2 of the 26 controls (7.7%), with normal citrulline levels, had additional ASS1 variants. CONCLUSION Heterozygote ASS1 variants may lead to a mild elevation of blood citrulline levels: about 2-6 times the population mean. Molecular testing and family studies remain critical for precise diagnosis, genetic counseling, and management.
Collapse
Affiliation(s)
- Hui-An Chen
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan.,Department of Pediatrics, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Rai-Hseng Hsu
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan.,Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
| | - Kai-Ling Chang
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
| | - Yi-Chen Huang
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
| | - Yun-Chen Chiang
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
| | - Ni-Chung Lee
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan.,Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
| | - Wuh-Liang Hwu
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan.,Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
| | - Pao-Chin Chiu
- Department of Pediatrics, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Yin-Hsiu Chien
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan.,Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
4
|
Moarefian S, Zamani M, Rahmanifar A, Behnam B, Zaman T. Clinical, laboratory data and outcomes of 17 Iranian citrullinemia type 1 patients: Identification of five novel ASS1 gene mutations. JIMD Rep 2022; 63:231-239. [PMID: 35433176 PMCID: PMC8995839 DOI: 10.1002/jmd2.12277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 02/10/2022] [Accepted: 02/21/2022] [Indexed: 11/11/2022] Open
Abstract
Citrullinemia type 1 is an autosomal recessive metabolic disease caused by ASS1 gene mutations encoding argininosuccinic acid synthetase enzyme which is within the pathway of arginine and nitric oxide biosynthesis. Disease confirmation was done by ASS1 gene mutation analysis using next-generation sequencing, DNA Sanger sequencing. The study group was 17 citrullinemia type 1 patients from 10 unrelated families referred to Iranian National Society for Study on Inborn Errors of Metabolism's clinic between 2008 and 2020. Clinical, laboratory, and molecular data were retrospectively evaluated. Eleven different ASS1 gene mutations were detected in 13 (76%) of 17 neonatal, three (18%) of 17 late infantile, and one (6%) of 17 asymptomatic patients. Severe developmental delay and intractable seizures despite metabolic control was outcome of neonatal form survivor. Two late infantile form patients live metabolically controlled with quite normal performance. DNA mutations are as follows: seven missense, one nonsense, and two insertion/deletion mutations in 12, two, and three patients, respectively. Five novel mutations were detected including a homozygous GG deletion in exon 12 (c.790_791delGG;p.Gly264Profs*3) and a homozygous mutation in exon 7 (c.440C>T; p.Met147Thr), both causing infantile (late onset) form; a homozygous mutation in exon 6 (c.1130T>C; p.Met376Thr) causing neonatal form; two compound heterozygote mutations in exon 14 (c.1167_1168insC:p.Gly390Argfs*22& c.1186T>A; p.Ser396Thr) causing asymptomatic form. Five (38%) patients with classic neonatal form had mutation in exon 14 of ASS1 (c.1168G>A; p.Gly390Arg). Classic neonatal was the most common form of disease in Iranian-studied patients and homozygote c.1168G>A was the most frequent ASS1 gene mutation. Global neonatal screening for citrullinemia type 1 in Iran is recommended and certain mutations can be used for screening severe form in this population.
Collapse
Affiliation(s)
- Shirin Moarefian
- Department of Neurogenetics, Iranian Center of Neurological Research (ICNR)Tehran University of Medical SciencesTehranIran
- Clinical and Research UnitIranian National Society for the Study of Inborn Errors of MetabolismTehranIran
| | - Mahdi Zamani
- Department of Neurogenetics, Iranian Center of Neurological Research (ICNR)Tehran University of Medical SciencesTehranIran
- Department of Medical Genetics, School of MedicineTehran University of Medical SciencesTehranIran
| | - Ali Rahmanifar
- Clinical and Research UnitIranian National Society for the Study of Inborn Errors of MetabolismTehranIran
| | - Babak Behnam
- Department of Medical Genetics and Molecular BiologyIran University of Medical SciencesTehranIran
- Present address:
Amarex Clinical Research, Department of Regulatory Affairs, GermantownMarylandUSA
| | - Talieh Zaman
- Clinical and Research UnitIranian National Society for the Study of Inborn Errors of MetabolismTehranIran
- Metabolic Unit of the Children's Medical Center, School of MedicineTehran University of Medical ScienceTehranIran
| |
Collapse
|
5
|
Cheng Z, He X, Zou F, Xu ZE, Li C, Liu H, Miao J. Identification of Novel Mutations in Chinese Infants With Citrullinemia. Front Genet 2022; 13:783799. [PMID: 35309121 PMCID: PMC8929347 DOI: 10.3389/fgene.2022.783799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 02/15/2022] [Indexed: 12/30/2022] Open
Abstract
Citrullinemia is a rare autosomal recessive disorder characterized by elevated concentrations of citrulline in the blood resulting from malfunction of the urea cycle. It is categorized into two types, types I and II, which are caused by argininosuccinate synthase 1 (ASS1), and citrin (SLC25A13) gene mutations, respectively. In this study, we performed genetic analysis on nine Chinese infants with citrullinemia using next-generation sequencing, which identified a novel mutation (p.Leu313Met) and a rare mutation (p.Thr323Ile, rs1250895424) of ASS1. We also found a novel splicing mutation of SLC25A13: c.1311 + 4_+7del. Functional analysis of the ASS1 missense mutations showed that both significantly impaired the enzyme activity of ASS1, with the p. Thr323Ile mutation clearly affecting the interaction between ASS1 and protein arginine methyltransferase 7 (PRMT7). These findings expand the mutational spectrum of ASS1 and SLC25A13, and further our understanding of the molecular genetic mechanism of citrullinemia in the Chinese population.
Collapse
Affiliation(s)
- Zhi Cheng
- Key Laboratory of Birth Defects and Reproductive Health of the National Health and Family Planning Commission (Chongqing Population and Family Planning Science and Technology Research Institute), Chongqing, China
- College of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Xiwen He
- College of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Fa Zou
- College of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Zhen-E Xu
- Department of Neonatology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Chun Li
- Department of Neonatology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Hao Liu
- Neonatal Disease Screening Center, Chongqing Health Center for Women and Children, Chongqing, China
| | - Jingkun Miao
- Neonatal Disease Screening Center, Chongqing Health Center for Women and Children, Chongqing, China
- *Correspondence: Jingkun Miao,
| |
Collapse
|
6
|
Cai X, Genchev GZ, He P, Lu H, Yu G. Demographics, in-hospital analysis, and prevalence of 33 rare diseases with effective treatment in Shanghai. Orphanet J Rare Dis 2021; 16:262. [PMID: 34103049 PMCID: PMC8186176 DOI: 10.1186/s13023-021-01830-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 04/20/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Rare diseases are ailments which impose a heavy burden on individual patients and global society as a whole. The rare disease management landscape is not a smooth one-a rare disease is quite often hard to diagnose, treat, and investigate. In China, the country's rapid economic rise and development has brought an increased focus on rare diseases. At present, there is a growing focus placed on the importance and public health priority of rare diseases and on improving awareness, definitions, and treatments. METHODS In this work we utilized clinical data from the Shanghai HIE System to characterize the status of 33 rare diseases with effective treatment in Shanghai for the time period of 2013-2016. RESULTS AND CONCLUSION First, we describe the total number of patients, year-to-year change in new patients with diagnosis in one of the target diseases and the distribution of gender and age for the top six (by patient number) diseases of the set of 33 rare diseases. Second, we describe the hospitalization burden in terms of in-hospital ratio, length of stay, and medical expenses during hospitalization. Finally, rare disease period prevalence is calculated for the rare diseases set.
Collapse
Affiliation(s)
- Xiaoshu Cai
- Center for Biomedical Informatics, Shanghai Children's Hospital, Shanghai, China
| | - Georgi Z Genchev
- Center for Biomedical Informatics, Shanghai Children's Hospital, Shanghai, China.,SJTU-Yale Joint Center for Biostatistics and Data Science, Shanghai Jiao Tong University, Shanghai, China.,Department of Bioinformatics and Biostatistics, Shanghai Jiao Tong University, Shanghai, China.,Bulgarian Institute for Genomics and Precision Medicine, Sofia, Bulgaria
| | - Ping He
- Shanghai Hospital Development Center, Shanghai, China
| | - Hui Lu
- Center for Biomedical Informatics, Shanghai Children's Hospital, Shanghai, China.,SJTU-Yale Joint Center for Biostatistics and Data Science, Shanghai Jiao Tong University, Shanghai, China.,Department of Bioinformatics and Biostatistics, Shanghai Jiao Tong University, Shanghai, China
| | - Guangjun Yu
- Center for Biomedical Informatics, Shanghai Children's Hospital, Shanghai, China.
| |
Collapse
|
7
|
Zou Z, Hu X, Luo T, Ming Z, Chen X, Xia L, Luo W, Li J, Xu N, Chen L, Cao D, Wen M, Kong F, Peng K, Xie Y, Li X, Ma D, Yang C, Chen C, Yi W, Liu O, Liu S, Luo J, Luo Z. Naturally-occurring spinosyn A and its derivatives function as argininosuccinate synthase activator and tumor inhibitor. Nat Commun 2021; 12:2263. [PMID: 33859183 PMCID: PMC8050083 DOI: 10.1038/s41467-021-22235-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 03/02/2021] [Indexed: 02/07/2023] Open
Abstract
Argininosuccinate synthase (ASS1) is a ubiquitous enzyme in mammals that catalyzes the formation of argininosuccinate from citrulline and aspartate. ASS1 genetic deficiency in patients leads to an autosomal recessive urea cycle disorder citrullinemia, while its somatic silence or down-regulation is very common in various human cancers. Here, we show that ASS1 functions as a tumor suppressor in breast cancer, and the pesticide spinosyn A (SPA) and its derivative LM-2I suppress breast tumor cell proliferation and growth by binding to and activating ASS1. The C13-C14 double bond in SPA and LM-2I while the Cys97 (C97) site in ASS1 are critical for the interaction between ASS1 and SPA or LM-2I. SPA and LM-2I treatment results in significant enhancement of ASS1 enzymatic activity in breast cancer cells, particularly in those cancer cells with low ASS1 expression, leading to reduced pyrimidine synthesis and consequently the inhibition of cancer cell proliferation. Thus, our results establish spinosyn A and its derivative LM-2I as potent ASS1 enzymatic activator and tumor inhibitor, which provides a therapeutic avenue for tumors with low ASS1 expression and for those non-tumor diseases caused by down-regulation of ASS1. Arginine addiction induced by argininosuccinate synthase (ASSN1) deficiency has been exploited to treat ASS1-deficient cancers. Here, the authors show an alternative therapeutic approach where ASS1 activity is increased by the pesticide spinosyn A and is shown to inhibit breast cancer cell proliferation.
Collapse
Affiliation(s)
- Zizheng Zou
- Department of Biochemistry and Molecular Biology, Hunan Province Key Laboratory of Basic and Applied Hematology, Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Xiangya School of Medicine, Central South University, Changsha, China.,Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China.,The Hunan Provincial Key Laboratory of Precision Diagnosis and Treatment for Gastrointestinal Tumor, Xiangya Hospital, Central South University, Changsha, China.,Department of Biochemistry and Molecular Biology, Yiyang Medical College, Yiyang, China
| | - Xiyuan Hu
- Department of Biochemistry and Molecular Biology, Hunan Province Key Laboratory of Basic and Applied Hematology, Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Xiangya School of Medicine, Central South University, Changsha, China
| | - Tiao Luo
- Hunan Key Laboratory of Oral Health Research & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, China
| | - Zhengnan Ming
- Department of Biochemistry and Molecular Biology, Hunan Province Key Laboratory of Basic and Applied Hematology, Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Xiangya School of Medicine, Central South University, Changsha, China
| | - Xiaodan Chen
- Department of Biochemistry and Molecular Biology, Hunan Province Key Laboratory of Basic and Applied Hematology, Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Xiangya School of Medicine, Central South University, Changsha, China
| | - Li Xia
- Core Facility of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wensong Luo
- Department of Biochemistry and Molecular Biology, Hunan Province Key Laboratory of Basic and Applied Hematology, Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Xiangya School of Medicine, Central South University, Changsha, China
| | - Jijia Li
- The Hunan Provincial Key Laboratory of Precision Diagnosis and Treatment for Gastrointestinal Tumor, Xiangya Hospital, Central South University, Changsha, China
| | - Na Xu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Ling Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Dongsheng Cao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Min Wen
- Department of Biochemistry and Molecular Biology, Hunan Province Key Laboratory of Basic and Applied Hematology, Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Xiangya School of Medicine, Central South University, Changsha, China
| | - Fanrong Kong
- Department of Biochemistry and Molecular Biology, Hunan Province Key Laboratory of Basic and Applied Hematology, Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Xiangya School of Medicine, Central South University, Changsha, China
| | - Kunjian Peng
- Department of Biochemistry and Molecular Biology, Hunan Province Key Laboratory of Basic and Applied Hematology, Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Xiangya School of Medicine, Central South University, Changsha, China
| | - Yuanzhu Xie
- Department of Biochemistry and Molecular Biology, Hunan Province Key Laboratory of Basic and Applied Hematology, Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Xiangya School of Medicine, Central South University, Changsha, China
| | - Xuan Li
- Department of Biochemistry and Molecular Biology, Hunan Province Key Laboratory of Basic and Applied Hematology, Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Xiangya School of Medicine, Central South University, Changsha, China
| | - Dayou Ma
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Chuanyu Yang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Ceshi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Wenjun Yi
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ousheng Liu
- Hunan Key Laboratory of Oral Health Research & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, China
| | - Suyou Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China.
| | - Junli Luo
- The Hunan Provincial Key Laboratory of Precision Diagnosis and Treatment for Gastrointestinal Tumor, Xiangya Hospital, Central South University, Changsha, China.
| | - Zhiyong Luo
- Department of Biochemistry and Molecular Biology, Hunan Province Key Laboratory of Basic and Applied Hematology, Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Xiangya School of Medicine, Central South University, Changsha, China.
| |
Collapse
|
8
|
Imagawa E, Diaz GA, Oishi K. A novel Romani microdeletion variant in the promoter sequence of ASS1 causes citrullinemia type I. Mol Genet Metab Rep 2020; 24:100619. [PMID: 32637322 PMCID: PMC7330059 DOI: 10.1016/j.ymgmr.2020.100619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/17/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Citrullinemia type I (CTLN1, MIM #215700) is an autosomal recessive urea cycle disorder caused by deficiency of argininosuccinate synthase (ASS). CTLN1 is characterized by life-threatening hyperammonemia and risk for resulting neurocognitive impairments. The diagnosis of CTLN1 is confirmed by the identification of biallelic pathogenic variants in the ASS1 gene. However, there are a small percentage of CTLN1 patients with a characteristic biochemical phenotype without identifiable variants in ASS1. We describe the molecular characterization of two related Romani children with biochemically diagnosed CTLN1, whose clinical genetic testing failed to detect any pathogenic variant in ASS1. METHODS Genomic DNA was extracted from peripheral blood lymphocytes collected from both patients. Sanger sequencing was performed after PCR amplifications of 5'- and 3'-untranslated regions of the ASS1 gene. A luciferase reporter assay was performed using the human malignant melanoma A2058 cell line and the human liver cancer cell line HepG2. RESULTS We interrogated the non-coding regions of ASS1 by targeted PCR amplification and identified a homozygous 477-bp microdeletion in the promoter region of the ASS1 gene in both patients. Heterozygosity of the variant was confirmed in their parents. Sanger sequencing confirmed the microdeletion contained the entire sequence of the non-coding exon 1 of ASS1 that includes promoter elements of GC-box, E-box, AP2-binding site, and TATA-box. Luciferase reporter assay using an expression plasmid containing the wild-type or mutant ASS1 sequences showed robust reporter expression from the wild-type sequence and significantly reduced expression driven by the mutant insert (3.6% in A2058 cells and 3.3% in HepG2 cells). These findings were consistent with the hypothesis that the microdeletion identified in the patients disrupted an essential promoter element and resulted in deficiency of ASS1 mRNA expression. CONCLUSIONS This is the first report of CTLN1 patients caused by a Romani microdeletion variant affecting the non-coding upstream sequence of ASS1. Ablation of the promoter sequence can cause CTLN1 by the reduction of ASS1 expression. Currently available clinical sequencing methods usually do not cover the promoter sequence including the non-coding exon of ASS1, highlighting the importance of evaluating this region in genetic testing for CTLN1.
Collapse
Affiliation(s)
- Eri Imagawa
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - George A. Diaz
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kimihiko Oishi
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
9
|
Wang T, Ma J, Zhang Q, Gao A, Wang Q, Li H, Xiang J, Wang B. Expanded Newborn Screening for Inborn Errors of Metabolism by Tandem Mass Spectrometry in Suzhou, China: Disease Spectrum, Prevalence, Genetic Characteristics in a Chinese Population. Front Genet 2019; 10:1052. [PMID: 31737040 PMCID: PMC6828960 DOI: 10.3389/fgene.2019.01052] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 10/01/2019] [Indexed: 12/30/2022] Open
Abstract
Expanded newborn screening for inborn errors of metabolism (IEMs) by tandem mass spectrometry (MS/MS) could simultaneously analyze more than 40 metabolites and identify about 50 kinds of IEMs. Next generation sequencing (NGS) targeting hundreds of IMEs-associated genes as a follow-up test in expanded newborn screening has been used for genetic analysis of patients. The spectrum, prevalence, and genetic characteristic of IEMs vary dramatically in different populations. To determine the spectrum, prevalence, and gene mutations of IEMs in newborns in Suzhou, China, 401,660 newborns were screened by MS/MS and 138 patients were referred to genetic analysis by NGS. The spectrum of 22 IEMs were observed in Suzhou population of newborns, and the overall incidence (excluding short chain acyl-CoA dehydrogenase deficiency (SCADD) and 3-Methylcrotonyl-CoA carboxylase deficiency (3-MCCD)) was 1/3,163. The prevalence of each IEM ranged from 1/401,660 to 1/19,128, while phenylketonuria (PKU) (1/19,128) and Mild hyperphenylalaninemia (M-HPA) (1/19,128) were the most common IEMs, followed by primary carnitine uptake defect (PCUD) (1/26,777), SCADD (1/28,690), hypermethioninemia (H-MET) (1/30,893), 3-MCCD (1/33,412) and methylmalonic acidemia (MMA) (1/40,166). Moreover, 89 reported mutations and 51 novel mutations in 25 IMEs-associated genes were detected in 138 patients with one of 22 IEMs. Some hotspot mutations were observed for ten IEMs, including PAH gene c.728G > A, c.611A > G, and c.721C > T for Phenylketonuria, PAH gene c.158G > A, c.1238G > C, c.728G > A, and c.1315+6T > A for M-HPA, SLC22A5 gene c.1400C > G, c.51C > G, and c.760C > T for PCUD, ACADS gene c.1031A > G, c.164C > T, and c.1130C > T for SCAD deficiency, MAT1A gene c.791G > A for H-MET, MCCC1 gene c.639+2T > A and c.863A > G for 3-MCCD, MMUT gene c.1663G > A for MMA, SLC25A13 gene c.IVS16ins3Kb and c.852_855delTATG for cittrullinemia II, PTS gene c.259C > T and c.166G > A for Tetrahydrobiopterin deficiency, and ACAD8 gene c.1000C > T and c.286C > A for Isobutyryl coa dehydrogenase deficiency. All these hotspot mutations were reported to be pathogenic or likely pathogenic, except a novel mutation of ACAD8 gene c.286C > A. These mutational hotspots could be potential candidates for gene screening and these novel mutations expanded the mutational spectrum of IEMs. Therefore, our findings could be of value for genetic counseling and genetic diagnosis of IEMs.
Collapse
Affiliation(s)
- Ting Wang
- Newborn Screening Laboratory, Center for Reproduction and Genetics, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Jun Ma
- Newborn Screening Laboratory, Center for Reproduction and Genetics, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Qin Zhang
- Genetic Clinic, Center for Reproduction and Genetics, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Ang Gao
- Genetic Clinic, Center for Reproduction and Genetics, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Qi Wang
- Newborn Screening Laboratory, Center for Reproduction and Genetics, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Hong Li
- Infertility Clinic, Center for Reproduction and Genetics, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Jingjing Xiang
- Genetic Laboratory, Center for Reproduction and Genetics, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Benjing Wang
- Newborn Screening Laboratory, Center for Reproduction and Genetics, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| |
Collapse
|
10
|
Mitochondrial Carriers for Aspartate, Glutamate and Other Amino Acids: A Review. Int J Mol Sci 2019; 20:ijms20184456. [PMID: 31510000 PMCID: PMC6769469 DOI: 10.3390/ijms20184456] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/05/2019] [Accepted: 09/06/2019] [Indexed: 12/19/2022] Open
Abstract
Members of the mitochondrial carrier (MC) protein family transport various molecules across the mitochondrial inner membrane to interlink steps of metabolic pathways and biochemical processes that take place in different compartments; i.e., are localized partly inside and outside the mitochondrial matrix. MC substrates consist of metabolites, inorganic anions (such as phosphate and sulfate), nucleotides, cofactors and amino acids. These compounds have been identified by in vitro transport assays based on the uptake of radioactively labeled substrates into liposomes reconstituted with recombinant purified MCs. By using this approach, 18 human, plant and yeast MCs for amino acids have been characterized and shown to transport aspartate, glutamate, ornithine, arginine, lysine, histidine, citrulline and glycine with varying substrate specificities, kinetics, influences of the pH gradient, and capacities for the antiport and uniport mode of transport. Aside from providing amino acids for mitochondrial translation, the transport reactions catalyzed by these MCs are crucial in energy, nitrogen, nucleotide and amino acid metabolism. In this review we dissect the transport properties, phylogeny, regulation and expression levels in different tissues of MCs for amino acids, and summarize the main structural aspects known until now about MCs. The effects of their disease-causing mutations and manipulation of their expression levels in cells are also considered as clues for understanding their physiological functions.
Collapse
|
11
|
Peng MZ, Cai YN, Shao YX, Zhao L, Jiang MY, Lin YT, Yin X, Sheng HY, Liu L. Simultaneous quantification of 48 plasma amino acids by liquid chromatography-tandem mass spectrometry to investigate urea cycle disorders. Clin Chim Acta 2019; 495:406-416. [DOI: 10.1016/j.cca.2019.05.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 05/11/2019] [Accepted: 05/11/2019] [Indexed: 12/30/2022]
|
12
|
Karagiannis P, Takahashi K, Saito M, Yoshida Y, Okita K, Watanabe A, Inoue H, Yamashita JK, Todani M, Nakagawa M, Osawa M, Yashiro Y, Yamanaka S, Osafune K. Induced Pluripotent Stem Cells and Their Use in Human Models of Disease and Development. Physiol Rev 2019; 99:79-114. [PMID: 30328784 DOI: 10.1152/physrev.00039.2017] [Citation(s) in RCA: 217] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The discovery of somatic cell nuclear transfer proved that somatic cells can carry the same genetic code as the zygote, and that activating parts of this code are sufficient to reprogram the cell to an early developmental state. The discovery of induced pluripotent stem cells (iPSCs) nearly half a century later provided a molecular mechanism for the reprogramming. The initial creation of iPSCs was accomplished by the ectopic expression of four specific genes (OCT4, KLF4, SOX2, and c-Myc; OSKM). iPSCs have since been acquired from a wide range of cell types and a wide range of species, suggesting a universal molecular mechanism. Furthermore, cells have been reprogrammed to iPSCs using a myriad of methods, although OSKM remains the gold standard. The sources for iPSCs are abundant compared with those for other pluripotent stem cells; thus the use of iPSCs to model the development of tissues, organs, and other systems of the body is increasing. iPSCs also, through the reprogramming of patient samples, are being used to model diseases. Moreover, in the 10 years since the first report, human iPSCs are already the basis for new cell therapies and drug discovery that have reached clinical application. In this review, we examine the generation of iPSCs and their application to disease and development.
Collapse
Affiliation(s)
- Peter Karagiannis
- Center for iPS Cell Research and Application, Kyoto University , Kyoto , Japan
| | - Kazutoshi Takahashi
- Center for iPS Cell Research and Application, Kyoto University , Kyoto , Japan
| | - Megumu Saito
- Center for iPS Cell Research and Application, Kyoto University , Kyoto , Japan
| | - Yoshinori Yoshida
- Center for iPS Cell Research and Application, Kyoto University , Kyoto , Japan
| | - Keisuke Okita
- Center for iPS Cell Research and Application, Kyoto University , Kyoto , Japan
| | - Akira Watanabe
- Center for iPS Cell Research and Application, Kyoto University , Kyoto , Japan
| | - Haruhisa Inoue
- Center for iPS Cell Research and Application, Kyoto University , Kyoto , Japan
| | - Jun K Yamashita
- Center for iPS Cell Research and Application, Kyoto University , Kyoto , Japan
| | - Masaya Todani
- Center for iPS Cell Research and Application, Kyoto University , Kyoto , Japan
| | - Masato Nakagawa
- Center for iPS Cell Research and Application, Kyoto University , Kyoto , Japan
| | - Mitsujiro Osawa
- Center for iPS Cell Research and Application, Kyoto University , Kyoto , Japan
| | - Yoshimi Yashiro
- Center for iPS Cell Research and Application, Kyoto University , Kyoto , Japan
| | - Shinya Yamanaka
- Center for iPS Cell Research and Application, Kyoto University , Kyoto , Japan
| | - Kenji Osafune
- Center for iPS Cell Research and Application, Kyoto University , Kyoto , Japan
| |
Collapse
|
13
|
Bijarnia-Mahay S, Häberle J, Jalan AB, Puri RD, Kohli S, Kudalkar K, Rüfenacht V, Gupta D, Maurya D, Verma J, Shigematsu Y, Yamaguchi S, Saxena R, Verma IC. Urea cycle disorders in India: clinical course, biochemical and genetic investigations, and prenatal testing. Orphanet J Rare Dis 2018; 13:174. [PMID: 30285816 PMCID: PMC6167905 DOI: 10.1186/s13023-018-0908-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 09/12/2018] [Indexed: 02/07/2023] Open
Abstract
Background Urea cycle disorders (UCDs) are inherited metabolic disorders that present with hyperammonemia, and cause significant mortality and morbidity in infants and children. These disorders are not well reported in the Indian population, due to lack of a thorough study of the clinical and molecular profile. Results We present data from two major metabolic centres in India, including 123 cases of various UCDs. The majority of them (72/123, 58%) presented in the neonatal period (before 30 days of age) with 88% on or before day 7 of life (classical presentation), and had a high mortality (64/72, 88%). Citrullinemia type 1 was the most common UCD, observed in 61/123 patients. Ornithine transcarbamylase (OTC) deficiency was the next most common, seen in 24 cases. Argininosuccinic aciduria was diagnosed in 20 cases. Deficiencies of arginase, N-acetylglutamate synthase, carbamoyl phosphate synthetase, citrin, and lysinuric protein intolerance were also observed. Molecular genetic analysis revealed two common ASS1 mutations: c.470G > A (p.Arg157His) and c.1168G > A (p.Gly390Arg) (36 of 55 tested patients). In addition, few recurrent point mutations in ASL gene, and a deletion of the whole OTC gene were also noted. A total of 24 novel mutations were observed in the various genes studied. We observed a poor clinical outcome with an overall all time mortality of 63% (70/110 cases with a known follow-up), and disability in 70% (28/40) among the survivors. Prenatal diagnosis was performed in 30 pregnancies in 25 families, including one pre-implantation genetic diagnosis. Conclusions We report the occurrence of UCDs in India and the spectrum that may be different from the rest of the world. Citrullinemia type 1 was the most common UCD observed in the cohort. Increasing awareness amongst clinicians will improve outcomes through early diagnosis and timely treatment. Genetic diagnosis in the proband will enable prenatal/pre-implantation diagnosis in subsequent pregnancies. Electronic supplementary material The online version of this article (10.1186/s13023-018-0908-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sunita Bijarnia-Mahay
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi, India.
| | - Johannes Häberle
- University Children's Hospital Zurich and Children's Research Centre, Steinwiesstr 75, CH-8032, Zurich, Switzerland
| | - Anil B Jalan
- Navi Mumbai Institute of Research In Mental And Neurological Handicap (NIRMAN), Navi Mumbai, India
| | - Ratna Dua Puri
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi, India
| | - Sudha Kohli
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi, India
| | - Ketki Kudalkar
- Navi Mumbai Institute of Research In Mental And Neurological Handicap (NIRMAN), Navi Mumbai, India
| | - Véronique Rüfenacht
- University Children's Hospital Zurich and Children's Research Centre, Steinwiesstr 75, CH-8032, Zurich, Switzerland
| | - Deepti Gupta
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi, India
| | - Deepshikha Maurya
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi, India
| | - Jyotsna Verma
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi, India
| | - Yosuke Shigematsu
- Department of Pediatrics, Faculty of Medical Science, University of Fukui, Fukui, Japan
| | - Seiji Yamaguchi
- Department of Pediatrics, Shimane University Faculty of Medicine, 89-1 En-ya-cho Izumo, Shimane, 693-8501, Japan
| | - Renu Saxena
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi, India
| | - Ishwar C Verma
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi, India
| |
Collapse
|
14
|
Hirayama S, Nagasaka H, Honda A, Komatsu H, Kodama T, Inui A, Morioka I, Kaji S, Ueno T, Ihara K, Yagi M, Kizaki Z, Bessho K, Kondou H, Yorifuji T, Tsukahara H, Iijima K, Miida T. Cholesterol Metabolism Is Enhanced in the Liver and Brain of Children With Citrin Deficiency. J Clin Endocrinol Metab 2018; 103:2488-2497. [PMID: 29659898 DOI: 10.1210/jc.2017-02664] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 04/02/2018] [Indexed: 02/07/2023]
Abstract
CONTEXT Citrin-deficient infants present neonatal intrahepatic cholestasis caused by citrin deficiency (NICCD), which resolves at 12 months. Thereafter, they have normal liver function associated with hypercholesterolemia, and a preference for lipid-rich carbohydrate-restricted diets. However, some develop adult-onset type II citrullinemia, which is associated with metabolic abnormalities. OBJECTIVES To identify the causes of hypercholesterolemia in citrin-deficient children post-NICCD. DESIGN AND SETTING We determined the concentrations of sterol markers of cholesterol synthesis, absorption, and catabolism by liquid chromatography-electrospray ionization-tandem mass spectrometry and evaluated serum lipoprotein profiles. SUBJECTS Twenty citrin-deficient children aged 5 to 13 years and 37 age-matched healthy children. INTERVENTION None. MAIN OUTCOME MEASURES Relationship between serum lipoproteins and sterol markers of cholesterol metabolism. RESULTS The citrin-deficient group had a significantly higher high-density lipoprotein cholesterol (HDL-C) concentration than did the control group (78 ± 11 mg/dL vs 62 ± 14 mg/dL, P < 0.001), whereas the two groups had similar low-density lipoprotein cholesterol and triglyceride concentrations. The concentrations of markers of cholesterol synthesis (lathosterol and 7-dehydrocholesterol) and bile acids synthesis (7α-hydroxycholesterol and 27-hydroxycholesterol) were 1.5- to 2.8-fold and 1.5- to 3.9-fold, respectively, higher in the citrin-deficient group than in the control group. The concentration of 24S-hydroxycholesterol, a marker of cholesterol catabolism in the brain, was 2.5-fold higher in the citrin-deficient group. In both groups, the HDL-C concentration was significantly positively correlated with that of 27-hydroxycholesterol, the first product of the alternative bile acid synthesis pathway. CONCLUSIONS HDL-C and sterol marker concentrations are elevated in citrin-deficient children post-NICCD. Moreover, cholesterol synthesis and elimination are markedly enhanced in the liver and brain of citrin-deficient children.
Collapse
Affiliation(s)
- Satoshi Hirayama
- Department of Clinical Laboratory Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | - Hironori Nagasaka
- Department of Pediatrics, Takarazuka City Hospital, Takarazuka, Japan
| | - Akira Honda
- Joint Research Center and Division of Gastroenterology, Tokyo Medical University Ibaraki Medical Center, Ibaraki, Japan
| | - Haruki Komatsu
- Department of Pediatrics, Toho University Sakura Medical Center, Sakura, Japan
| | - Takahiro Kodama
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Ayano Inui
- Department of Pediatric Hepatology and Gastroenterology, Saiseikai Yokohamashi Tobu Hospital, Yokohama, Japan
| | - Ichiro Morioka
- Department of Pediatrics and Child Health, Nihon University School of Medicine, Tokyo, Japan
| | - Shunsaku Kaji
- Department of Pediatrics, Tsuyama-Chuo Hospital, Okayama, Japan
| | - Tsuyoshi Ueno
- Department of Clinical Laboratory Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | - Kenji Ihara
- Department of Pediatrics, Kyushu University Graduate School of Medical Science, Fukuoka, Japan
- Department of Pediatrics, Oita University, Faculty of Medicine, Yufu, Japan
| | - Mariko Yagi
- Department of Pediatrics, Nikoniko House Medical & Welfare Center, Kobe, Japan
| | - Zenro Kizaki
- Department of Pediatrics, Japanese Red Cross Kyoto Daiichi Hospital, Kyoto, Japan
| | - Kazuhiko Bessho
- Department of Pediatrics, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hiroki Kondou
- Department of Pediatrics, Kindai University Nara Hospital, Nara, Japan
| | - Tohru Yorifuji
- Division of Pediatric Endocrinology and Metabolism, Children's Medical Center, Osaka City General Hospital, Osaka, Japan
| | - Hirokazu Tsukahara
- Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kazumoto Iijima
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takashi Miida
- Department of Clinical Laboratory Medicine, Juntendo University School of Medicine, Tokyo, Japan
- Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
15
|
Wasim M, Awan FR, Khan HN, Tawab A, Iqbal M, Ayesha H. Aminoacidopathies: Prevalence, Etiology, Screening, and Treatment Options. Biochem Genet 2017; 56:7-21. [PMID: 29094226 DOI: 10.1007/s10528-017-9825-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 09/18/2017] [Indexed: 12/26/2022]
Abstract
Inborn errors of metabolism (IEMs) are a group of inherited metabolic disorders which are caused by mutations in the specific genes that lead to impaired proteins or enzymes production. Different metabolic pathways are perturbed due to the deficiency or lack of enzymes. To date, more than 500 IEMs have been reported with most of them being untreatable. However, fortunately 91 such disorders are potentially treatable, if diagnosed at an earlier stage of life. IEMs have been classified into different categories and one class of IEMs, characterized by the physiological disturbances of amino acids is called as aminoacidopathies. Out of 91 treatable IEM, thirteen disorders are amino acid related. Aminoacidopathies can be detected by chromatography and mass spectrometry based analytical techniques (e.g., HPLC, GC-MS, LC-MS/MS) for amino acid level changes, and through genetic assays (e.g., PCR, TaqMan Genotyping, DNA sequencing) at the mutation level in the corresponding genes. Hence, this review is focused to describe thirteen common aminoacidopathies namely: Phenylketonuria (PKU), Maple Syrup Urine Disease (MSUD), Homocystinuria/Methylene Tetrahydrofolate Reductase (MTHFR) deficiency, Tyrosinemia type II, Citrullinemia type I and type II, Argininosuccinic aciduria, Carbamoyl Phosphate Synthetase I (CPS) deficiency, Argininemia (arginase deficiency), Hyperornithinemia-Hyperammonemia-Homocitrullinuria (HHH) syndrome, N-Acetylglutamate Synthase (NAGS) deficiency, Ornithine Transcarbamylase (OTC) deficiency, and Pyruvate Dehydrogenase (PDH) complex deficiency. Furthermore, the etiology, prevalence and commonly used analytical techniques for screening of aminoacidopathies are briefly described. This information would be helpful to researchers and clinicians especially from developing countries to initiate newborn screening programs for aminoacidopathies.
Collapse
Affiliation(s)
- Muhammad Wasim
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE) / [Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad], Jhang Road, P.O. Box. 577, Faisalabad, 38000, Pakistan
| | - Fazli Rabbi Awan
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE) / [Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad], Jhang Road, P.O. Box. 577, Faisalabad, 38000, Pakistan.
| | - Haq Nawaz Khan
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE) / [Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad], Jhang Road, P.O. Box. 577, Faisalabad, 38000, Pakistan
| | - Abdul Tawab
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE) / [Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad], Jhang Road, P.O. Box. 577, Faisalabad, 38000, Pakistan
| | - Mazhar Iqbal
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE) / [Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad], Jhang Road, P.O. Box. 577, Faisalabad, 38000, Pakistan
| | - Hina Ayesha
- DHQ Hospital, Faisalabad Medical University, Faisalabad, Pakistan
| |
Collapse
|
16
|
Chen L, Zhao B, Shang H. Teaching Neuro Images: Reversible brain MRI lesions in adult-onset type II citrullinemia. Neurology 2017; 89:e115. [DOI: 10.1212/wnl.0000000000004298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
17
|
Herrera Sanchez MB, Previdi S, Bruno S, Fonsato V, Deregibus MC, Kholia S, Petrillo S, Tolosano E, Critelli R, Spada M, Romagnoli R, Salizzoni M, Tetta C, Camussi G. Extracellular vesicles from human liver stem cells restore argininosuccinate synthase deficiency. Stem Cell Res Ther 2017; 8:176. [PMID: 28750687 PMCID: PMC5531104 DOI: 10.1186/s13287-017-0628-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 06/16/2017] [Accepted: 07/10/2017] [Indexed: 11/25/2022] Open
Abstract
Background Argininosuccinate synthase (ASS)1 is a urea cycle enzyme that catalyzes the conversion of citrulline and aspartate to argininosuccinate. Mutations in the ASS1 gene cause citrullinemia type I, a rare autosomal recessive disorder characterized by neonatal hyperammonemia, elevated citrulline levels, and early neonatal death. Treatment for this disease is currently restricted to liver transplantation; however, due to limited organ availability, substitute therapies are required. Recently, extracellular vesicles (EVs) have been reported to act as intercellular transporters carrying genetic information responsible for cell reprogramming. In previous studies, we isolated a population of stem cell-like cells known as human liver stem cells (HLSCs) from healthy liver tissue. Moreover, EVs derived from HLSCs were reported to exhibit regenerative effects on the liver parenchyma in models of acute liver injury. The aim of this study was to evaluate whether EVs derived from normal HLSCs restored ASS1 enzymatic activity and urea production in hepatocytes differentiated from HLSCs derived from a patient with type I citrullinemia. Methods HLSCs were isolated from the liver of a patient with type I citrullinemia (ASS1-HLSCs) and characterized by fluorescence-activated cell sorting (FACS), immunofluorescence, and DNA sequencing analysis. Furthermore, their differentiation capabilities in vitro were also assessed. Hepatocytes differentiated from ASS1-HLSCs were evaluated by the production of urea and ASS enzymatic activity. EVs derived from normal HLSCs were purified by differential ultracentrifugation followed by floating density gradient. The EV content was analyzed to identify the presence of ASS1 protein, mRNA, and ASS1 gene. In order to obtain ASS1-depleted EVs, a knockdown of the ASS1 gene in HLSCs was performed followed by EV isolation from these cells. Results Treating ASS1-HLSCs with EVs from HLSCs restored both ASS1 activity and urea production mainly through the transfer of ASS1 enzyme and mRNA. In fact, EVs from ASS1-knockdown HLSCs contained low amounts of ASS1 mRNA and protein, and were unable to restore urea production in hepatocytes differentiated from ASS1-HLSCs. Conclusions Collectively, these results suggest that EVs derived from normal HLSCs may compensate the loss of ASS1 enzyme activity in hepatocytes differentiated from ASS1-HLSCs. Electronic supplementary material The online version of this article (doi:10.1186/s13287-017-0628-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Maria Beatriz Herrera Sanchez
- 2i3T, Società per la gestione dell'incubatore di imprese e per il trasferimento tecnologico, Scarl University of Torino, Torino, Italy.,Molecular Biotechnology Center, University of Torino, Torino, Italy
| | | | - Stefania Bruno
- Department of Molecular Biotechnology and Health Science, University of Torino, Torino, Italy
| | - Valentina Fonsato
- 2i3T, Società per la gestione dell'incubatore di imprese e per il trasferimento tecnologico, Scarl University of Torino, Torino, Italy.,Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Maria Chiara Deregibus
- 2i3T, Società per la gestione dell'incubatore di imprese e per il trasferimento tecnologico, Scarl University of Torino, Torino, Italy.,Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Sharad Kholia
- Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Sara Petrillo
- Department of Molecular Biotechnology and Health Science, University of Torino, Torino, Italy
| | - Emanuela Tolosano
- Department of Molecular Biotechnology and Health Science, University of Torino, Torino, Italy
| | - Rossana Critelli
- Molecular and Genetic Epidemiology Unit, Human Genetics Foundation, Torino, Italy
| | - Marco Spada
- Department of Pediatrics, Regina Margherita Children's Hospital, University of Torino, Torino, Italy
| | - Renato Romagnoli
- Liver Transplantation Center, University of Torino, Torino, Italy
| | - Mauro Salizzoni
- Liver Transplantation Center, University of Torino, Torino, Italy
| | | | - Giovanni Camussi
- Department of Medical Sciences, University of Torino, Corso Dogliotti 14, I-10126, Torino, Italy.
| |
Collapse
|
18
|
PRMT7 Interacts with ASS1 and Citrullinemia Mutations Disrupt the Interaction. J Mol Biol 2017; 429:2278-2289. [DOI: 10.1016/j.jmb.2017.05.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Revised: 05/25/2017] [Accepted: 05/31/2017] [Indexed: 11/23/2022]
|
19
|
Abstract
The study of rare variants may enhance our understanding of the genetic determinants of the metabolome. Here, we analyze the association between 217 plasma metabolites and exome variants on the Illumina HumanExome Beadchip in 2,076 participants in the Framingham Heart Study, with replication in 1,528 participants of the Atherosclerosis Risk in Communities Study. We identify an association between GMPS and xanthosine using single variant analysis and associations between HAL and histidine, PAH and phenylalanine, and UPB1 and ureidopropionate using gene-based tests (P<5 × 10−8 in meta-analysis), highlighting novel coding variants that may underlie inborn errors of metabolism. Further, we show how an examination of variants across the spectrum of allele frequency highlights independent association signals at select loci and generates a more integrated view of metabolite heritability. These studies build on prior metabolomics genome wide association studies to provide a more complete picture of the genetic architecture of the plasma metabolome. Several GWAS have identified many common variants associated with blood metabolites. Here, the authors use an exome array to identify low frequency, potentially functional variants that impact human metabolism.
Collapse
|
20
|
Structure and mechanism of a bacterial host-protein citrullinating virulence factor, Porphyromonas gingivalis peptidylarginine deiminase. Sci Rep 2015; 5:11969. [PMID: 26132828 PMCID: PMC4487231 DOI: 10.1038/srep11969] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 06/12/2015] [Indexed: 01/08/2023] Open
Abstract
Citrullination is a post-translational modification of higher organisms that deiminates arginines in proteins and peptides. It occurs in physiological processes but also pathologies such as multiple sclerosis, fibrosis, Alzheimer’s disease and rheumatoid arthritis (RA). The reaction is catalyzed by peptidylarginine deiminases (PADs), which are found in vertebrates but not in lower organisms. RA has been epidemiologically associated with periodontal disease, whose main infective agent is Porphyromonas gingivalis. Uniquely among microbes, P. gingivalis secretes a PAD, termed PPAD (Porphyromonas peptidylarginine deiminase), which is genetically unrelated to eukaryotic PADs. Here, we studied function of PPAD and its substrate-free, substrate-complex, and substrate-mimic-complex structures. It comprises a flat cylindrical catalytic domain with five-fold α/β-propeller architecture and a C-terminal immunoglobulin-like domain. The PPAD active site is a funnel located on one of the cylinder bases. It accommodates arginines from peptide substrates after major rearrangement of a “Michaelis loop” that closes the cleft. The guanidinium and carboxylate groups of substrates are tightly bound, which explains activity of PPAD against arginines at C-termini but not within peptides. Catalysis is based on a cysteine-histidine-asparagine triad, which is shared with human PAD1-PAD4 and other guanidino-group modifying enzymes. We provide a working mechanism hypothesis based on 18 structure-derived point mutants.
Collapse
|
21
|
Calcium-induced conformational changes of the regulatory domain of human mitochondrial aspartate/glutamate carriers. Nat Commun 2014; 5:5491. [PMID: 25410934 PMCID: PMC4250520 DOI: 10.1038/ncomms6491] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 10/06/2014] [Indexed: 12/27/2022] Open
Abstract
The transport activity of human mitochondrial aspartate/glutamate carriers is central to the malate-aspartate shuttle, urea cycle, gluconeogenesis and myelin synthesis. They have a unique three-domain structure, comprising a calcium-regulated N-terminal domain with eight EF-hands, a mitochondrial carrier domain, and a C-terminal domain. Here we present the calcium-bound and calcium-free structures of the N- and C-terminal domains, elucidating the mechanism of calcium regulation. Unexpectedly, EF-hands 4-8 are involved in dimerization of the carrier and form a static unit, whereas EF-hands 1-3 form a calcium-responsive mobile unit. On calcium binding, an amphipathic helix of the C-terminal domain binds to the N-terminal domain, opening a vestibule. In the absence of calcium, the mobile unit closes the vestibule. Opening and closing of the vestibule might regulate access of substrates to the carrier domain, which is involved in their transport. These structures provide a framework for understanding cases of the mitochondrial disease citrin deficiency.
Collapse
|
22
|
Zeng HS, Zhao ST, Deng M, Zhang ZH, Cai XR, Chen FP, Song YZ. Inspissated bile syndrome in an infant with citrin deficiency and congenital anomalies of the biliary tract and esophagus: identification and pathogenicity analysis of a novel SLC25A13 mutation with incomplete penetrance. Int J Mol Med 2014; 34:1241-8. [PMID: 25216257 PMCID: PMC4199400 DOI: 10.3892/ijmm.2014.1929] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 09/05/2014] [Indexed: 01/14/2023] Open
Abstract
Biallelic mutations of the SLC25A13 gene result in citrin deficiency (CD) in humans. Neonatal intrahepatic cholestasis caused by citrin deficiency (NICCD) is the major CD phenotype in pediatrics; however, knowledge on its genotypic and phenotypic characteristics remains limited. The present study aimed to explore novel molecular and clinical characteristics of CD. An infant suspected to have NICCD as well as her parents were enrolled as the research subjects. SLC25A13 mutations were investigated using various methods, including cDNA cloning and sequencing. The pathogenicity of a novel mutation was analyzed bioinformatically and functionally with a yeast model. Both the infant and her father were heterozygous for c.2T>C and c.790G>A, while the mother was only a c.2T>C carrier. The novel c.790G>A mutation proved bioinformatically and functionally pathogenic. The infant had esophageal atresia and an accessory hepatic duct, along with bile plug formation confirmed by laparoscopic surgery. However, the father seemed to be healthy thus far. The findings of the present study enrich the genotypic and phenotypic characteristics of CD patients, and provided clinical and molecular evidence suggesting the possible non-penetrance of SLC25A13 mutations and the likely involvement of this gene in primitive foregut development during early embryonic life.
Collapse
Affiliation(s)
- Han-Shi Zeng
- Department of Pediatrics, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510630, P.R. China
| | - Shu-Tao Zhao
- Department of Pediatrics, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510630, P.R. China
| | - Mei Deng
- Department of Pediatrics, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510630, P.R. China
| | - Zhan-Hui Zhang
- Central Laboratory, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510630, P.R. China
| | - Xiang-Ran Cai
- Medical Imaging Center, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510630, P.R. China
| | - Feng-Ping Chen
- Department of Laboratory Science, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510630, P.R. China
| | - Yuan-Zong Song
- Department of Pediatrics, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510630, P.R. China
| |
Collapse
|