1
|
Wang X, Lu L, Peng H, Li T, Long Q, Guan L, Xia X, Li X, Wang M. A rapid and validated GC-MS/MS method for simultaneous quantification of serum Myo- and D-chiro-inositol isomers. J Chromatogr A 2024; 1732:465246. [PMID: 39128239 DOI: 10.1016/j.chroma.2024.465246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/03/2024] [Accepted: 08/06/2024] [Indexed: 08/13/2024]
Abstract
BACKGROUND Myo-inositol (MI) and D-chiro-inositol (DCI) are two paramount isomers of inositol, both vital in glucose and steroid metabolism. Deficits in MI, DCI or MI/DCI ratio are expressly concerned with several pathological process, whereas MI and DCI lack practical measurement for human specimen. METHODS To quantify MI and DCI in serum samples simultaneously, a gas chromatography tandem mass spectrometry (GC-MS/MS) method was established. The process flow was optimized in ion source, derivative agent volume and reaction time. The performance characteristics were verified by commercial standards and clinical serums. RESULTS This method was confirmed to be sensitive (LOD ≤ 30 ng/mL of MI, ≤3 ng/mL of DCI) and reproducible (RSD < 6 % for repeated analyses). Quantitative determinations performed good linearity within the measurement range of 0.500-10.00 and 0.005-0.500 μg/mL for MI and DCI respectively (R2 > 0.999). The recoveries of MI and DCI were 97.11-99.35 % and 107.82-113.09 %, respectively. This method was successfully applied to 114 clinical specimens. No significant matrix effect was observed in serum samples under current conditions.
Collapse
Affiliation(s)
- Xiaofan Wang
- Department of Laboratory Medicine, the Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Department of Clinical Laboratory, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang Province, 318000, China
| | - Lan Lu
- Physical and chemical laboratory of Hunan Provincial Center for Disease Control and Prevention, Changsha, Hunan 410005, China
| | - Huanqie Peng
- Department of Laboratory Medicine, the Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Tanyao Li
- Physical and chemical laboratory of Hunan Provincial Center for Disease Control and Prevention, Changsha, Hunan 410005, China
| | - Qichen Long
- Department of Laboratory Medicine, the Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Lihua Guan
- Department of Laboratory Medicine, the Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Xiaomeng Xia
- Department of Obstetrics and Gynecology, the Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Xianping Li
- Department of Laboratory Medicine, the Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Min Wang
- Department of Laboratory Medicine, the Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China.
| |
Collapse
|
2
|
Liu X, Koyama T. D-Pinitol Improved Glucose Metabolism and Inhibited Bone Loss in Mice with Diabetic Osteoporosis. Molecules 2023; 28:molecules28093870. [PMID: 37175278 PMCID: PMC10180393 DOI: 10.3390/molecules28093870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/30/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023] Open
Abstract
Diabetic osteoporosis (DO) has been increasingly recognized as an important complication of diabetes. D-pinitol, a natural compound found in various legumes, is known for its anti-diabetic function, but its effect on DO has not been investigated. Two doses of pinitol (50 and 100 mg/kg Bw/d) were administered orally to experimentally induce the DO mouse model for 5 weeks. The results indicated that pinitol suppressed fasting blood glucose levels and tended to enhance impaired pancreatic function. Pinitol also suppressed serum bone turnover biomarkers, and improved dry femur weight, cancellous bone rate, and bone mineral content in the DO mice. Based on the inositol quantification using GC-MS in serum, liver, kidney, and bone marrow, the pinitol treatment significantly recovered the depleted D-chiro-inositol (DCI) content or the decreased the ratio of DCI to myo-inositol caused by DO. In short, our results suggested that pinitol improved glucose metabolism and inhibited bone loss in DO mice via elevating the DCI levels in tissues.
Collapse
Affiliation(s)
- Xinxin Liu
- Department of Marine Bioscience, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato City, Tokyo 1080075, Japan
| | - Tomoyuki Koyama
- Department of Marine Bioscience, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato City, Tokyo 1080075, Japan
| |
Collapse
|
3
|
Liu X, He C, Koyama T. D-Pinitol Ameliorated Osteoporosis via Elevating D-chiro-Inositol Level in Ovariectomized Mice. J Nutr Sci Vitaminol (Tokyo) 2023; 69:220-228. [PMID: 37394427 DOI: 10.3177/jnsv.69.220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
A natural sugar alcohol, D-pinitol, has been reported to be a potential compound for osteoporosis treatment via inhibiting osteoclastgenesis. However, research on the effects of pinitol on osteoporosis in vivo is still limited. The present study investigated the protective effects of pinitol on ovariectomized mice and attempted to elucidate this mechanism in vivo. Four-week-old female ovariectomized ICR mice were employed as a postmenopausal osteoporosis model and treated with pinitol or estradiol (E2) for 7 wk. Thereafter, serum calcium content, phosphorus content, tartrate-resistant acid phosphatase (TRAcP) and bone-specific alkaline phosphatase activity (BALP) were measured. Bilateral femurs were isolated, and bone marrow protein was collected through centrifuge. Dry femurs were weighed, while femur length, cellular bones, and bone mineral content were measured. D-chiro-Inositol (DCI) and myo-inositol (MI) content in serum and bone marrow was measured by GC-MS. At the end of experiment, the serum BALP and TRAcP activities of the OVX mice were suppressed significantly by treatment with either pinitol or E2. Femur weight, cellular bone rate, Ca and P content were improved by pinitol or E2. The DCI content of the serum of OVX decreased significantly, although it recovered to some extent after pinitol treatment. Pinitol significantly increased the ratio of DCI to MI in serum or bone marrow protein in the observed OVX mice. Besides, pinitol had no significant effects on osteoblast viability and differentiation. The present results showed that continuous pinitol intake exerts potent anti-osteoporosis activity via elevating DCI content in serum and bone marrow in OVX mice.
Collapse
Affiliation(s)
- Xinxin Liu
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology
| | - Chuan He
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology
| | - Tomoyuki Koyama
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology
| |
Collapse
|
4
|
Neural tube defects: role of lithium carbonate exposure in embryonic neural development in a murine model. Pediatr Res 2021; 90:82-92. [PMID: 33173184 DOI: 10.1038/s41390-020-01244-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/30/2020] [Accepted: 10/18/2020] [Indexed: 01/27/2023]
Abstract
BACKGROUND Lithium carbonate (Li2CO3) is widely used in the treatment of clinical-affective psychosis. Exposure to Li2CO3 during pregnancy increases the risk of neural tube defects (NTDs) in offspring, which are severe birth defects of the central nervous system. The mechanism of Li2CO3-induced NTDs remains unclear. METHODS C57BL/6 mice were injected with different doses of Li2CO3 intraperitoneally on gestational day 7.5 (GD7.5), and embryos collected at GD11.5 and GD13.5. The mechanisms of Li2CO3 exposure-induced NTDs were determined utilizing immunohistochemistry, western blotting, EdU imaging, enzymatic method, gas chromatography-mass spectrometry (GC-MS), ELISA and HE staining. RESULTS The NTDs incidence was 33.7% following Li2CO3 exposure. Neuroepithelial cell proliferation and phosphohistone H3 level were significantly increased in NTDs embryos, compared with control group (P < 0.01), while the expressing levels of p53 and caspase-3 were significantly decreased. IMPase and GSK-3β activity was inhibited in Li2CO3-treated maternal and embryonic neural tissues (P < 0.01 and P < 0.05, respectively), along with decreased levels of inositol and metabolites, compared with control groups (P < 0.01). CONCLUSIONS Lithium-induced NTDs model in C57BL/6 mice was established. Enhanced cell proliferation and decreased apoptosis following lithium exposure were closely associated with the impairment of inositol biosynthesis, which may contribute to lithium-induced NTDs. IMPACT Impairment of inositol biosynthesis has an important role in lithium exposure-induced NTDs in mice model. Lithium-induced NTDs model on C57BL/6 mice was established. Based on this NTDs model, lithium-induced impairment of inositol biosynthesis resulted in the imbalance between cell proliferation and apoptosis, which may contribute to lithium-induced NTDs. Providing evidence to further understand the molecular mechanisms of lithium-induced NTDs and enhancing its primary prevention.
Collapse
|
5
|
Yue H, Li S, Qin J, Gao T, Lyu J, Liu Y, Wang X, Guan Z, Zhu Z, Niu B, Zhong R, Guo J, Wang J. Down-Regulation of Inpp5e Associated With Abnormal Ciliogenesis During Embryonic Neurodevelopment Under Inositol Deficiency. Front Neurol 2021; 12:579998. [PMID: 34093381 PMCID: PMC8170399 DOI: 10.3389/fneur.2021.579998] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 04/20/2021] [Indexed: 12/11/2022] Open
Abstract
The inositol polyphosphate-5-phosphatase E (Inpp5e) gene is located on chromosome 9q34.3. The enzyme it encodes mainly hydrolyzes the 5-phosphate groups of phosphatidylinositol (3,4,5)-trisphosphate (PtdIns (3,4,5) P3) and phosphatidylinositol (4,5)-bisphosphate (PtdIns (4,5)P2), which are closely related to ciliogenesis and embryonic neurodevelopment, through mechanisms that are largely unknown. Here we studied the role of Inpp5e gene in ciliogenesis during embryonic neurodevelopment using inositol-deficiency neural tube defects (NTDs) mouse and cell models. Confocal microscopy and scanning electron microscope were used to examine the number and the length of primary cilia. The dynamic changes of Inpp5e expression in embryonic murine brain tissues were observed during Embryonic Day 10.5-13.5 (E 10.5-13.5). Immunohistochemistry, western blot, polymerase chain reaction (PCR) arrays were applied to detect the expression of Inpp5e and cilia-related genes of the embryonic brain tissues in inositol deficiency NTDs mouse. Real-time quantitative PCR (RT-qPCR) was used to validate the candidate genes in cell models. The levels of inositol and PtdIns(3,4) P2 were measured using gas chromatography-mass spectrometry (GC-MS) and enzyme linked immunosorbent assay (ELISA), respectively. Our results showed that the expression levels of Inpp5e gradually decreased in the forebrain tissues of the control embryos, but no stable trend was observed in the inositol deficiency NTDs embryos. Inpp5e expression in inositol deficiency NTDs embryos was significantly decreased compared with the control tissues. The expression levels of Inpp5e gene and the PtdIns (3,4) P2 levels were also significantly decreased in the inositol deficient cell model. A reduced number and length of primary cilia were observed in NIH3T3 cells when inositol deficient. Three important cilia-related genes (Ift80, Mkks, Smo) were down-regulated significantly in the inositol-deficient NTDs mouse and cell models, and Smo was highly involved in NTDs. In summary, these findings suggested that down-regulation of Inpp5e might be associated with abnormal ciliogenesis during embryonic neurodevelopment, under conditions of inositol deficiency.
Collapse
Affiliation(s)
- Huixuan Yue
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
- Graduate School of Peking Union Medical College, Beijing, China
| | - Shen Li
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
- Graduate School of Peking Union Medical College, Beijing, China
| | - Jiaxing Qin
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| | - Tingting Gao
- Beijing Key Laboratory of Environment and Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China
| | - Jianjun Lyu
- Department of Pathology, InnoStar Bio-Tech Nantong Co., Ltd., Nantong, China
| | - Yu Liu
- Beijing Key Laboratory of Environment and Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China
| | - Xiuwei Wang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| | - Zhen Guan
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| | - Zhiqiang Zhu
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| | - Bo Niu
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| | - Rugang Zhong
- Beijing Key Laboratory of Environment and Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China
| | - Jin Guo
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| | - Jianhua Wang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
- Graduate School of Peking Union Medical College, Beijing, China
| |
Collapse
|
6
|
Guimarãesa VHD, Basilio Silva JN, de Freitas DF, Filho OC, da Silveira LH, Marinho BM, de Paula AMB, Melo GA, Santos SHS. Hydroalcoholic Extract of Solanum lycocarpum A. St. Hil. (Solanaceae) Leaves Improves Alloxan-Induced Diabetes Complications in Mice. Protein Pept Lett 2021; 28:769-780. [PMID: 33511923 DOI: 10.2174/0929866528999210128205817] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/07/2020] [Accepted: 01/01/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Solanum lycocarpum is a medicinal plant widely-used in Brazil because its fruits have hypoglycemic activity. However, the fruits are restricted in some periods of the year. OBJECTIVE To evaluate the effects of hydroalcoholic extracts of S. lycocarpum leaves in alloxan-induced diabetic mice. METHODS Hydroalcoholic extract of S. lycocarpum was characterized by phytochemical and GC-MS analysis. The Antidiabetic activity was assessed following treatment for 22 days with S. lycocarpum extract at 125, 250, and 500 mg/kg. Bodyweight, water, and food intake, glycemia, biochemical parameters, anatomy-histopathology of the pancreas, liver and kidney, and expression of target genes were analyzed. In addition, oral acute toxicity was evaluated. RESULTS Animals treated showed a significant reduction (p < 0.05) in glycemia following a dose of 125 mg/kg. Food intake remained similar for all groups. Decreased polydipsia symptoms were observed after treatment with 250 (p < 0.001) and 500 mg/kg (p < 0.01) compared with diabetic control, although normal rates were observed when 125 mg/kg was administered. A protective effect was also observed in the pancreas, liver, and kidneys, through the regeneration of the islets. Hypoglycemic activity can be attributed to myo-inositol, which stimulates insulin secretion, associated with α-tocopherol, which prevents damage from oxidative stress and apoptosis of β-pancreatic cells by an increased Catalase (CAT) and Glutathione peroxidase 4 (GPX4) mRNA expression. The toxicological test demonstrated safe oral use of the extract under the present conditions. CONCLUSION Hydroalcoholic extract of S. lycocarpum promotes the regulation of diabetes in the case of moderate glycemic levels, by decreasing glycemia and exerting protective effects on the islets.
Collapse
Affiliation(s)
- Victor Hugo Dantas Guimarãesa
- Laboratory of Health Science, Postgraduate Program in Health Sciences, Universidade Estadual de Montes Claros (Unimontes), Minas Gerais,. Brazil
| | - Jéssica Nayara Basilio Silva
- Laboratory of Biochemical and Genetics of Plants, Postgraduate Program in Biochemistry, Universidade Federal de Viçosa (UFV), Minas Gerais,. Brazil
| | - Daniela Fernanda de Freitas
- Laboratory of Health Science, Postgraduate Program in Health Sciences, Universidade Estadual de Montes Claros (Unimontes), Minas Gerais,. Brazil
| | - Otávio Cardoso Filho
- Laboratory of Health Science, Postgraduate Program in Health Sciences, Universidade Estadual de Montes Claros (Unimontes), Minas Gerais,. Brazil
| | - Luiz Henrique da Silveira
- Laboratory of pathological anatomy and cytopathology - Hospital Universitário Clemente de Faria (HUCF), Minas Gerais,. Brazil
| | - Barbhara Mota Marinho
- Laboratory of Health Science, Postgraduate Program in Health Sciences, Universidade Estadual de Montes Claros (Unimontes), Minas Gerais,. Brazil
| | - Alfredo Maurício Batista de Paula
- Laboratory of Health Science, Postgraduate Program in Health Sciences, Universidade Estadual de Montes Claros (Unimontes), Minas Gerais,. Brazil
| | - Geraldo Aclécio Melo
- Department of Biology, Universidade Estadual de Montes Claros (Unimontes), Minas Gerais,. Brazil
| | - Sérgio Henrique Sousa Santos
- Institute of Agricultural Sciences (ICA), Food Engineering, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais,. Brazil
| |
Collapse
|
7
|
Njoroge MM, Fillinger U, Saddler A, Moore S, Takken W, van Loon JJA, Hiscox A. Evaluating putative repellent 'push' and attractive 'pull' components for manipulating the odour orientation of host-seeking malaria vectors in the peri-domestic space. Parasit Vectors 2021; 14:42. [PMID: 33430963 PMCID: PMC7802213 DOI: 10.1186/s13071-020-04556-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 12/16/2020] [Indexed: 12/17/2022] Open
Abstract
Background Novel malaria vector control approaches aim to combine tools for maximum protection. This study aimed to evaluate novel and re-evaluate existing putative repellent ‘push’ and attractive ‘pull’ components for manipulating the odour orientation of malaria vectors in the peri-domestic space. Methods Anopheles arabiensis outdoor human landing catches and trap comparisons were implemented in large semi-field systems to (i) test the efficacy of Citriodiol® or transfluthrin-treated fabric strips positioned in house eave gaps as push components for preventing bites; (ii) understand the efficacy of MB5-baited Suna-traps in attracting vectors in the presence of a human being; (iii) assess 2-butanone as a CO2 replacement for trapping; (iv) determine the protection provided by a full push-pull set up. The air concentrations of the chemical constituents of the push–pull set-up were quantified. Results Microencapsulated Citriodiol® eave strips did not provide outdoor protection against host-seeking An. arabiensis. Transfluthrin-treated strips reduced the odds of a mosquito landing on the human volunteer (OR 0.17; 95% CI 0.12–0.23). This impact was lower (OR 0.59; 95% CI 0.52–0.66) during the push-pull experiment, which was associated with low nighttime temperatures likely affecting the transfluthrin vaporisation. The MB5-baited Suna trap supplemented with CO2 attracted only a third of the released mosquitoes in the absence of a human being; however, with a human volunteer in the same system, the trap caught < 1% of all released mosquitoes. The volunteer consistently attracted over two-thirds of all mosquitoes released. This was the case in the absence (‘pull’ only) and in the presence of a spatial repellent (‘push-pull’), indicating that in its current configuration the tested ‘pull’ does not provide a valuable addition to a spatial repellent. The chemical 2-butanone was ineffective in replacing CO2. Transfluthrin was detectable in the air space but with a strong linear reduction in concentrations over 5 m from release. The MB5 constituent chemicals were only irregularly detected, potentially suggesting insufficient release and concentration in the air for attraction. Conclusion This step-by-step evaluation of the selected ‘push’ and ‘pull’ components led to a better understanding of their ability to affect host-seeking behaviours of the malaria vector An. arabiensis in the peri-domestic space and helps to gauge the impact such tools would have when used in the field for monitoring or control.![]()
Collapse
Affiliation(s)
- Margaret Mendi Njoroge
- International Centre of Insect Physiology and Ecology (icipe), Human Health Theme, Nairobi, 00100, Kenya.,Laboratory of Entomology, Wageningen University and Research, P.O. Box 16, 6700 AA, Wageningen, The Netherlands
| | - Ulrike Fillinger
- International Centre of Insect Physiology and Ecology (icipe), Human Health Theme, Nairobi, 00100, Kenya.
| | - Adam Saddler
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051 833, Basel, Switzerland.,University of Basel, Petersplatz 1, Basel, Switzerland.,Department of Environmental Health and Ecological Sciences, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania
| | - Sarah Moore
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051 833, Basel, Switzerland.,University of Basel, Petersplatz 1, Basel, Switzerland.,Department of Environmental Health and Ecological Sciences, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania
| | - Willem Takken
- Laboratory of Entomology, Wageningen University and Research, P.O. Box 16, 6700 AA, Wageningen, The Netherlands
| | - Joop J A van Loon
- Laboratory of Entomology, Wageningen University and Research, P.O. Box 16, 6700 AA, Wageningen, The Netherlands
| | - Alexandra Hiscox
- International Centre of Insect Physiology and Ecology (icipe), Human Health Theme, Nairobi, 00100, Kenya.,Laboratory of Entomology, Wageningen University and Research, P.O. Box 16, 6700 AA, Wageningen, The Netherlands.,London School of Hygiene and Tropical Medicine, ARCTEC, Keppel Street, London, WC1E 7HT, UK
| |
Collapse
|
8
|
Wang X, Yue H, Li S, Guo J, Guan Z, Qin J, Zhu Z, Niu B, Cui M, Wang J. The Effects of Inositol Metabolism in Pregnant Women on Offspring in the North and South of China. Med Sci Monit 2020; 26:e921088. [PMID: 32063600 PMCID: PMC7041423 DOI: 10.12659/msm.921088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Background Inositol is an essential nutrient for cell growth, survival and embryonic development. Myo-inositol is the predominant form in natural. To investigate the correlation between inositol metabolism and embryonic development, we assessed the metabolic characteristics of myo-inositol, phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) and phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P3) of pregnant women in the North China (Yangquan and Weihai) and South China (Nanchang and Haikou) China. Material/Methods All data were collected by face-to-face interview during pregnant women health visits using a questionnaire. Plasma levels of myo-inositol, PI(4,5)P2 and PI(3,4,5)P3 from 89 randomly collected pregnant women were detected by gas chromatography-mass spectrometry and enzyme linked immunosorbent assay. Results A total of 400 pregnant women were included in this survey. The plasma levels of myo-inositol and PI(4,5)P2 in the North China group of pregnant women were significantly higher than that in the South China group (P<0.01). The birth weight of fetuses in the North China group was heavier than that in the South China group (P<0.01). The birth length of fetuses in Yangquan was the longest among the 4 cities (P<0.01). The incidence rate of birth defects was 3.05% in the North China group, and 0.0% in the South China group. In bivariate linear correlation analysis, the body weight correlated with myo-inositol (r=0.5044, P<0.0001), PI(4,5)P2 (r=0.5950, P<0.0001) and PI(3,4,5)P3 (r=0.4710, P<0.0001), the body length was correlated with PI(4,5)P2 (r=0.3114, P=0.0035) and PI(3,4,5)P3 (r=0.2638, P<0.0130). Conclusions The plasma levels of myo-inositol and PI(4,5)P2 in pregnant women had significant difference between the North and the South of China, which might be correlated with fetal development and birth defects.
Collapse
Affiliation(s)
- Xiuwei Wang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China (mainland)
| | - Huixuan Yue
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China (mainland).,Graduate School of Peking Union Medical College, Beijing, China (mainland)
| | - Shen Li
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China (mainland).,Graduate School of Peking Union Medical College, Beijing, China (mainland)
| | - Jin Guo
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China (mainland)
| | - Zhen Guan
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China (mainland)
| | - Jiaxing Qin
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China (mainland)
| | - Zhiqiang Zhu
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China (mainland)
| | - Bo Niu
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China (mainland).,Graduate School of Peking Union Medical College, Beijing, China (mainland)
| | - Mingming Cui
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China (mainland)
| | - Jianhua Wang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China (mainland).,Graduate School of Peking Union Medical College, Beijing, China (mainland)
| |
Collapse
|
9
|
Abstract
The coupling of anion exchange high-pressure liquid chromatography (HPLC) with electrospray ionization mass spectrometry (ESI-MS) allows for the simultaneous detection of the six forms of inositol phosphate (InsP). Here we describe a rapid quantitative analysis of InsPs by HPLC-ESI-MS, which can be applied to a wide array of sample types. With this method, InsPs could be separated and detected within 20 min of sample injection. The detection limit was as low as 25 pmol (i.e., ca. 2 nmol/g sample) for each type of InsP, which is particularly important for analytes that are often present at low abundance in nature.
Collapse
|
10
|
Osman MF, Mohd Hassan N, Khatib A, Tolos SM. Antioxidant Activities of Dialium indum L. Fruit and Gas Chromatography-Mass Spectrometry (GC-MS) of the Active Fractions. Antioxidants (Basel) 2018; 7:E154. [PMID: 30388760 PMCID: PMC6262551 DOI: 10.3390/antiox7110154] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 10/25/2018] [Accepted: 10/29/2018] [Indexed: 12/28/2022] Open
Abstract
The fruit of Dialium indum L. (Fabaceae) is one of the edible wild fruits native to Southeast Asia. The mesocarp is consumed as sweets while the exocarp and seed are regarded as waste. This study aimed to evaluate the antioxidant activities of the fruit by using four assays, which measure its capabilities in reducing phosphomolybdic-phosphotungstic acid reagents, neocuproine, 2,2-diphenyl-picrylhydrazyl (DPPH), and inhibiting linoleic acid peroxidation. The active fractions were then analyzed by gas chromatography-mass spectrometry (GC-MS). The results showed that the seed methanol fraction (SMF) exhibited the strongest antioxidant activity with significantly higher (p < 0.05) gallic acid equivalence (GAE), total antioxidant capacity (TAC), and DPPH radical scavenging activity (IC50 31.71; 0.88 µg/mL) than the other fractions. The exocarp dichloromethane fraction (EDF) was the discriminating fraction by having remarkable linoleic acid peroxidation inhibition (IC50 121.43; 2.97 µg/mL). A total of thirty-eight metabolites were detected in derivatized EDF and SMF with distinctive classes of phenolics and amino acids, respectively. Bioautography-guided fractionation of EDF afforded five antioxidant-enriched subfractions with four other detected phenolics. The results revealed the antioxidant properties of D. indum fruit, which has potential benefits in pharmaceutical, nutraceutical, and cosmeceutical applications.
Collapse
Affiliation(s)
- Muhamad Faris Osman
- Department of Pharmaceutical Chemistry , Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Pahang, Malaysia.
| | - Norazian Mohd Hassan
- Department of Pharmaceutical Chemistry , Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Pahang, Malaysia.
| | - Alfi Khatib
- Department of Pharmaceutical Chemistry , Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Pahang, Malaysia.
| | - Siti Marponga Tolos
- Department of Computational and Theoretical Sciences, Kulliyyah of Science, International Islamic University Malaysia, Kuantan 25200, Pahang, Malaysia.
| |
Collapse
|
11
|
Abstract
This review describes the mechanistic, animal, and clinical data related to the use of inositols in midlife. It covers studies related to the mechanism of action of myo-inositol and D-chiro-inositol and randomized controlled trials conducted in postmenopausal women with metabolic syndrome and supports these data with the results of in vitro and animal studies on inositol in nephropathy and other related conditions. Recent advances related to biochemistry, pharmaceutical science, and genetics are discussed. It concludes that inositols have a potential role to play in maintaining metabolic health in postmenopausal women.
Collapse
Affiliation(s)
- Sanjay Kalra
- Department of Endocrinology, Bharti Hospital, Karnal, Haryana, India
| | - Bharti Kalra
- Department of Obstetrics, Bharti Hospital, Karnal, Haryana, India
| |
Collapse
|
12
|
Guo J, Shi Y, Xu C, Zhong R, Zhang F, Niu B, Wang J, Zhang T. Data on the optimization of a GC-MS procedure for the determination of total plasma myo-inositol. Data Brief 2016; 8:1040-3. [PMID: 27508261 PMCID: PMC4969248 DOI: 10.1016/j.dib.2016.07.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 07/07/2016] [Accepted: 07/13/2016] [Indexed: 11/18/2022] Open
Abstract
Myo-inositol (MI) is one of the stereoisomers of hexahydroxycyclohexane, which plays an important role in intracellular signal pathway. Derivatization is an indispensable step in both external and internal standard method during the chromatography-mass spectrometer (GC-MS) detection, as MI can't be ionized directly. It is valuable to optimize the derivative process and the detection volume for clinical detection. This article contains optimization data related to research publication "Quantification of plasma myo-inositol using gas chromatography-mass spectrometry" [1]. Here we introduce the data on the optimized derivatization volume, temperature, duration and the detection volume.
Collapse
Affiliation(s)
- Jin Guo
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing 100020, China
| | - Yingfei Shi
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing 100020, China
- Beijing Key Laboratory of Environmental & Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China
| | - Chengbao Xu
- Chinese Academy of Inspection & Quarantine, Beijing 100023, China
| | - Rugang Zhong
- Beijing Key Laboratory of Environmental & Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China
| | - Feng Zhang
- Chinese Academy of Inspection & Quarantine, Beijing 100023, China
| | - Bo Niu
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing 100020, China
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan 030001, China
| | - Jianhua Wang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing 100020, China
- Corresponding authors at: Capital Institute of Pediatrics, Beijing 100020, China. Fax: +86 010 85631504.Capital Institute of PediatricsBeijing100020China
| | - Ting Zhang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing 100020, China
- Corresponding authors at: Capital Institute of Pediatrics, Beijing 100020, China. Fax: +86 010 85631504.Capital Institute of PediatricsBeijing100020China
| |
Collapse
|