1
|
Raynor A, Haouari W, Lebredonchel E, Foulquier F, Fenaille F, Bruneel A. Biochemical diagnosis of congenital disorders of glycosylation. Adv Clin Chem 2024; 120:1-43. [PMID: 38762238 DOI: 10.1016/bs.acc.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2024]
Abstract
Congenital disorders of glycosylation (CDG) are one of the fastest growing groups of inborn errors of metabolism, comprising over 160 described diseases to this day. CDG are characterized by a dysfunctional glycosylation process, with molecular defects localized in the cytosol, the endoplasmic reticulum, or the Golgi apparatus. Depending on the CDG, N-glycosylation, O-glycosylation and/or glycosaminoglycan synthesis can be affected. Various proteins, lipids, and glycosylphosphatidylinositol anchors bear glycan chains, with potential impacts on their folding, targeting, secretion, stability, and thus, functionality. Therefore, glycosylation defects can have diverse and serious clinical consequences. CDG patients often present with a non-specific, multisystemic syndrome including neurological involvement, growth delay, hepatopathy and coagulopathy. As CDG are rare diseases, and typically lack distinctive clinical signs, biochemical and genetic testing bear particularly important and complementary diagnostic roles. Here, after a brief introduction on glycosylation and CDG, we review historical and recent findings on CDG biomarkers and associated analytical techniques, with a particular emphasis on those with relevant use in the specialized clinical chemistry laboratory. We provide the reader with insights and methods which may help them properly assist the clinician in navigating the maze of glycosylation disorders.
Collapse
Affiliation(s)
- Alexandre Raynor
- AP-HP, Biochimie Métabolique et Cellulaire, Hôpital Bichat, Paris, France
| | - Walid Haouari
- INSERM UMR1193, Faculté de Pharmacie, Université Paris-Saclay, Orsay, France
| | | | - François Foulquier
- Université de Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - François Fenaille
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé, MetaboHUB, Gif sur Yvette, France.
| | - Arnaud Bruneel
- AP-HP, Biochimie Métabolique et Cellulaire, Hôpital Bichat, Paris, France; INSERM UMR1193, Faculté de Pharmacie, Université Paris-Saclay, Orsay, France.
| |
Collapse
|
2
|
Garapati K, Budhraja R, Saraswat M, Kim J, Joshi N, Sachdeva GS, Jain A, Ligezka AN, Radenkovic S, Ramarajan MG, Udainiya S, Raymond K, He M, Lam C, Larson A, Edmondson AC, Sarafoglou K, Larson NB, Freeze HH, Schultz MJ, Kozicz T, Morava E, Pandey A. A complement C4-derived glycopeptide is a biomarker for PMM2-CDG. JCI Insight 2024; 9:e172509. [PMID: 38587076 PMCID: PMC7615924 DOI: 10.1172/jci.insight.172509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 02/15/2024] [Indexed: 04/09/2024] Open
Abstract
BACKGROUNDDiagnosis of PMM2-CDG, the most common congenital disorder of glycosylation (CDG), relies on measuring carbohydrate-deficient transferrin (CDT) and genetic testing. CDT tests have false negatives and may normalize with age. Site-specific changes in protein N-glycosylation have not been reported in sera in PMM2-CDG.METHODSUsing multistep mass spectrometry-based N-glycoproteomics, we analyzed sera from 72 individuals to discover and validate glycopeptide alterations. We performed comprehensive tandem mass tag-based discovery experiments in well-characterized patients and controls. Next, we developed a method for rapid profiling of additional samples. Finally, targeted mass spectrometry was used for validation in an independent set of samples in a blinded fashion.RESULTSOf the 3,342 N-glycopeptides identified, patients exhibited decrease in complex-type N-glycans and increase in truncated, mannose-rich, and hybrid species. We identified a glycopeptide from complement C4 carrying the glycan Man5GlcNAc2, which was not detected in controls, in 5 patients with normal CDT results, including 1 after liver transplant and 2 with a known genetic variant associated with mild disease, indicating greater sensitivity than CDT. It was detected by targeted analysis in 2 individuals with variants of uncertain significance in PMM2.CONCLUSIONComplement C4-derived Man5GlcNAc2 glycopeptide could be a biomarker for accurate diagnosis and therapeutic monitoring of patients with PMM2-CDG and other CDGs.FUNDINGU54NS115198 (Frontiers in Congenital Disorders of Glycosylation: NINDS; NCATS; Eunice Kennedy Shriver NICHD; Rare Disorders Consortium Disease Network); K08NS118119 (NINDS); Minnesota Partnership for Biotechnology and Medical Genomics; Rocket Fund; R01DK099551 (NIDDK); Mayo Clinic DERIVE Office; Mayo Clinic Center for Biomedical Discovery; IA/CRC/20/1/600002 (Center for Rare Disease Diagnosis, Research and Training; DBT/Wellcome Trust India Alliance).
Collapse
Affiliation(s)
- Kishore Garapati
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Rohit Budhraja
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Mayank Saraswat
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Jinyong Kim
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Neha Joshi
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Gunveen S. Sachdeva
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
- Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Anu Jain
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | - Madan Gopal Ramarajan
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Savita Udainiya
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Kimiyo Raymond
- Biochemical Genetics Laboratory, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Miao He
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Christina Lam
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, Washington, USA
- Division of Genetic Medicine, Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington, USA
| | | | - Andrew C. Edmondson
- Division of Human Genetics, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Kyriakie Sarafoglou
- Division of Pediatric Endocrinology, Department of Pediatrics, University of Minnesota Medical School, Minneapolis, Minnesota, USA
- Department of Experimental and Clinical Pharmacology, University of Minnesota School of Pharmacy, Minneapolis, Minnesota, USA
| | - Nicholas B. Larson
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota, USA
| | - Hudson H. Freeze
- Sanford Children’s Health Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Matthew J. Schultz
- Biochemical Genetics Laboratory, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Tamas Kozicz
- Department of Clinical Genomics and
- Biochemical Genetics Laboratory, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
- Department of Anatomy, University of Pécs Medical School, Pécs, Hungary
- Department of Genomics and Genetic Sciences, Icahn School of Medicine at Mount Sinai Hospital, New York, New York, USA
| | - Eva Morava
- Department of Clinical Genomics and
- Biochemical Genetics Laboratory, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
- Department of Anatomy, University of Pécs Medical School, Pécs, Hungary
- Department of Genomics and Genetic Sciences, Icahn School of Medicine at Mount Sinai Hospital, New York, New York, USA
| | - Akhilesh Pandey
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
3
|
Raynor A, Bruneel A, Vermeersch P, Cholet S, Friedrich S, Eckenweiler M, Schumann A, Hengst S, Tuncel AT, Fenaille F, Thiel C, Rymen D. "Hide and seek": Misleading transferrin variants in PMM2-CDG complicate diagnostics. Proteomics Clin Appl 2024; 18:e2300040. [PMID: 37876147 DOI: 10.1002/prca.202300040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 09/28/2023] [Accepted: 10/06/2023] [Indexed: 10/26/2023]
Abstract
PURPOSE Congenital disorders of glycosylation (CDG) are one of the fastest growing groups of inborn errors of metabolism. Despite the availability of next-generation sequencing techniques and advanced methods for evaluation of glycosylation, CDG screening mainly relies on the analysis of serum transferrin (Tf) by isoelectric focusing, HPLC or capillary electrophoresis. The main pitfall of this screening method is the presence of Tf protein variants within the general population. Although reports describe the role of Tf variants leading to falsely abnormal results, their significance in confounding diagnosis in patients with CDG has not been documented so far. Here, we describe two PMM2-CDG cases, in which Tf variants complicated the diagnostic. EXPERIMENTAL DESIGN Glycosylation investigations included classical screening techniques (capillary electrophoresis, isoelectric focusing and HPLC of Tf) and various confirmation techniques (two-dimensional electrophoresis, western blot, N-glycome, UPLC-FLR/QTOF MS with Rapifluor). Tf variants were highlighted following neuraminidase treatment. Sequencing of PMM2 was performed. RESULTS In both patients, Tf screening pointed to CDG-II, while second-line analyses pointed to CDG-I. Tf variants were found in both patients, explaining these discrepancies. PMM2 causative variants were identified in both patients. CONCLUSION AND CLINICAL RELEVANCE We suggest that a neuraminidase treatment should be performed when a typical CDG Tf pattern is found upon initial screening analysis.
Collapse
Affiliation(s)
- Alexandre Raynor
- AP-HP, Biochimie Métabolique et Cellulaire, Hôpital Bichat, Paris, France
| | - Arnaud Bruneel
- AP-HP, Biochimie Métabolique et Cellulaire, Hôpital Bichat, Paris, France
- INSERM UMR1193, Faculté de Pharmacie, Université Paris-Saclay, bâtiment Henri Moissan, Orsay, France
| | - Pieter Vermeersch
- Clinical Department of Laboratory Medicine, UZ Leuven, Leuven, Belgium
| | - Sophie Cholet
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), MetaboHUB, Gif sur Yvette, France
| | - Sebastian Friedrich
- Centre for Child and Adolescent Medicine Freiburg, Department of General Paediatrics, Adolescent Medicine and Neonatology, Freiburg, Germany
| | - Matthias Eckenweiler
- Department of Neuropediatrics and Muscle Disorders, Centre for Child and Adolescent Medicine Freiburg, Freiburg, Germany
| | - Anke Schumann
- Centre for Child and Adolescent Medicine Freiburg, Department of General Paediatrics, Adolescent Medicine and Neonatology, Freiburg, Germany
| | - Simone Hengst
- Department 1, Centre for Child and Adolescent Medicine Heidelberg, Heidelberg, Germany
| | - Ali Tunç Tuncel
- Department 1, Centre for Child and Adolescent Medicine Heidelberg, Heidelberg, Germany
| | - François Fenaille
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), MetaboHUB, Gif sur Yvette, France
| | - Christian Thiel
- Department 1, Centre for Child and Adolescent Medicine Heidelberg, Heidelberg, Germany
| | - Daisy Rymen
- Department of Pediatrics, Center for Metabolic Diseases, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
4
|
Parrado A, Rubio G, Serrano M, De la Morena-Barrio ME, Ibáñez-Micó S, Ruiz-Lafuente N, Schwartz-Albiez R, Esteve-Solé A, Alsina L, Corral J, Hernández-Caselles T. Dissecting the transcriptional program of phosphomannomutase 2 deficient cells: B-LCL as a valuable model for congenital disorders of glycosylation studies. Glycobiology 2021; 32:84-100. [PMID: 34420056 DOI: 10.1093/glycob/cwab087] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 07/30/2021] [Accepted: 08/09/2021] [Indexed: 11/12/2022] Open
Abstract
Congenital disorders of glycosylation (CDG) include 150 disorders constituting in genetically and clinically heterogeneous diseases, showing significant glycoprotein hypoglycosylation that leads to pathological consequences on multiple organs and systems which underlying mechanisms are not yet understood. A few cellular and animal models have been used to study specific CDG characteristics although they have given limited information due to the few CDG mutations tested and the still missing comprehensive molecular and cellular basic research. Here we provide specific gene expression profiles, based on RNA microarray analysis, together with some biochemical and cellular characteristics of a total of 9 control EBV-transformed lymphoblastoid B cell lines (B-LCL) and 13 CDG B-LCL from patients carrying severe mutations in the PMM2 gene, strong serum protein hypoglycosylation and neurological symptoms. Significantly dysregulated genes in PMM2-CDG cells included those regulating stress responses, transcription factors, glycosylation, motility, cell junction and, importantly, those related to development and neuronal differentiation and synapse such as CA2 and ADAM23. PMM2-CDG associated biological consequences involved the unfolded protein response, RNA metabolism and the endoplasmic reticulum, Golgi apparatus and mitochondria components. Changes in transcriptional and CA2 protein levels are consistent with CDG physiopathology. These results demonstrate the global transcriptional impact in phosphomannomutase 2 deficient cells, reveal CA2 as a potential cellular biomarker and confirm B-LCL as an advantageous model for CDG studies.
Collapse
Affiliation(s)
- Antonio Parrado
- Immunology Service, Virgen de la Arrixaca University Clinic Hospital, IMIB-Arrixaca, Murcia, Spain
| | - Gonzalo Rubio
- Department of Biochemistry and Molecular Biology (B) and Immunology, Universidad de Murcia, IMIB-Arrixaca, Murcia, Spain
| | - Mercedes Serrano
- Department of Pediatric Neurology, Institute of Pediatric Research-Hospital Sant Joan de Déu, U-703 Center for Biomedical Research on Rare Diseases, CIBERER, Barcelona, Spain
| | - María Eugenia De la Morena-Barrio
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Arrixaca, CIBERER, Spain
| | - Salvador Ibáñez-Micó
- Pediatric Neurology Unit, Virgen de la Arrixaca University Clinic Hospital, Murcia, Spain
| | - Natalia Ruiz-Lafuente
- Immunology Service, Virgen de la Arrixaca University Clinic Hospital, IMIB-Arrixaca, Murcia, Spain
| | | | - Ana Esteve-Solé
- Clinical Immunology and Primary Immunodeficiencies Unit, Pediatric Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Laia Alsina
- Clinical Immunology and Primary Immunodeficiencies Unit, Pediatric Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Javier Corral
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Arrixaca, CIBERER, Spain
| | - Trinidad Hernández-Caselles
- Department of Biochemistry and Molecular Biology (B) and Immunology, Universidad de Murcia, IMIB-Arrixaca, Murcia, Spain
| |
Collapse
|
5
|
Raynor A, Haouari W, Ng BG, Cholet S, Harroche A, Raulet-Bussian C, Lounis-Ouaras S, Vuillaumier-Barrot S, Pascreau T, Borgel D, Freeze HH, Fenaille F, Bruneel A. SLC37A4-CDG: New biochemical insights for an emerging congenital disorder of glycosylation with major coagulopathy. Clin Chim Acta 2021; 521:104-106. [PMID: 34245688 DOI: 10.1016/j.cca.2021.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 07/05/2021] [Indexed: 10/20/2022]
Abstract
SLC37A4-CDG is an emerging congenital disorder of glycosylation which is characterized by a dominant inheritance and a major coagulopathy originating from the liver. Recent studies took interest in the biochemical alterations found in this CDG and showed that they consisted of multiple glycosylation abnormalities, which result from mislocalization of the endoplasmic reticulum glucose-6-phosphate transporter and associated Golgi homeostasis defects. In this work, we highlight in six affected individuals abnormal patterns for various serum N-glycoproteins and bikunin proteoglycan isoforms, together with specific alterations of the mass spectra of endoglycosidase H-released serum N-glycans. Collectively, these data complement previous findings, help to better delineate SLC37A4-CDG and could present interest in diagnosing this disease.
Collapse
Affiliation(s)
- Alexandre Raynor
- AP-HP, Biochimie Métabolique et Cellulaire, Hôpital Bichat-Claude Bernard, Paris, France
| | - Walid Haouari
- INSERM UMR1193, Université Paris-Saclay, 92290 Châtenay-Malabry, France
| | - Bobby G Ng
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Sophie Cholet
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé, MetaboHUB, 91191 Gif sur Yvette, France
| | - Annie Harroche
- AP-HP, Haemophilia Care Centre, Necker Hospital, Paris, France
| | - Celia Raulet-Bussian
- AP-HP, Biochimie Métabolique et Cellulaire, Hôpital Bichat-Claude Bernard, Paris, France
| | | | | | - Tiffany Pascreau
- Laboratoire d'Hématologie Biologique, AP-HP, Hôpital Necker Enfants Malades, 75015 Paris, France
| | - Delphine Borgel
- Laboratoire d'Hématologie Biologique, AP-HP, Hôpital Necker Enfants Malades, 75015 Paris, France; HITh, INSERM UMR-S 1176, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France
| | - Hudson H Freeze
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - François Fenaille
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé, MetaboHUB, 91191 Gif sur Yvette, France
| | - Arnaud Bruneel
- AP-HP, Biochimie Métabolique et Cellulaire, Hôpital Bichat-Claude Bernard, Paris, France; INSERM UMR1193, Université Paris-Saclay, 92290 Châtenay-Malabry, France.
| |
Collapse
|
6
|
MAN1B1-CDG: Three new individuals and associated biochemical profiles. Mol Genet Metab Rep 2021; 28:100775. [PMID: 34141584 PMCID: PMC8182421 DOI: 10.1016/j.ymgmr.2021.100775] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/27/2021] [Accepted: 05/27/2021] [Indexed: 11/24/2022] Open
Abstract
Congenital disorders of glycosylation (CDG) constitute an ever-growing group of genetic diseases affecting the glycosylation of proteins. CDG individuals usually present with severe multisystem disorders. MAN1B1-CDG is a CDG with nonspecific clinical symptoms such as intellectual deficiency and developmental delay. Although up to 40 affected individuals were described so far, its final diagnosis is not straightforward using common biochemical methods due to the trace-level accumulation of defective glycan structures. In this study, we present three unreported MAN1B1-CDG individuals and propose a decision tree to reach diagnosis using a panel of techniques ranging from exome sequencing to gel electrophoresis and mass spectrometry. The occurrence of MAN1B1-CDG in patients showing unexplained intellectual disability and development delay, as well as a particular transferrin glycosylation profile, can be ascertained notably using matrix assisted laser desorption/ionization – time of flight (MALDI-TOF) mass spectrometry analysis of endo-β-acetylglucosaminidase H-released serum N-glycans. In addition to reporting new pathogenic variants and additional clinical signs such as hypersialorrhea, we highlight particular biochemical features of MAN1B1-CDG with potential glycoprotein-specific glycosylation defects.
Collapse
Key Words
- 2-DE, two-dimensional electrophoresis
- A1AT, α1-antitrypsin
- ApoC-III, apolipoprotein C-III
- BMI, body mass index
- CDG
- CDG, congenital disorder(s) of glycosylation
- CE, capillary electrophoresis
- DD, developmental delay
- DWI, Diffusion-weighted imaging
- ER, endoplasmic reticulum
- ESI-QTOF, electrospray ionization – quadrupole time of flight
- Endo H, endo-ß-N-acetylglucosaminidase H
- FLAIR, fluid-attenuated inversion recovery
- HPLC, high performance liquid chromatography
- Hpt, haptoglobin
- Hypersialorrhea
- ID, intellectual disability
- Intellectual disability
- M6, Man6GlcNAc2
- M8A/B/C, Man8GlcNAc2 lacking the first/middle/third terminal mannose
- M9, Man9GlcNAc2
- MALDI-TOF, matrix assisted laser desorption/ionization – time of flight
- MAN1B1
- MRI, magnetic resonance imaging
- MS, mass spectrometry
- Man, mannose
- N-glycan mass spectrometry
- PNGase F, peptide-N-glycosidase F
- Trf, transferrin
- WES, whole exome sequencing
Collapse
|
7
|
Raynor A, Vincent-Delorme C, Alaix AS, Cholet S, Dupré T, Vuillaumier-Barrot S, Fenaille F, Besmond C, Bruneel A. Normal transferrin patterns in congenital disorders of glycosylation with Golgi homeostasis disruption: apolipoprotein C-III at the rescue! Clin Chim Acta 2021; 519:285-290. [PMID: 34022244 DOI: 10.1016/j.cca.2021.05.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 05/18/2021] [Indexed: 02/08/2023]
Abstract
We identified three cases of congenital disorders of glycosylation (CDG) with Golgi homeostasis disruption, one ATP6V0A2-CDG and two COG4-CDG, with normal transferrin screening analyses. Patient 1 (P1) presented at birth with cutis laxa. Patient 2 (P2) and patient 3 (P3) are adult siblings and presented with severe symptoms evocative of inborn errors of metabolism. Targeted gene sequencing in P1 revealed pathogenic ATP6V0A2 variants, shared by her affected older brother. In P2 and P3, whole exome sequencing revealed a homozygous COG4 variant of unknown significance. In all affected individuals, transferrin analysis was normal. Mass-spectrometry based serum N-glycome analysis and two-dimensional electrophoresis (2-DE) of haptoglobin and of mucin core 1 O-glycosylated apolipoprotein C-III (apoC-III) were performed. All results of second-line N-glycosylation analyses were initially normal. However, apoC-III 2-DE revealed characteristic "apoC-III1" pattern in P1 and specific "apoC-III0" patterns in P2 and P3. In P2 and P3, this allowed reclassifying the variant as likely pathogenic according to ACMG guidelines. These cases highlight the existence of normal transferrin patterns in CDG with Golgi homeostasis disruption, putting the clinicians at risk of misdiagnosing patients. Furthermore, they show the potential of apoC-III 2-DE in diagnosing this type of CDG, with highly specific patterns in COG-CDG.
Collapse
Affiliation(s)
- Alexandre Raynor
- AP-HP, Biochimie Métabolique et Cellulaire, Hôpital Bichat-Claude Bernard, Paris, France
| | | | - Anne-Sophie Alaix
- Fondation Elan Retrouvé, Université de Paris-Sorbonne Paris Cité, Imagine Institute, INSERM UMR1163, Paris, France
| | - Sophie Cholet
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), MetaboHUB, F-91191 Gif sur Yvette, France
| | - Thierry Dupré
- AP-HP, Biochimie Métabolique et Cellulaire, Hôpital Bichat-Claude Bernard, Paris, France
| | | | - François Fenaille
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), MetaboHUB, F-91191 Gif sur Yvette, France
| | - Claude Besmond
- Université de Paris-Sorbonne Paris Cité, Imagine Institute, INSERM UMR1163, Paris, France
| | - Arnaud Bruneel
- AP-HP, Biochimie Métabolique et Cellulaire, Hôpital Bichat-Claude Bernard, Paris, France; INSERM UMR1193, Mécanismes cellulaires et moléculaires de l'adaptation au stress et cancérogenèse, Université Paris-Sud, Châtenay-Malabry, France.
| |
Collapse
|
8
|
Ene CD, Penescu MN, Georgescu SR, Tampa M, Nicolae I. Posttranslational Modifications Pattern in Clear Cell Renal Cell Carcinoma. Metabolites 2020; 11:10. [PMID: 33375435 PMCID: PMC7824589 DOI: 10.3390/metabo11010010] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 02/07/2023] Open
Abstract
Posttranslational modifications are dynamic enzymatic-mediated processes, regulated in time and space, associated with cancer development. We aimed to evaluate the significance of posttranslational modifications in the pathogenesis of clear cell renal cell carcinoma. The authors developed a prospective, observational study during a period of three years and included 55 patients with localized renal cell carcinoma and 30 heathy subjects. Glycosylation, nitration and carbonylation, thiol-disulfide homeostasis, methylation, phosphorylation and proteolytic cleavage were evaluated in the serum of the evaluated subjects in the present study. Our results showed some characteristics for early ccRCC: high production of cytokines, substrate hypersialylation, induced nitrosative and carbonylic stress, arginine hypermethylation, thiol/disulfide homeostasis (TDH) alteration, the regulatory role of soluble receptors (sRAGE, sIL-6R) in RAGE and IL-6 signaling, the modulatory effect of TK-1and TuM2-PK in controlling the level of phosphometabolites in neoplastic cells. These data could be the initial point for development of a panel of biomarkers such as total sialic acid, orosomucoids, nitrotyrosine, carbonylic metabolites, ADMA, SDMA, and thiol-disulfide equilibrium for early diagnosis of ccRCC. Moreover, they could be considered a specific disease PTM signature which underlines the transition from early to advanced stages in this neoplasia, and of a therapeutic target in kidney oncogenesis.
Collapse
Affiliation(s)
- Corina Daniela Ene
- Faculty of General Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (M.N.P.); (S.R.G.); (M.T.)
- Carol Davila Clinical Hospital of Nephrology, 010731 Bucharest, Romania
| | - Mircea Nicolae Penescu
- Faculty of General Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (M.N.P.); (S.R.G.); (M.T.)
- Carol Davila Clinical Hospital of Nephrology, 010731 Bucharest, Romania
| | - Simona Roxana Georgescu
- Faculty of General Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (M.N.P.); (S.R.G.); (M.T.)
- Victor Babes Clinical Hospital of Tropical and Infectious Diseases, 030303 Bucharest, Romania;
| | - Mircea Tampa
- Faculty of General Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (M.N.P.); (S.R.G.); (M.T.)
- Victor Babes Clinical Hospital of Tropical and Infectious Diseases, 030303 Bucharest, Romania;
| | - Ilinca Nicolae
- Victor Babes Clinical Hospital of Tropical and Infectious Diseases, 030303 Bucharest, Romania;
| |
Collapse
|
9
|
CDG biochemical screening: Where do we stand? Biochim Biophys Acta Gen Subj 2020; 1864:129652. [DOI: 10.1016/j.bbagen.2020.129652] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/18/2020] [Accepted: 05/28/2020] [Indexed: 12/22/2022]
|
10
|
Ondruskova N, Cechova A, Hansikova H, Honzik T, Jaeken J. Congenital disorders of glycosylation: Still "hot" in 2020. Biochim Biophys Acta Gen Subj 2020; 1865:129751. [PMID: 32991969 DOI: 10.1016/j.bbagen.2020.129751] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/12/2020] [Accepted: 08/27/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Congenital disorders of glycosylation (CDG) are inherited metabolic diseases caused by defects in the genes important for the process of protein and lipid glycosylation. With the ever growing number of the known subtypes and discoveries regarding the disease mechanisms and therapy development, it remains a very active field of study. SCOPE OF REVIEW This review brings an update on the CDG-related research since 2017, describing the novel gene defects, pathobiomechanisms, biomarkers and the patients' phenotypes. We also summarize the clinical guidelines for the most prevalent disorders and the current therapeutical options for the treatable CDG. MAJOR CONCLUSIONS In the majority of the 23 new CDG, neurological involvement is associated with other organ disease. Increasingly, different aspects of cellular metabolism (e.g., autophagy) are found to be perturbed in multiple CDG. GENERAL SIGNIFICANCE This work highlights the recent trends in the CDG field and comprehensively overviews the up-to-date clinical recommendations.
Collapse
Affiliation(s)
- Nina Ondruskova
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Anna Cechova
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Hana Hansikova
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Tomas Honzik
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic.
| | - Jaak Jaeken
- Department of Paediatrics and Centre for Metabolic Diseases, KU Leuven and University Hospital Leuven, Leuven, Belgium.
| |
Collapse
|
11
|
Santorelli L, Capitoli G, Chinello C, Piga I, Clerici F, Denti V, Smith A, Grasso A, Raimondo F, Grasso M, Magni F. In-Depth Mapping of the Urinary N-Glycoproteome: Distinct Signatures of ccRCC-related Progression. Cancers (Basel) 2020; 12:E239. [PMID: 31963743 PMCID: PMC7016614 DOI: 10.3390/cancers12010239] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/12/2020] [Accepted: 01/14/2020] [Indexed: 12/15/2022] Open
Abstract
Protein N-glycosylation is one of the most important post-translational modifications and is involved in many biological processes, with aberrant changes in protein N-glycosylation patterns being closely associated with several diseases, including the progression and spreading of tumours. In light of this, identifying these aberrant protein glycoforms in tumours could be useful for understanding the molecular mechanism of this multifactorial disease, developing specific biomarkers and finding novel therapeutic targets. We investigated the urinary N-glycoproteome of clear cell renal cell carcinoma (ccRCC) patients at different stages (n = 15 at pT1 and n = 15 at pT3), and of non-ccRCC subjects (n = 15), using an N-glyco-FASP-based method. Using label-free nLC-ESI MS/MS, we identified and quantified several N-glycoproteins with altered expression and abnormal changes affecting the occupancy of the glycosylation site in the urine of RCC patients compared to control. In particular, nine of them had a specific trend that was directly related to the stage progression: CD97, COCH and P3IP1 were up-expressed whilst APOB, FINC, CERU, CFAH, HPT and PLTP were down-expressed in ccRCC patients. Overall, these results expand our knowledge related to the role of this post-translational modification in ccRCC and translation of this information into pre-clinical studies could have a significant impact on the discovery of novel biomarkers and therapeutic target in kidney cancer.
Collapse
Affiliation(s)
- Lucia Santorelli
- Clinical Proteomics and Metabolomics Unit, School of Medicine and Surgery, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy; (C.C.); (I.P.); (F.C.); (V.D.); (A.S.); (F.R.); (F.M.)
| | - Giulia Capitoli
- Centre of Biostatistics for Clinical Epidemiology, School of Medicine and Surgery, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy;
| | - Clizia Chinello
- Clinical Proteomics and Metabolomics Unit, School of Medicine and Surgery, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy; (C.C.); (I.P.); (F.C.); (V.D.); (A.S.); (F.R.); (F.M.)
| | - Isabella Piga
- Clinical Proteomics and Metabolomics Unit, School of Medicine and Surgery, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy; (C.C.); (I.P.); (F.C.); (V.D.); (A.S.); (F.R.); (F.M.)
| | - Francesca Clerici
- Clinical Proteomics and Metabolomics Unit, School of Medicine and Surgery, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy; (C.C.); (I.P.); (F.C.); (V.D.); (A.S.); (F.R.); (F.M.)
| | - Vanna Denti
- Clinical Proteomics and Metabolomics Unit, School of Medicine and Surgery, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy; (C.C.); (I.P.); (F.C.); (V.D.); (A.S.); (F.R.); (F.M.)
| | - Andrew Smith
- Clinical Proteomics and Metabolomics Unit, School of Medicine and Surgery, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy; (C.C.); (I.P.); (F.C.); (V.D.); (A.S.); (F.R.); (F.M.)
| | - Angelica Grasso
- Urology Service, Department of Surgery, EOC Beata Vergine Regional Hospital, 23, 6850 Mendrisio, Switzerland;
| | - Francesca Raimondo
- Clinical Proteomics and Metabolomics Unit, School of Medicine and Surgery, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy; (C.C.); (I.P.); (F.C.); (V.D.); (A.S.); (F.R.); (F.M.)
| | - Marco Grasso
- Urology Unit, S. Gerardo Hospital, 20900 Monza, Italy;
| | - Fulvio Magni
- Clinical Proteomics and Metabolomics Unit, School of Medicine and Surgery, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy; (C.C.); (I.P.); (F.C.); (V.D.); (A.S.); (F.R.); (F.M.)
| |
Collapse
|
12
|
Dubail J, Huber C, Chantepie S, Sonntag S, Tüysüz B, Mihci E, Gordon CT, Steichen-Gersdorf E, Amiel J, Nur B, Stolte-Dijkstra I, van Eerde AM, van Gassen KL, Breugem CC, Stegmann A, Lekszas C, Maroofian R, Karimiani EG, Bruneel A, Seta N, Munnich A, Papy-Garcia D, De La Dure-Molla M, Cormier-Daire V. SLC10A7 mutations cause a skeletal dysplasia with amelogenesis imperfecta mediated by GAG biosynthesis defects. Nat Commun 2018; 9:3087. [PMID: 30082715 PMCID: PMC6078967 DOI: 10.1038/s41467-018-05191-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 06/14/2018] [Indexed: 01/10/2023] Open
Abstract
Skeletal dysplasia with multiple dislocations are severe disorders characterized by dislocations of large joints and short stature. The majority of them have been linked to pathogenic variants in genes encoding glycosyltransferases, sulfotransferases or epimerases required for glycosaminoglycan synthesis. Using exome sequencing, we identify homozygous mutations in SLC10A7 in six individuals with skeletal dysplasia with multiple dislocations and amelogenesis imperfecta. SLC10A7 encodes a 10-transmembrane-domain transporter located at the plasma membrane. Functional studies in vitro demonstrate that SLC10A7 mutations reduce SLC10A7 protein expression. We generate a Slc10a7−/− mouse model, which displays shortened long bones, growth plate disorganization and tooth enamel anomalies, recapitulating the human phenotype. Furthermore, we identify decreased heparan sulfate levels in Slc10a7−/− mouse cartilage and patient fibroblasts. Finally, we find an abnormal N-glycoprotein electrophoretic profile in patient blood samples. Together, our findings support the involvement of SLC10A7 in glycosaminoglycan synthesis and specifically in skeletal development. The majority of skeletal dysplasia are caused by pathogenic variants in genes required for glycosaminoglycan (GAG) metabolism. Here, Dubail et al. identify genetic variants in the solute carrier family protein SLC10A7 in families with skeletal dysplasia and amelogenesis imperfecta that disrupt GAG synthesis.
Collapse
Affiliation(s)
- Johanne Dubail
- Department of Genetics, INSERM UMR 1163, Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, AP-HP, Hôpital Necker Enfants Malades, 75015 Paris, France
| | - Céline Huber
- Department of Genetics, INSERM UMR 1163, Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, AP-HP, Hôpital Necker Enfants Malades, 75015 Paris, France
| | - Sandrine Chantepie
- Cell Growth and Tissue Repair CRRET Laboratory, Université Paris-Est Créteil, EA 4397 CNRS 9215, Créteil, F-94010, France
| | | | - Beyhan Tüysüz
- Department of Pediatric Genetics, Cerrahpasa Medicine School, Istanbul University, 34290 Istanbul, Turkey
| | - Ercan Mihci
- Akdeniz University Paediatric Genetic Deaprtment, 07059 Antalya, Turkey
| | - Christopher T Gordon
- Laboratory of Embryology and Genetics of Congenital Malformations, INSERM UMR 1163, Institut Imagine, 75015 Paris, France
| | | | - Jeanne Amiel
- Laboratory of Embryology and Genetics of Congenital Malformations, INSERM UMR 1163, Institut Imagine, 75015 Paris, France
| | - Banu Nur
- Department of Pediatric Genetics, Cerrahpasa Medicine School, Istanbul University, 34290 Istanbul, Turkey
| | - Irene Stolte-Dijkstra
- Department of Genetics, University Medical Center Groningen, University of Groningen, 9700 Groningen, The Netherlands
| | - Albertien M van Eerde
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, 3508 Utrecht, The Netherlands
| | - Koen L van Gassen
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, 3508 Utrecht, The Netherlands
| | - Corstiaan C Breugem
- Division of Paediatric Plastic Surgery, Wilhelmina Children´s Hopsital, 3584 Utrecht, The Netherlands
| | - Alexander Stegmann
- Department of Human Genetics, Radboud University Medical Center, 6525 Nijmegen, The Netherlands.,Department of Clinical Genetics, Maastricht University Medical Center, 6202 Maastricht, The Netherlands
| | - Caroline Lekszas
- Institute of Human Genetics, Julius Maximilians University Würzburg, 97074 Würzburg, Germany
| | - Reza Maroofian
- Genetics Research Centre, Molecular and Clinical Sciences Institute, St George's, University of London, Cranmer Terrace, London SW17 ORE, UK
| | - Ehsan Ghayoor Karimiani
- Genetics Research Centre, Molecular and Clinical Sciences Institute, St George's, University of London, Cranmer Terrace, London SW17 ORE, UK.,Next Generation Genetic Clinic, 9175954353 Mashhad, Iran.,Razavi Cancer Research Center, Razavi Hospital, Imam Reza International University, 9198613636 Mashhad, Iran
| | - Arnaud Bruneel
- AP-HP, Biochimie Métabolique et cellulaire, Hôpital Bichat, 75018 Paris, France
| | - Nathalie Seta
- AP-HP, Biochimie Métabolique et cellulaire, Hôpital Bichat, 75018 Paris, France
| | - Arnold Munnich
- Department of Genetics, INSERM UMR 1163, Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, AP-HP, Hôpital Necker Enfants Malades, 75015 Paris, France
| | - Dulce Papy-Garcia
- Cell Growth and Tissue Repair CRRET Laboratory, Université Paris-Est Créteil, EA 4397 CNRS 9215, Créteil, F-94010, France
| | - Muriel De La Dure-Molla
- Department of Genetics, INSERM UMR 1163, Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, AP-HP, Hôpital Necker Enfants Malades, 75015 Paris, France.,Laboratory of Molecular Oral Pathophysiology, Centre de Recherche des Cordeliers, INSERM UMRS 1138, University Paris-Descartes, University Pierre et Marie Curie-Paris, 75006 Paris, France
| | - Valérie Cormier-Daire
- Department of Genetics, INSERM UMR 1163, Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, AP-HP, Hôpital Necker Enfants Malades, 75015 Paris, France.
| |
Collapse
|
13
|
Bruneel A, Cholet S, Drouin-Garraud V, Jacquemont ML, Cano A, Mégarbané A, Ruel C, Cheillan D, Dupré T, Vuillaumier-Barrot S, Seta N, Fenaille F. Complementarity of electrophoretic, mass spectrometric, and gene sequencing techniques for the diagnosis and characterization of congenital disorders of glycosylation. Electrophoresis 2018; 39:3123-3132. [PMID: 29869806 DOI: 10.1002/elps.201800021] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 05/09/2018] [Accepted: 05/25/2018] [Indexed: 12/25/2022]
Abstract
Congenital disorders of glycosylation (CDG) are rare autosomal genetic diseases affecting the glycosylation of proteins and lipids. Since CDG-related clinical symptoms are classically extremely variable and nonspecific, a combination of electrophoretic, mass spectrometric, and gene sequencing techniques is often mandatory for obtaining a definitive CDG diagnosis, as well as identifying causative gene mutations and deciphering the underlying biochemical mechanisms. Here, we illustrate the potential of integrating data from capillary electrophoresis of transferrin, two-dimensional electrophoresis of N- and O-glycoproteins, mass spectrometry analyses of total serum N-linked glycans and mucin core1 O-glycosylated apolipoprotein C-III for the determination of various culprit CDG gene mutations. "Step-by-step" diagnosis pathways of four particular and new CDG cases, including MGAT2-CDG, ATP6V0A2-CDG, SLC35A2-CDG, and SLC35A3-CDG, are described as illustrative examples.
Collapse
Affiliation(s)
- Arnaud Bruneel
- AP-HP, Biochimie Métabolique et Cellulaire, Hôpital Bichat-Claude Bernard, Paris, France.,INSERM UMR-1193 "Mécanismes cellulaires et moléculaires de l'adaptation au stress et cancérogenèse", Université Paris-Sud, Châtenay-Malabry, France
| | - Sophie Cholet
- Service de Pharmacologie et d'Immunoanalyse, Laboratoire d'Etude du Métabolisme des Médicaments, CEA, INRA, Université Paris Saclay, Gif-sur-Yvette, France
| | | | | | - Aline Cano
- Centre de Référence des Maladies Héréditaires du Métabolisme, CHU la Timone-Marseille, Marseille, France
| | | | - Coralie Ruel
- Service de Pharmacologie et d'Immunoanalyse, Laboratoire d'Etude du Métabolisme des Médicaments, CEA, INRA, Université Paris Saclay, Gif-sur-Yvette, France.,Proteins and Nanotechnology in Analytical Science (PNAS), CNRS, Université Paris-Sud, Châtenay-Malabry, France
| | - David Cheillan
- Service de Biochimie et Biologie Moléculaire Grand Est, UM Pathologies Métaboliques, Erythrocytaires et Dépistage Périnatal, Centre de Biologie et de Pathologie Est, Groupement Hospitalier Est-Hospices Civils de Lyon, Bron, France
| | - Thierry Dupré
- AP-HP, Biochimie Métabolique et Cellulaire, Hôpital Bichat-Claude Bernard, Paris, France
| | | | - Nathalie Seta
- AP-HP, Biochimie Métabolique et Cellulaire, Hôpital Bichat-Claude Bernard, Paris, France.,Paris Descartes University, Paris, France
| | - François Fenaille
- Service de Pharmacologie et d'Immunoanalyse, Laboratoire d'Etude du Métabolisme des Médicaments, CEA, INRA, Université Paris Saclay, Gif-sur-Yvette, France
| |
Collapse
|