1
|
Zhao Y, Zhao L, Li M, Meng Z, Wang S, Li J, Li L, Gong L. Long non-coding RNA PVT1 regulates TGF-β and promotes the proliferation, migration and invasion of hypopharyngeal carcinoma FaDu cells. World J Surg Oncol 2024; 22:254. [PMID: 39300515 PMCID: PMC11414033 DOI: 10.1186/s12957-024-03536-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024] Open
Abstract
Hypopharyngeal carcinoma is one of the malignant tumors of the head and neck with a particularly poor prognosis. Recurrence and metastasis are important reasons for poor prognosis of hypopharyngeal cancer patients, and malignant proliferation, migration, and invasion of tumor cells are important factors for recurrence and metastasis of hypopharyngeal cancer. Therefore, elucidating hypopharyngeal cancer cells' proliferation, migration, and invasion mechanism is essential for improving diagnosis, treatment, and prognosis. Plasmacytoma Variant Translocation 1 (PVT1) is considered a potential diagnostic marker and therapeutic target for tumors. However, it remains unclear whether PVT1 is related to the occurrence and development of hypopharyngeal cancer and its specific mechanism. In this study, the promoting effect of PVT1 on the proliferation, migration, and invasion of hypopharyngeal carcinoma FaDu cells was verified by cell biology experiments and animal studies, and it was found that PVT1 inhibited the expression of TGF-β, suggesting that PVT1 may regulate the occurrence and development of hypopharyngeal carcinoma FaDu cells through TGF-β.
Collapse
MESH Headings
- Animals
- Humans
- Mice
- Apoptosis
- Biomarkers, Tumor/metabolism
- Biomarkers, Tumor/genetics
- Carcinoma, Squamous Cell/pathology
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/genetics
- Cell Line, Tumor
- Cell Movement
- Cell Proliferation
- Gene Expression Regulation, Neoplastic
- Hypopharyngeal Neoplasms/pathology
- Hypopharyngeal Neoplasms/genetics
- Hypopharyngeal Neoplasms/metabolism
- Mice, Inbred BALB C
- Mice, Nude
- Neoplasm Invasiveness
- Prognosis
- RNA, Long Noncoding/genetics
- Transforming Growth Factor beta/metabolism
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
- Female
Collapse
Affiliation(s)
- Yan Zhao
- Department of Otorhinolaryngology Head and Neck Surgery, Liaocheng People's Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Liaocheng, Shandong, China
| | - Lei Zhao
- Department of Otorhinolaryngology, Heze Municipal Hospital, Heze, Shandong, China
| | - Maocai Li
- Department of Otorhinolaryngology Head and Neck Surgery, Liaocheng People's Hospital, No.67, Dongchang West Road, Liaocheng, Shandong, 252000, China
| | - Zhen Meng
- Biomedical Laboratory, Medical School of Liaocheng University, Liaocheng, Shandong, China
| | - Song Wang
- Precision Biomedical Laboratory, Liaocheng People's Hospital, Liaocheng, Shandong, China
| | - Jun Li
- Precision Biomedical Laboratory, Liaocheng People's Hospital, Liaocheng, Shandong, China
| | - Lianqing Li
- Department of Otorhinolaryngology Head and Neck Surgery, Liaocheng People's Hospital, No.67, Dongchang West Road, Liaocheng, Shandong, 252000, China.
| | - Lili Gong
- Department of Otorhinolaryngology Head and Neck Surgery, Liaocheng People's Hospital, No.67, Dongchang West Road, Liaocheng, Shandong, 252000, China.
| |
Collapse
|
2
|
Liang X, Liu B. Exploration of PVT1 as a biomarker in prostate cancer. Medicine (Baltimore) 2024; 103:e39406. [PMID: 39183420 PMCID: PMC11346897 DOI: 10.1097/md.0000000000039406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 08/27/2024] Open
Abstract
Prostate cancer is a malignant tumor originating from the prostate gland, significantly affecting patients' quality of life and survival rates. Public data was utilized to identify differentially expressed genes (DEGs). Weighted gene co-expression network analysis was constructed to classify gene modules. Functional enrichment analysis was performed through Kyoto Encyclopedia of Genes and Genomes and gene ontology annotations, with results visualized using the Metascape database. Additionally, gene set enrichment analysis evaluated gene expression profiles and related pathways, constructed a protein-protein interaction network to predict core genes, analyzed survival data, plotted heatmaps and radar charts, and predicted microRNAs for core genes through miRTarBase. Two prostate cancer datasets (GSE46602 and GSE55909) were analyzed, identifying 710 DEGs. Gene ontology and Kyoto Encyclopedia of Genes and Genomes analyses revealed that DEGs were primarily involved in organic acid metabolism and the P53 signaling pathway. Gene set enrichment analysis and Metascape analyses further confirmed the significance of these pathways. After constructing the weighted gene co-expression network analysis network, 3 core genes (DDX21, NOP56, plasmacytoma variant translocation 1 [PVT1]) were identified. Survival analysis indicated that core genes are closely related to patient prognosis. Through comparative toxicogenomics database and miRNA prediction analysis, PVT1 was considered to play a crucial role in the development of prostate cancer. The PVT1 gene is highly expressed in prostate cancer and has the potential to become a diagnostic biomarker and therapeutic target for prostate cancer.
Collapse
Affiliation(s)
- Xiangdong Liang
- Department of Urology Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, P. R. China
| | - Bin Liu
- Department of Urology Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, P. R. China
| |
Collapse
|
3
|
Sheikhnia F, Fazilat A, Rashidi V, Azizzadeh B, Mohammadi M, Maghsoudi H, Majidinia M. Exploring the therapeutic potential of quercetin in cancer treatment: Targeting long non-coding RNAs. Pathol Res Pract 2024; 260:155374. [PMID: 38889494 DOI: 10.1016/j.prp.2024.155374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/11/2024] [Accepted: 05/28/2024] [Indexed: 06/20/2024]
Abstract
The escalating global incidence of cancer, which results in millions of fatalities annually, underscores the pressing need for effective pharmacological interventions across diverse cancer types. Long noncoding RNAs (lncRNAs), a class of RNA molecules that lack protein-coding capacity but profoundly impact gene expression regulation, have emerged as pivotal players in key cellular processes, including proliferation, apoptosis, metastasis, cellular metabolism, and drug resistance. Among natural compounds, quercetin, a phenolic compound abundantly present in fruits and vegetables has garnered attention due to its significant anticancer properties. Quercetin demonstrates the ability to inhibit cancer cell growth and induce apoptosis-a process often impaired in malignant cells. In this comprehensive review, we delve into the therapeutic potential of quercetin in cancer treatment, with a specific focus on its intricate interactions with lncRNAs. We explore how quercetin modulates lncRNA expression and function to exert its anticancer effects. Notably, quercetin suppresses oncogenic lncRNAs that drive cancer development and progression while enhancing tumor-suppressive lncRNAs that impede cancer growth and dissemination. Additionally, we discuss quercetin's role as a chemopreventive agent, which plays a crucial role in mitigating cancer risk. We address research challenges and future directions, emphasizing the necessity for in-depth mechanistic studies and strategies to enhance quercetin's bioavailability and target specificity. By synthesizing existing knowledge, this review underscores quercetin's promising potential as a novel therapeutic strategy in the ongoing battle against cancer, offering fresh insights and avenues for further investigation in this critical field.
Collapse
Affiliation(s)
- Farhad Sheikhnia
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran; Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Ahmad Fazilat
- Motamed Cancer Institute, Breast Cancer Research Center, ACECR, Tehran, Iran
| | - Vahid Rashidi
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Bita Azizzadeh
- Department of Biochemistry, School of Medicine, Ilam University of Medical sciences, Ilam, Iran
| | - Mahya Mohammadi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Maghsoudi
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran; Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Maryam Majidinia
- Solid Tumor Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
4
|
Chen H, Han Z, Su J, Song X, Ma Q, Lin Y, Ran Z, Li X, Mou R, Wang Y, Li D. Ferroptosis and hepatocellular carcinoma: the emerging role of lncRNAs. Front Immunol 2024; 15:1424954. [PMID: 38846953 PMCID: PMC11153672 DOI: 10.3389/fimmu.2024.1424954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 05/10/2024] [Indexed: 06/09/2024] Open
Abstract
Hepatocellular carcinoma is the most common form of primary liver cancer and poses a significant challenge to the medical community because of its high mortality rate. In recent years, ferroptosis, a unique form of cell death, has garnered widespread attention. Ferroptosis, which is characterized by iron-dependent lipid peroxidation and mitochondrial alterations, is closely associated with the pathological processes of various diseases, including hepatocellular carcinoma. Long non-coding RNAs (lncRNAs), are a type of functional RNA, and play crucial regulatory roles in a variety of biological processes. In this manuscript, we review the regulatory roles of lncRNAs in the key aspects of ferroptosis, and summarize the research progress on ferroptosis-related lncRNAs in hepatocellular carcinoma.
Collapse
Affiliation(s)
- Haoran Chen
- Department of General Surgery, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
| | - Zhongyu Han
- Department of General Surgery, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
| | - Junyan Su
- The First People’s Hospital of Longquanyi District, Chengdu, China
| | - Xuanliang Song
- The First People’s Hospital of Longquanyi District, Chengdu, China
| | - Qingquan Ma
- The First People’s Hospital of Longquanyi District, Chengdu, China
| | - Yumeng Lin
- Department of General Surgery, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
| | - Zijin Ran
- Department of General Surgery, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
| | - Xueping Li
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rongkun Mou
- Department of General Surgery, The Third Hospital of Mianyang, Mianyang, China
| | - Yi Wang
- Department of General Surgery, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
| | - Dongxuan Li
- Department of General Surgery, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
| |
Collapse
|
5
|
Rajendran P, Sekar R, Zahra HA, Jayaraman S, Rajagopal P, Abdallah BM, Ali EM, Abdelsalam SA, Veeraraghavan V. Salivaomics to decode non-coding RNAs in oral cancer. A narrative review. Noncoding RNA Res 2023; 8:376-384. [PMID: 37250455 PMCID: PMC10220469 DOI: 10.1016/j.ncrna.2023.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/01/2023] [Accepted: 05/01/2023] [Indexed: 05/31/2023] Open
Abstract
Oral cancer is the most debilitating disease which affects the orderly life of a human. With so much advancement in research and technology, the average life expectancy of an individual with oral cancer appears to be about 5 years. The changing trend in incidence of oral cancer among young individuals and women without tobacco habits are ascending. Non habit related oral cancer are taking centre stage and multiple factors which induce complex biology are associated in such scenarios. To decipher the aetiology and to understand the process, these cancerous conditions are to be studied at molecular level. Saliva, the most non-invasively obtained body fluid are assessed for biomarkers exclusively in liquid biopsy. This fluid gives a huge platform to study number of molecules associated with oral cancer. Non coding RNAs are transcripts with no protein coding function. They are gaining more importance in recent times. Long noncoding RNA, microRNA are major types of noncoding transcriptome that influences in progression of oral cancer. They seem to play an important role in health and disease. Apart from these, circulating tumour cells, exosomes, extracellular vesicles, antigens and other proteins can be studied from saliva. This review is aimed to update the knowledge on current biomarkers in saliva associated with oral cancer and their epigenetic role in disease progression as well recent advances in detecting these markers to identify the stage of the disease, which will help in deciding the treatment protocol.
Collapse
Affiliation(s)
- Peramaiyan Rajendran
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600 077, Tamil Nadu, India
| | - Ramya Sekar
- Central Research Laboratory, Meenakshi Academy of Higher Education and Research, West K.K. Nagar, Chennai, 600 078, India
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600 077, Tamil Nadu, India
| | - Hamad Abu Zahra
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
| | - Selvaraj Jayaraman
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600 077, Tamil Nadu, India
| | - Ponnulakshmi Rajagopal
- Central Research Laboratory, Meenakshi Academy of Higher Education and Research, West K.K. Nagar, Chennai, 600 078, India
| | - Basem M. Abdallah
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
| | - Enas M. Ali
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Cairo, 12613, Egypt
| | - Salaheldin Abdelraouf Abdelsalam
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
- Department of Zoology, Faculty of Science, Assiut University, Assiut, 71515, Egypt
| | - Vishnupriya Veeraraghavan
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600 077, Tamil Nadu, India
| |
Collapse
|
6
|
Ghafouri-Fard S, Ahmadi Teshnizi S, Hussen BM, Taheri M, Zali H. A review on the role of GHET1 in different cancers. Pathol Res Pract 2023; 247:154545. [PMID: 37244053 DOI: 10.1016/j.prp.2023.154545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 05/29/2023]
Abstract
Gastric cancer High Expressed Transcript 1 (GHET1) is an RNA gene located on chromosome 7q36.1. This non-coding RNA is involved in the pathology of different cancers. It can regulate cell proliferation, apoptosis and cell cycle transition. Moreover, it induces epithelial-mesenchymal transition. Up-regulation of GHET1 has been correlated with poor prognosis of patients with different malignancies. Besides, its up-regulation has been mostly detected in later stages and advanced grades of cancers. This review summarizes recent studies on the expression of GHET1, its in vitro functions, and its impact on the beginning and progression of cancer based on xenograft models of cancer.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Ahmadi Teshnizi
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany; Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Hakimeh Zali
- Proteomics Research Center, Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Karthikeyan SK, Nuo X, Ferguson JE, Rais-Bahrami S, Qin ZS, Manne U, Netto GJ, Chandrashekar DS, Varambally S. Identification of androgen response-related lncRNAs in prostate cancer. Prostate 2023; 83:590-601. [PMID: 36760203 PMCID: PMC10038919 DOI: 10.1002/pros.24494] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/11/2022] [Accepted: 01/16/2023] [Indexed: 02/11/2023]
Abstract
BACKGROUND Long noncoding RNAs (lncRNAs) are RNA molecules with over 200 nucleotides that do not code for proteins, but are known to be widely expressed and have key roles in gene regulation and cellular functions. They are also found to be involved in the onset and development of various cancers, including prostate cancer (PCa). Since PCa are commonly driven by androgen regulated signaling, mainly stimulated pathways, identification and determining the influence of lncRNAs in androgen response is useful and necessary. LncRNAs regulated by the androgen receptor (AR) can serve as potential biomarkers for PCa. In the present study, gene expression data analysis were performed to distinguish lncRNAs related to the androgen response pathway. METHODS AND RESULTS We used publicly available RNA-sequencing and ChIP-seq data to identify lncRNAs that are associated with the androgen response pathway. Using Universal Correlation Coefficient (UCC) and Pearson Correlation Coefficient (PCC) analyses, we found 15 lncRNAs that have (a) highly correlated expression with androgen response genes in PCa and are (b) differentially expressed in the setting of treatment with an androgen agonist as well as antagonist compared to controls. Using publicly available ChIP-seq data, we investigated the role of androgen/AR axis in regulating expression of these lncRNAs. We observed AR binding in the promoter regions of 5 lncRNAs (MIR99AHG, DUBR, DRAIC, PVT1, and COLCA1), showing the direct influence of AR on their expression and highlighting their association with the androgen response pathway. CONCLUSION By utilizing publicly available multiomics data and by employing in silico methods, we identified five candidate lncRNAs that are involved in the androgen response pathway. These lncRNAs should be investigated as potential biomarkers for PCa.
Collapse
Affiliation(s)
| | - Xu Nuo
- Collat School of Business, University of Alabama at Birmingham, Birmingham, AL, USA
| | - James E. Ferguson
- Department of Urology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Soroush Rais-Bahrami
- Department of Urology, University of Alabama at Birmingham, Birmingham, AL, USA
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Zhaohui S. Qin
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA, USA
| | - Upender Manne
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - George J. Netto
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Sooryanarayana Varambally
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
- Informatics Institute, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
8
|
Liu S, Liao S, Liang L, Deng J, Zhou Y. The relationship between CD4 + T cell glycolysis and their functions. Trends Endocrinol Metab 2023; 34:345-360. [PMID: 37061430 DOI: 10.1016/j.tem.2023.03.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/18/2023] [Accepted: 03/20/2023] [Indexed: 04/17/2023]
Abstract
CD4+ T cells are effector T cells (Teffs) produced by the differentiation of initial T cells in peripheral lymphoid tissue after being attacked by antigens, and have an indispensable role in the development and activation of B cells and CD8+ T cells to regulate and assist immunity. In this review, we provide a new perspective on the relationship between CD4+ T cell glycolysis and its function. We summarize the effects of changes in the glycolysis level of CD4+ T cells on their activation, differentiation, proliferation, and survival. In addition, we emphasize that regulation of the glycolysis level of CD4+ T cells changes their inflammatory phenotypes and function. The study of immune metabolism has received more attention recently, but more work is needed to answer many open questions.
Collapse
Affiliation(s)
- Siyi Liu
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China; Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan 410011, China; Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Shan Liao
- Department of Pathology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Lin Liang
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China; Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan 410011, China; Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Jun Deng
- Department of Early Clinical Trial Center, Hunan Cancer Hospital, Affiliated Tumor Hospital of Xiangya Medical School of Central South University, Changsha, Hunan 410013, China.
| | - Yanhong Zhou
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China; Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan 410011, China; Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China.
| |
Collapse
|
9
|
Hao C, Lin S, Liu P, Liang W, Li Z, Li Y. Potential serum metabolites and long-chain noncoding RNA biomarkers for endometrial cancer tissue. J Obstet Gynaecol Res 2023; 49:725-743. [PMID: 36510632 DOI: 10.1111/jog.15494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 10/05/2022] [Accepted: 10/28/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Endometrial carcinoma (EC) is one of the most common tumors in the female reproductive system. There are nearly 200 000 new cases every year. It is the third most common gynecological malignant tumor leading to female death. The incidence rate is closely related to lifestyle, and the incidence rate varies in different regions. The incidence rate of EC is ranking the first in the female reproductive system cancer just second only to breast, lung, and colorectal cancer in North America and Europe and the incidence rate of EC is only second, followed by breast cancer and cervical cancer in China. PURPOSE The potential metabolic markers of endometrial cancer were screened by liquid chromatograph mass spectrometer (LC-MS), and the tissues of patients with hysteromyoma and endometrial cancer were sequenced to explore the relationship between the disease and change in the content of long-chain noncoding RNA (lncRNA). METHODS Serum and tissue samples were collected from patients with endometrial dysplasia, endometrial cancer stage I, and endometrial cancer stage III. The metabolites in all serum samples were extracted, and the metabolites in all samples were detected by LC-MS/MS technology. The Pareto-scaling method was used for normalization, and the MetaboAnalyst 4.0 software was used for different analyses. The T test between groups showed that p ≤ 0.05 was regarded as the metabolite with a difference. Further, the function of differential metabolites was determined by metabolite function enrichment and co-expression analysis. Meanwhile, the differentially expressed lncRNA was detected by Illumina second-generation high-throughput sequencing technology, and the expression was analyzed by DEGseq software. Different lncRNA were screened according to p < 0.05. LncRNA with significant differences were screened by p < 0.01, q < 0.001, fold change ≥2, and false discovery rate (FDR) ≤0.001. RESULTS Through synthesis of T test, cluster heatmap, and ROC curve analysis, five biomarkers with potential diagnostic ability were obtained, including 2,3-Pyridinedicarboxylic acid (area under the curve (AUC) = 0.69), Hematommic acid, ethyl ester (AUC = 0.69), Maltitol (AUC = 0.69), 13(S)-HODE (AUC = 0.88), and D-Mannitol (AUC = 0.69) had potential diagnostic ability between EC phase I versus EC phase III. At the same time, lncRNA sequencing results showed that when endometrial atypical hyperplasia continued to change, including LINC00511, PVT1, and IQCH-AS1 (downregulated), and only changed significantly in the endometrial dysplasia group, including MALAT1, CARMN (downregulated) and LINC00648, BISPR, LINC01534, and LINC00930 (upregulated). Moreover, both differential metabolites and differential lncRNA were annotated to the lipid metabolism pathway, suggesting that this pathway played an important role in the occurrence and development of endometrial carcinoma. CONCLUSIONS It can combine the results of metabolomics and lncRNA sequencing to assist in the early diagnosis of endometrial precancerous lesions and endometrial cancer patients, to enhance the sensitivity and specificity of diagnosis, which has a certain clinical application prospect.
Collapse
Affiliation(s)
- Chenjun Hao
- Gynaecology and Obstetrics Department, Maternal and Child Health Hospital of PanYu District, Guangzhou, China
| | - Shaodan Lin
- Gynaecology and Obstetrics Department, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Ping Liu
- Gynaecology and Obstetrics Department, Maternal and Child Health Hospital of PanYu District, Guangzhou, China
| | - Weiguo Liang
- Gynaecology and Obstetrics Department, Maternal and Child Health Hospital of PanYu District, Guangzhou, China
| | - Zhi Li
- Gynaecology and Obstetrics Department, Maternal and Child Health Hospital of PanYu District, Guangzhou, China
| | - Yanqiu Li
- Gynaecology and Obstetrics Department, Maternal and Child Health Hospital of PanYu District, Guangzhou, China
| |
Collapse
|
10
|
LINC02381 suppresses cell proliferation and promotes apoptosis via attenuating IGF1R/PI3K/AKT signaling pathway in breast cancer. Funct Integr Genomics 2023; 23:40. [PMID: 36648607 DOI: 10.1007/s10142-023-00965-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 01/01/2023] [Accepted: 01/03/2023] [Indexed: 01/18/2023]
Abstract
Identification of the genes and genetic networks involved in breast cancer development is a major need for prevention and therapy. LINC02381 (lncRNA) has already been introduced as a tumor suppressor in colorectal and gastric cancers. Here, we intended to investigate its potential functional effects on breast cancer. In the analysis performed on RNA-Seq and microarray data, the LINC02381 lncRNA was found to be significantly downregulated in the breast tumors and associated with poor survival of the patients. Then, the differential expression of LINC02381 was confirmed in breast tumor tissues and cancer cell lines using RT-qPCR. Overexpression of LINC02381 resulted in reduced IGF1R and p-AKT expression levels which indicates decreased PI3K pathway activity, detected by RT-qPCR and western blotting. At the cellular level, LINC02381 overexpression was followed by a decreased proliferation rate of transfected breast cell lines, detected by PI flow cytometry, RT-qPCR, colony formation, and MTT assays. Consistently, the results of Annexin-V/PI flow cytometry, RT-qPCR, caspase3/7 activity, and AO/EB-H33342/PI dual staining revealed that LINC02381 overexpression induced apoptosis and cell death. The reduced migration rate of these cells was also verified through wound healing assay and RT-qPCR against the EMT-involved genes. Our data show that LINC02381 exerts its tumor suppressor effect at least partly through attenuation of the IGF1R/PI3K/AKT signaling pathway, which originated from IGF1R downregulation.
Collapse
|
11
|
Feng J, Tang X, Song L, Zhou Z, Jiang Y, Huang Y. A telomerase regulation-related lncRNA signature predicts prognosis and immunotherapy response for gastric cancer. J Cancer Res Clin Oncol 2023; 149:135-146. [PMID: 36333566 DOI: 10.1007/s00432-022-04456-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 10/27/2022] [Indexed: 11/07/2022]
Abstract
BACKGROUND Telomeres are involved in the development and progression of gastric cancer (GC). However, the association of telomerase regulation-related lncRNAs with prognosis and immunotherapy responsiveness in gastric cancer is unclear. METHODS This study systematically evaluated the relationship between lncRNAs co-expressed with 67 telomerase regulatory genes and gastric cancer prognosis. The risk scores of the samples were calculated based on telomerase regulation-related lncRNAs with prognostic value, and the samples were classified into high-/low-risk groups. The prognostic value of risk groups was then evaluated, a GC prognostic prediction model based on risk groups and clinical characteristics was established, and the prediction accuracy of the model was clarified by receiving operating characteristic (ROC) curves and calibration curves. Finally, the value of risk grouping in GC immunotherapy sensitivity was predicted by comparing MSI status and tumor mutation load between the high- and low-risk groups. RESULTS We identified 13 lncRNAs with prognostic value co-expressed with telomerase regulatory genes and observed that the prognosis of the low-risk group was significantly better than that of the high-risk group. Meanwhile, a GC overall survival (OS) prediction model based on risk grouping and clinical characteristics was developed, and ROC curves and calibration curves confirmed the good predictive ability of the model. In addition, the low-risk group exhibited a higher tumor mutation load and MSI-H, suggesting a possible benefit of immunotherapy. CONCLUSION We found that telomerase regulation-related lncRNAs have prognostic value in GC patients and contribute to the exploration of more effective immunotherapeutic strategies.
Collapse
Affiliation(s)
- Jinggao Feng
- Department of Gastrointestinal and Anorectal Surgery, The Central Hospital of Yongzhou, No. 151, Xiaoshui West Road, Lingling District, Yongzhou, 425100, Hunan Province, China.
| | - Xiayu Tang
- Department of Gastrointestinal and Anorectal Surgery, The Central Hospital of Yongzhou, No. 151, Xiaoshui West Road, Lingling District, Yongzhou, 425100, Hunan Province, China
| | - Liusong Song
- Department of Gastrointestinal and Anorectal Surgery, The Central Hospital of Yongzhou, No. 151, Xiaoshui West Road, Lingling District, Yongzhou, 425100, Hunan Province, China
| | - Zhipeng Zhou
- Department of Gastrointestinal and Anorectal Surgery, The Central Hospital of Yongzhou, No. 151, Xiaoshui West Road, Lingling District, Yongzhou, 425100, Hunan Province, China
| | - Yuan Jiang
- Department of Gastrointestinal and Anorectal Surgery, The Central Hospital of Yongzhou, No. 151, Xiaoshui West Road, Lingling District, Yongzhou, 425100, Hunan Province, China
| | - Yao Huang
- Department of Gastrointestinal and Anorectal Surgery, The Central Hospital of Yongzhou, No. 151, Xiaoshui West Road, Lingling District, Yongzhou, 425100, Hunan Province, China
| |
Collapse
|
12
|
Wu M, Liu W, Huang H, Chen Z, Chen Y, Zhong Y, Jin Z, Liu X, Zou L. PVT1/miR-145-5p/HK2 modulates vascular smooth muscle cells phenotype switch via glycolysis: The new perspective on the spiral artery remodeling. Placenta 2022; 130:25-33. [PMID: 36370492 DOI: 10.1016/j.placenta.2022.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 10/01/2022] [Accepted: 10/14/2022] [Indexed: 11/11/2022]
Abstract
INTRODUCTION Vascular smooth muscle cells (VSMC) switched from a contractile phenotype to a synthetic phenotype during the decidual spiral artery (SPAs) remodeling process. The lncRNA plasmacytoma variant translocation 1 (PVT1) and glucose metabolism have been found to regulate the VSMC phenotype switch. This study aimed to analyze the dynamic expression of PVT1 and glycolytic key enzymes hexokinase2 (HK2) at different remodeling stages in early human pregnancy and elucidate the underlying mechanism of the PVT1/miR-145-5p/HK2 axis involved in the spiral artery remodeling. METHODS qRT-PCR, Western blot (WB) analysis, Immunohistochemistry (IHC) and fluorescence in situ hybridization (FISH) were used to detect the expression and localization of PVT1 and HK2 in decidual tissue. HA-VSMCs were transfected with specific siRNA, shRNA and plasmids to regulate corresponding genes. Extracellular lactate, cellular ATP, ROS, and intracellular NADPH levels were measured using the corresponding assay kits. Migration was measured by wound-healing and Transwell assays. Contractile phenotypic markers α-SMA, MYH11 with calponin and synthetic phenotypic markers OPN and vimentin were detected by WB. The PDC model was used to detect the degree of spiral arterial remodeling. RESULTS PVT1 and HK2 were upregulated with gestational age (GA) increasing in decidual tissue during the early pregnancy. HK2 regulated the glycolytic activity and VSMC phenotype switch in vitro. PVT1 regulated the glycolytic activity and VSMC phenotype switch through HK2. PVT1 played a ceRNA role in regulating HK2 expression by sponging miR-145-5p. PVT1 and HK2 influenced spiral artery remodeling in the PDC model. DISCUSSION PVT1 and HK2 were upregulated, and miR-145-5p was downregulated in decidua with the GA increasing. Meanwhile, the PVT1/miR-145-5p/HK2 axis may be involved in regulating the phenotypic switch and migratory capacity of VSMCs by affecting glycolysis in decidual SPAs remodeling.
Collapse
Affiliation(s)
- Mengying Wu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weifang Liu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haixia Huang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhirui Chen
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yangyang Chen
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanqi Zhong
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhishan Jin
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoxia Liu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Li Zou
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
13
|
Zhou M, Liu L, Wang J, Liu W. The role of long noncoding RNAs in therapeutic resistance in cervical cancer. Front Cell Dev Biol 2022; 10:1060909. [PMID: 36438563 PMCID: PMC9682114 DOI: 10.3389/fcell.2022.1060909] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 10/20/2022] [Indexed: 11/10/2022] Open
Abstract
Cervical cancer is one of the common tumors and often causes cancer-related death in women. Chemotherapy is a common cancer therapy, which displays a pivotal clinical benefit for cancer patients. However, chemoresistance becomes a big obstacle for failure of treatment in cancer patients. Recently, long noncoding RNAs (lncRNAs) have been identified to regulate drug resistance in human cancers, including cervical cancer. In this review, we describe the role of lncRNAs in regulation of chemotherapeutic resistance in cervical cancer. We also discuss the molecular mechanisms of lncRNA-mediated drug resistance in cervical cancer. Moreover, we describe that targeting lncRNAs could reverse drug resistance in cervical cancer. Therefore, lncRNAs could become effective therapeutic targets and chemotherapeutic sensitizers for cervical cancer patients.
Collapse
|
14
|
Emam O, Wasfey EF, Hamdy NM. Notch-associated lncRNAs profiling circuiting epigenetic modification in colorectal cancer. Cancer Cell Int 2022; 22:316. [PMID: 36229883 PMCID: PMC9558410 DOI: 10.1186/s12935-022-02736-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/28/2022] [Indexed: 11/15/2022] Open
Abstract
Background Colorectal cancer (CRC) is one of the most prevalent digestive cancers, ranking the 2nd cause of cancer-related fatality worldwide. The worldwide burden of CRC is predicted to rise by 60% by 2030. Environmental factors drive, first, inflammation and hence, cancer incidence increase. Main The Notch-signaling system is an evolutionarily conserved cascade, has role in the biological normal developmental processes as well as malignancies. Long non-coding RNAs (LncRNAs) have become major contributors in the advancement of cancer by serving as signal pathways regulators. They can control gene expression through post-translational changes, interactions with micro-RNAs or down-stream effector proteins. Recent emerging evidence has emphasized the role of lncRNAs in controlling Notch-signaling activity, regulating development of several cancers including CRC. Conclusion Notch-associated lncRNAs might be useful prognostic biomarkers or promising potential therapeutic targets for CRC treatment. Therefore, here-in we will focus on the role of “Notch-associated lncRNAs in CRC” highlighting “the impact of Notch-associated lncRNAs as player for cancer induction and/or progression.” Graphical Abstract ![]()
Collapse
Affiliation(s)
| | - Eman F Wasfey
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Nadia M Hamdy
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt.
| |
Collapse
|
15
|
Wang Y, Chen X, Jiang F, Shen Y, Fang F, Li Q, Yang C, Dong Y, Shen X. A prognostic signature of pyroptosis-related lncRNAs verified in gastric cancer samples to predict the immunotherapy and chemotherapy drug sensitivity. Front Genet 2022; 13:939439. [PMID: 36147488 PMCID: PMC9485603 DOI: 10.3389/fgene.2022.939439] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/09/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Pyroptosis is a recently identified mode of programmed inflammatory cell death that has remarkable implications for cancer development. lncRNAs can be involved in cellular regulation through various pathways and play a critical role in gastric cancer (GC). However, pyroptosis -related lncRNAs (PRlncRNAs) have been rarely studied in GC. Methods: Pyroptosis-related gene were abstracted from the literature and GSEA Molecular Signatures data resource. PRlncRNAs were obtained using co-expression analysis. LASSO Cox regression assessment was employed to build a risk model. Kaplan-Meier (KM), univariate along with multivariate Cox regression analysis were adopted to verify the predictive efficiency of the risk model in terms of prognosis. qRT-PCR was adopted to validate the expression of PRlncRNAs in GC tissues. In addition, immune cell infiltration assessment and ESTIMATE score evaluation were adopted for assessing the relationship of the risk model with the tumor immune microenvironment (TME). Finally, immune checkpoint gene association analysis and chemotherapy drug sensitivity analysis were implemented to assess the worthiness of our risk model in immunotherapy and chemotherapy of GC. Results: We identified 3 key PRlncRNAs (PVT1, CYMP-AS1 and AC017076.1) and testified the difference of their expression levels in GC tumor tissues and neighboring non-malignant tissues (p < 0.05). PRlncRNAs risk model was able to successfully estimate the prognosis of GC patients, and lower rate of survival was seen in the high-GC risk group relative to the low-GC risk group (p < 0.001). Other digestive system tumors such as pancreatic cancer further validated our risk model. There was a dramatic difference in TMB level between high-GC and low-GC risk groups (p < 0.001). Immune cell infiltration analysis and ESTIMATE score evaluation demonstrated that the risk model can be adopted as an indicator of TME status. Besides, the expressions of immunodetection site genes in different risk groups were remarkably different (CTLA-4 (r = −0.14, p = 0.010), VISTA (r = 0.15, p = 0.005), and B7-H3 (r = 0.14, p = 0.009)). PRlncRNAs risk model was able to effectively establish a connection with the sensitivity of chemotherapeutic agents. Conclusion: The 3 PRlncRNAs identified in this study could be utilized to predict disease outcome in GC patients. It may also be a potential therapeutic target in GC therapy, including immunotherapy and chemotherapy.
Collapse
|
16
|
Functions of the bone morphogenetic protein signaling pathway through non-coding RNAs. Noncoding RNA Res 2022; 7:178-183. [PMID: 35892126 PMCID: PMC9287601 DOI: 10.1016/j.ncrna.2022.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/04/2022] [Accepted: 07/08/2022] [Indexed: 01/15/2023] Open
Abstract
Bone morphogenetic proteins (BMPs) are proteins of the transforming growth factor-β (TGF-β) family, which plays an important role in the formation of skeletal and cartilage tissue and their regeneration. BMPs play a key role in the formation of new blood vessels and promote the migration, proliferation, and differentiation of mesenchymal stem cells (MSCs) into chondroblasts and osteoblasts. It is known that malfunction of BMPs signaling can cause a disease state. Epigenetic regulation of expression plays a key role in the control of many cellular processes. Important participants in this regulation are non-coding RNAs (ncRNAs), which are RNA molecules that are not translated into proteins. The best known of these are microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs). In addition, the results of many studies make it possible to establish an unambiguous functional relationship between these ncRNAs. Being involved in the regulation of a large number of target genes responsible for the life of the cell, miRNAs, lncRNAs, and circRNAs are essential for the normal development and functioning of the body, and the violation of their functions accompanies the development of many pathophysiological processes including oncogenesis. In the present review, we discuss different insights into the regulation of BMPs signaling pathway by miRNAs, lncRNAs and circRNAs governed.
Collapse
|
17
|
Lopatina T, Sarcinella A, Brizzi MF. Tumour Derived Extracellular Vesicles: Challenging Target to Blunt Tumour Immune Evasion. Cancers (Basel) 2022; 14:cancers14164020. [PMID: 36011012 PMCID: PMC9406972 DOI: 10.3390/cancers14164020] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/12/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Tumour onset and development occur because of specific immune support. The immune system, which is originally able to perceive and eliminate incipient cancer cells, becomes suppressed and hijacked by cancer. For these purposes, tumour cells use extracellular vesicles (TEVs). Specific molecular composition allows TEVs to reprogram immune cells towards tumour tolerance. Circulating TEVs move from their site of origin to other organs, preparing “a fertile soil” for metastasis formation. This implies that TEV molecular content can provide a valuable tool for cancer biomarker discovery and potential targets to reshape the immune system into tumour recognition and eradication. Abstract Control of the immune response is crucial for tumour onset and progression. Tumour cells handle the immune reaction by means of secreted factors and extracellular vesicles (EV). Tumour-derived extracellular vesicles (TEV) play key roles in immune reprogramming by delivering their cargo to different immune cells. Tumour-surrounding tissues also contribute to tumour immune editing and evasion, tumour progression, and drug resistance via locally released TEV. Moreover, the increase in circulating TEV has suggested their underpinning role in tumour dissemination. This review brings together data referring to TEV-driven immune regulation and antitumour immune suppression. Attention was also dedicated to TEV-mediated drug resistance.
Collapse
|
18
|
Cao D, Ou X, Li W, Ur-Rehman U. lncRNA PVT1 Targeting miR-423-5p Regulates Biological Behavior of Gastric Carcinoma Cells. INT J PHARMACOL 2022. [DOI: 10.3923/ijp.2022.1613.1622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Dong P, Wang F, Taheri M, Xiong Y, Ihira K, Kobayashi N, Konno Y, Yue J, Watari H. Long Non-Coding RNA TMPO-AS1 Promotes GLUT1-Mediated Glycolysis and Paclitaxel Resistance in Endometrial Cancer Cells by Interacting With miR-140 and miR-143. Front Oncol 2022; 12:912935. [PMID: 35712514 PMCID: PMC9195630 DOI: 10.3389/fonc.2022.912935] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 04/29/2022] [Indexed: 01/05/2023] Open
Abstract
Increased glycolysis in tumor cells is frequently associated with drug resistance. Overexpression of glucose transporter-1 (GLUT1) promotes the Warburg effect and mediates chemoresistance in various cancers. Aberrant GLUT1 expression is considered as an essential early step in the development of endometrial cancer (EC). However, its role in EC glycolysis and chemoresistance and the upstream mechanisms underlying GLUT1 overexpression, remain undefined. Here, we demonstrated that GLUT1 was highly expressed in EC tissues and cell lines and that high GLUT1 expression was associated with poor prognosis in EC patients. Both gain-of-function and loss-of-function studies showed that GLUT1 increased EC cell proliferation, invasion, and glycolysis, while also making them resistant to paclitaxel. The long non-coding RNA TMPO-AS1 was found to be overexpressed in EC tissues and to be negatively associated with EC patient outcomes. RNA-immunoprecipitation and luciferase reporter assays confirmed that TMPO-AS1 elevated GLUT1 expression by directly binding to two critical tumor suppressor microRNAs (miR-140 and miR-143). Downregulation of TMPO-AS1 remarkably reduced EC cell proliferation, invasion, glycolysis, and paclitaxel resistance in EC cells. This study established that dysregulation of the TMPO-AS1-miR-140/miR-143 axis contributes to glycolysis and drug resistance in EC cells by up-regulating GLUT1 expression. Thus, inhibiting TMPO-AS1 and GLUT1 may prove beneficial in overcoming glycolysis-induced paclitaxel resistance in patients with EC.
Collapse
Affiliation(s)
- Peixin Dong
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo, Japan
| | - Feng Wang
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Jiangsu, China
| | - Mohammad Taheri
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Ying Xiong
- Department of Gynecology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Kei Ihira
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo, Japan
| | - Noriko Kobayashi
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yosuke Konno
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo, Japan
| | - Junming Yue
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, TN, United States.,Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Hidemichi Watari
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
20
|
Non-coding RNAs associated with autophagy and their regulatory role in cancer therapeutics. Mol Biol Rep 2022; 49:7025-7037. [PMID: 35534587 DOI: 10.1007/s11033-022-07517-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 04/25/2022] [Indexed: 10/18/2022]
Abstract
Cancer widely affects the world's health population and ranks second leading cause of death globally. Because of poor prognosis of various types of cancer such as sarcoma, lymphoma, adenomas etc., their high recurrence and metastasis rate and low early diagnosis rate have become concern lately. Role of autophagy in cancer progression is being studied since long. Autophagy is cell's self-degradative mechanism towards stress and has role in degradation of the cytoplasmic macromolecules which has potential to damage other cytosolic molecules. Autophagy can promote as well as inhibit tumorigenesis depending upon the associated protein combinations in cancer cells. Recent studies have shown that non-coding RNAs (ncRNAs) do not code for protein but play essential role in modulation of gene expression. At transcriptional level, different ncRNAs like lncRNAs, miRNAs and circRNAs directly or indirectly affect different stages of autophagy like autophagy-dependent and non-apoptotic cell death in cancer cells. This review focuses on the involvement of ncRNAs in autophagy and the modulation of several cancer signal transduction pathways in cancers such as lung, breast, prostate, pancreatic, thyroid, and kidney cancer.
Collapse
|
21
|
Yao N, Peng S, Wu H, Liu W, Cai D, Huang D. Long noncoding RNA PVT1 promotes chondrocyte extracellular matrix degradation by acting as a sponge for miR-140 in IL-1β-stimulated chondrocytes. J Orthop Surg Res 2022; 17:218. [PMID: 35399100 PMCID: PMC8996637 DOI: 10.1186/s13018-022-03114-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 03/31/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Osteoarthritis (OA) is a common degenerative joint disease, and chondrocyte extracellular matrix (ECM) degradation is one vital pathological feature of OA. Long noncoding RNA (lncRNA), a new kind of gene regulator, plays an important role in pathogenesis of many diseases like OA. Recent studies have confirmed that lncRNA plasmacytoma variant translocation 1 (PVT1) expression was upregulated in OA patients; however, its effect on ECM degradation remained unknown.
Methods
Cartilage tissue samples were obtained from 6 OA patients admitted in Guangdong Second Traditional Chinese Medicine Hospital. Chondrocytes were isolated and cultured from the collected cartilage tissue. Plasmid construction, RNA interference, cell transfection, fluorescence in situ hybridization (FISH), and pull-down assay were carried out during the research.
Results
In this study, PVT1 expression was significantly increased in chondrocytes stimulated by interleukin-1β (IL-1β). In addition, inhibition of PVT1 significantly downregulated the increased expressions of ADAM metallopeptidase with thrombospondin type 1 motif-5 (ADAMTS-5) and matrix metalloproteinase-13 (MMP-13) induced by IL-1β. Further investigation revealed that PVT1 was an endogenous sponge RNA, which directly bound to miR-140 and inhibited miR-140 expression.
Conclusion
To sum up, this study showed that PVT1 promoted expressions of ADAMTS-5 and MMP-13 as a competing endogenous RNA (ceRNA) of miR-140 in OA, which eventually led to aggravation of ECM degradation, thus providing a new and promising strategy for the treatment of OA.
Collapse
|
22
|
Wang M, Liu W, Liu W, Wang C. Diagnostic and prognostic significance of long noncoding RNA LINC00173 in patients with melanoma. Rev Assoc Med Bras (1992) 2022; 68:170-175. [PMID: 35239877 DOI: 10.1590/1806-9282.20210822] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 10/23/2021] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE A growing volume of literature has suggested long noncoding RNAs (lncRNAs) as important players in tumor progression. In this study, we aimed to investigate the expression and prognostic value of lncRNA LINC00173 (LINC00173) in melanoma. METHODS LINC00173 expression was measured in 163 paired cancerous and noncancerous specimen samples by real-time polymerase chain reaction. The correlations between LINC00173 expression with clinicopathological characteristics and prognosis were analyzed by chi-square test, log-rank test, and multivariate survival analysis. Receiver-operating characteristic curves were used for the assessment of the diagnostic value of LINC00173 for melanoma patients. RESULTS The expression level of LINC00173 in melanoma specimens was distinctly higher than that in adjacent non-neoplasm specimens (p<0.01). Besides, LINC00173 was expressed more frequently in patients with advanced melanoma than in patients with early melanoma. Multivariate assays confirmed that LINC00173 expression level was an independent prognostic predictor of melanoma patients (p<0.05). CONCLUSION Our data indicated that LINC00173 expression could serve as an unfavorable prognostic biomarker for melanoma patients.
Collapse
Affiliation(s)
- Mujun Wang
- The First People's Hospital of Jinan City, Department of Surgery - Jinan, China
| | - Wei Liu
- The First Affiliated Hospital of Shandong First Medical University, Department of Medical Ultrasound - Jinan, China
| | - Wenxing Liu
- Shizhong District People's Hospital of Jinan, Department of Surgery - Jinan, China
| | - Chao Wang
- The First People's Hospital of Jinan City, Department of Surgery - Jinan, China
| |
Collapse
|
23
|
Wang X, Chen W, Lao W, Chen Y. Silencing LncRNA PVT1 Reverses High Glucose-Induced Regulation of the High Expression of PVT1 in HRMECs by Targeting miR-128-3p. Horm Metab Res 2022; 54:119-125. [PMID: 35130573 DOI: 10.1055/a-1730-5091] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This paper aims to discuss the possibility of lncRNA PVT1 as a diagnostic biomarker for diabetic retinopathy (DR) and explore the underlying mechanism. Real-time quantitative polymerase chain reaction (RT-qPCR) was selected to determine the expression level of lncRNA PVT1 in the serum of all subjects. The receiver operating characteristic (ROC) curve reflected the diagnostic significance of PVT1 for DR patients. The Cell Counting Kit-8 (CCK-8) and Transwell assays were used to evaluate the effect of PVT1 expression on the proliferation and migration of human retinal microvascular endothelial cells (HRMECs). The luciferase reporter gene was selected to verify the interaction between PVT1 and miR-128-3p. The relative expression level of PVT1 in serum was higher in both the DB and DR group than in the healthy controls group (HC), and it was highest in the DR group. ROC curve indicated that serum PVT1 could distinguish between HC and DB patients, DB patients and DR patients, respectively. In vitro, high glucose induction significantly increased the proliferation and migration capabilities of HRMECs, but silencing PVT1 (si-PVT1) downregulated the proliferation and migration capabilities of HRMECs. The detection of luciferase reporter gene showed that lncRNA PVT1 targeted miR-128-3p, and there was a negative correlation in the serum of DR patients. In conclusion, this study confirmed that lncRNA PVT1 might regulate the process of DR by targeting miR-128-3p, and has the potential as a biomarker for the diagnosis of DR.
Collapse
Affiliation(s)
- Xuyang Wang
- Hainan Eye Hospital and Key Laboratory of Ophthalmology, Zhongshan Opthalmic Center, Sun Yat-sen University, Haikou, 570311, Hainan Province, China
| | - Wangling Chen
- Hainan Eye Hospital and Key Laboratory of Ophthalmology, Zhongshan Opthalmic Center, Sun Yat-sen University, Haikou, 570311, Hainan Province, China
| | - Wei Lao
- Hainan Eye Hospital and Key Laboratory of Ophthalmology, Zhongshan Opthalmic Center, Sun Yat-sen University, Haikou, 570311, Hainan Province, China
| | - Yunxin Chen
- Hainan Eye Hospital and Key Laboratory of Ophthalmology, Zhongshan Opthalmic Center, Sun Yat-sen University, Haikou, 570311, Hainan Province, China
| |
Collapse
|
24
|
Long Noncoding RNA Mediated Regulation in Human Embryogenesis, Pluripotency, and Reproduction. Stem Cells Int 2022; 2022:8051717. [PMID: 35103065 PMCID: PMC8800634 DOI: 10.1155/2022/8051717] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/27/2021] [Indexed: 12/12/2022] Open
Abstract
Long noncoding RNAs (lncRNAs), a class of noncoding RNAs with more than 200 bp in length, are produced by pervasive transcription in mammalian genomes and regulate gene expression through various action mechanisms. Accumulating data indicate that lncRNAs mediate essential biological functions in human development, including early embryogenesis, induction of pluripotency, and germ cell development. Comprehensive analysis of sequencing data highlights that lncRNAs are expressed in a stage-specific and human/primate-specific pattern during early human development. They contribute to cell fate determination through interacting with almost all classes of cellular biomolecules, including proteins, DNA, mRNAs, and microRNAs. Furthermore, the expression of a few of lncRNAs is highly associated with the pathogenesis and progression of many reproductive diseases, suggesting that they could serve as candidate biomarkers for diagnosis or novel targets for treatment. Here, we review research on lncRNAs and their roles in embryogenesis, pluripotency, and reproduction. We aim to identify the underlying molecular mechanisms essential for human development and provide novel insight into the causes and treatments of human reproductive diseases.
Collapse
|
25
|
Huang Y, Ren L, Li J, Zou H. Long non-coding RNA PVT1/microRNA miR-3127-5p/NCK-associated protein 1-like axis participates in the pathogenesis of abdominal aortic aneurysm by regulating vascular smooth muscle cells. Bioengineered 2021; 12:12583-12596. [PMID: 34898354 PMCID: PMC8810122 DOI: 10.1080/21655979.2021.2010384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The long non-coding RNA plasmacytoma variant translocation 1 (lncRNA PVT1) has been implicated in the progression of abdominal aortic aneurysms (AAA). However, the detailed mechanism requires further analysis. Our study was aimed at interrogating the mechanism of PVT1 in an H2O2-induced AAA model in vitro. The expression of lncRNA PVT1, microRNA miR-3127-5p, and NCK-associated protein 1-like (NCKAP1L) was examined in AAA tissues and H2O2-treated vascular smooth muscle cells (VSMCs). Cell proliferation was assayed using Cell Counting Kit-8 (CCK8) and 5-Bromodeoxyuridine (BrdU) assays. Meanwhile, 5-Ethynyl-2'-deoxyuridine (EdU) staining was performed to assess cell apoptosis and caspase-3 activity. IL-1β and caspase-1 expression was also assessed using Western blotting to determine inflammasome activation in H2O2-treated VSMCs. Luciferase reporter assays addressed the possible interaction between miR-3127-5p and PVT1 or NCKAP1L, which was predicted by starBase analysis. PVT1 and NCKAP1L expression was elevated in AAA tissues and induced the AAA model in vitro, whereas miR-3127-5p showed the opposite trend. Functionally, PVT1 silencing promoted cell proliferation and reduced the apoptotic rate and inflammasome activation in H2O2-treated VSMCs. Mechanical investigation demonstrated that PVT1 acted as a sponge of miR-3127-5p to modulate NCKAP1L expression, resulting in suppression of VSMC proliferation, induction of apoptosis, and activation of inflammation. In conclusion, PVT1 participates in AAA progression through the miR-3127-5p/NCKAP1L axis and may be a promising biosignature and therapeutic target for AAA.
Collapse
Affiliation(s)
- Youjin Huang
- Department of Vascular Surgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Li Ren
- Department of Vascular Surgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Jiajia Li
- Intensive Care Unit, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Haibo Zou
- Department of Hepatobiliary Surgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| |
Collapse
|
26
|
Klapproth C, Sen R, Stadler PF, Findeiß S, Fallmann J. Common Features in lncRNA Annotation and Classification: A Survey. Noncoding RNA 2021; 7:77. [PMID: 34940758 PMCID: PMC8708962 DOI: 10.3390/ncrna7040077] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 12/29/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are widely recognized as important regulators of gene expression. Their molecular functions range from miRNA sponging to chromatin-associated mechanisms, leading to effects in disease progression and establishing them as diagnostic and therapeutic targets. Still, only a few representatives of this diverse class of RNAs are well studied, while the vast majority is poorly described beyond the existence of their transcripts. In this review we survey common in silico approaches for lncRNA annotation. We focus on the well-established sets of features used for classification and discuss their specific advantages and weaknesses. While the available tools perform very well for the task of distinguishing coding sequence from other RNAs, we find that current methods are not well suited to distinguish lncRNAs or parts thereof from other non-protein-coding input sequences. We conclude that the distinction of lncRNAs from intronic sequences and untranslated regions of coding mRNAs remains a pressing research gap.
Collapse
Affiliation(s)
- Christopher Klapproth
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, University of Leipzig, Härtelstraße 16-18, D-04107 Leipzig, Germany; (C.K.); (P.F.S.); (S.F.)
| | - Rituparno Sen
- Helmholtz Institute for RNA-Based Infection Research (HIRI), Helmholtz-Center for Infection Research (HZI), D-97080 Würzburg, Germany;
| | - Peter F. Stadler
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, University of Leipzig, Härtelstraße 16-18, D-04107 Leipzig, Germany; (C.K.); (P.F.S.); (S.F.)
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Competence Center for Scalable Data Services and Solutions, and Leipzig Research Center for Civilization Diseases, University Leipzig, D-04103 Leipzig, Germany
- Max Planck Institute for Mathematics in the Sciences, Inselstraße 22, D-04103 Leipzig, Germany
- Institute for Theoretical Chemistry, University of Vienna, Währingerstraße 17, A-1090 Vienna, Austria
- Facultad de Ciencias, Universidad National de Colombia, Bogotá CO-111321, Colombia
- Santa Fe Institute, 1399 Hyde Park Rd., Santa Fe, NM 87501, USA
| | - Sven Findeiß
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, University of Leipzig, Härtelstraße 16-18, D-04107 Leipzig, Germany; (C.K.); (P.F.S.); (S.F.)
| | - Jörg Fallmann
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, University of Leipzig, Härtelstraße 16-18, D-04107 Leipzig, Germany; (C.K.); (P.F.S.); (S.F.)
| |
Collapse
|
27
|
Mardani M, Rashedi S, Keykhaei M, Farrokhpour H, Azadnajafabad S, Tavolinejad H, Rezaei N. Long non-coding RNAs (lncRNAs) as prognostic and diagnostic biomarkers in multiple myeloma: A systematic review and meta-analysis. Pathol Res Pract 2021; 229:153726. [PMID: 34942515 DOI: 10.1016/j.prp.2021.153726] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/10/2021] [Accepted: 11/26/2021] [Indexed: 12/27/2022]
Abstract
BACKGROUND Recently, emerging studies have demonstrated the utility of particular long non-coding RNAs (lncRNAs) as useful biomarkers for the diagnosis and prognosis of multiple myeloma (MM). We systematically reviewed the literature and conducted a meta-analysis to quantify the predictive effectiveness of lncRNAs in the prognosis and diagnosis of MM. METHODS A systematic search was performed in PubMed, Embase, and Web of Science until March 24, 2021. A meta-analysis was conducted to explore the correlation between the expression of lncRNAs and prognostic endpoints, including overall survival (OS), progression-free survival (PFS), and disease-free survival (DFS) or event-free survival (EFS). Moreover, the diagnostic performance of lncRNAs in MM was investigated by calculating accuracy metrics. RESULTS Overall, 43 studies were included in this systematic review, amongst which 36 studies assessed prognostic endpoints (including 5499 participants and 69 lncRNAs), and 11 studies evaluated diagnostic outcomes (with 1723 participants and 11 lncRNAs). The overexpression of CRNDE (hazard ratio (HR)= 1.94, 95% confidence interval (CI) 1.61, 2.34), NEAT1 (HR=1.97, 95%CI 1.36, 2.85), PVT1 (HR=1.92, 95%CI 1.25, 2.97), and TCF7 (HR=1.98, 95%CI 1.42, 2.76) was significantly associated with reduced OS. Furthermore, upregulation of PVT1 was significantly correlated with poor PFS (HR=1.86, 95%CI 1.29, 2.68). The pooled diagnostic performance of lncRNAs was as follows: sensitivity 0.78 (95%CI 0.73, 0.82), specificity 0.88 (95%CI 0.83, 0.92), and area under the curve 0.89 (95%CI 0.86, 0.92). CONCLUSIONS Our results revealed the potential significance of lncRNAs in MM as diagnostic and prognostic markers, which may be the future targets for individualized therapy.
Collapse
Affiliation(s)
- Mahta Mardani
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Sina Rashedi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Mohammad Keykhaei
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Hossein Farrokhpour
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Sina Azadnajafabad
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran; Department of Surgery, Tehran University of Medical Sciences, Tehran, Iran.
| | - Hamed Tavolinejad
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
28
|
Winkler L, Dimitrova N. A mechanistic view of long noncoding RNAs in cancer. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 13:e1699. [PMID: 34668345 PMCID: PMC9016092 DOI: 10.1002/wrna.1699] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 12/23/2022]
Abstract
Long noncoding RNAs (lncRNAs) have emerged as important modulators of a wide range of biological processes in normal and disease states. In particular, lncRNAs have garnered significant interest as novel players in the molecular pathology of cancer, spurring efforts to define the functions, and elucidate the mechanisms through which cancer‐associated lncRNAs operate. In this review, we discuss the prevalent mechanisms employed by lncRNAs, with a critical assessment of the methodologies used to determine each molecular function. We survey the abilities of cancer‐associated lncRNAs to enact diverse trans functions throughout the nucleus and in the cytoplasm and examine the local roles of cis‐acting lncRNAs in modulating the expression of neighboring genes. In linking lncRNA functions and mechanisms to their roles in cancer biology, we contend that a detailed molecular understanding of lncRNA functionality is key to elucidating their contributions to tumorigenesis and to unlocking their therapeutic potential. This article is categorized under:Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs RNA in Disease and Development > RNA in Disease
Collapse
Affiliation(s)
- Lauren Winkler
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, USA
| | - Nadya Dimitrova
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
29
|
Bi Y, Ji J, Zhou Y. LncRNA-PVT1 indicates a poor prognosis and promotes angiogenesis via activating the HNF1B/EMT axis in glioma. J Cancer 2021; 12:5732-5744. [PMID: 34475987 PMCID: PMC8408127 DOI: 10.7150/jca.60257] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 07/12/2021] [Indexed: 12/29/2022] Open
Abstract
Recent studies identified that long non-coding RNAs (lncRNAs) exhibited critical roles in tumor migration and invasion. However, the roles of lncRNAs in glioma remain unclear. The aim of this study was to uncover the underlying mechanisms of glioma progression and provide potential therapeutic targets for its treatment in clinic. Our microarray study showed that lncRNA-PVT1 was significantly upregulated in glioma tissues and played an important role in cell proliferation, migration, invasion and angiogenesis. Our data showed that the expression of lncRNA-PVT1 was increased obviously and associated with advanced tumor stage, metastasis, invasion ability, and poor prognosis in glioma patients. Up-regulation of lncRNA-PVT1 was observed to promote glioma cells proliferation, and invasion abilities in vitro as well as tumor growth in vivo by regulating miR-1207-3p expression. Online software (TargetScan, miRDB and miR TarBase) were used to predict the regulating mechanisms of lncRNA-PVT1, miR-1207-3p and HNF1B, which were validated by dual-luciferase reporter gene system. In vivo tumor-bearing mice models were established to validate the cellular results. Therefore, we suggested that lncRNA-PVT1/miR-1207-3p/HNF1B axis might play critical roles in glioma progression, indicating that lncRNA-PVT1/miR-1207-3p/HNF1B signaling axis may serve as novel molecular targets for glioma prevention and treatment.
Collapse
Affiliation(s)
- Yongyan Bi
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.,Department of Neurosurgery, Minhang Hospital, Fudan University, Minhang, Shanghai, China
| | - Jie Ji
- Department of Rehabilitation Medicine, Minhang Hospital, Fudan University, Minhang, Shanghai, China
| | - Youxin Zhou
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
30
|
Lu C, Wei D, Zhang Y, Wang P, Zhang W. Long Non-Coding RNAs as Potential Diagnostic and Prognostic Biomarkers in Breast Cancer: Progress and Prospects. Front Oncol 2021; 11:710538. [PMID: 34527584 PMCID: PMC8436618 DOI: 10.3389/fonc.2021.710538] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 08/09/2021] [Indexed: 01/05/2023] Open
Abstract
Breast cancer is the most common malignancy among women worldwide, excluding non-melanoma skin cancer. It is now well understood that breast cancer is a heterogeneous entity that exhibits distinctive histological and biological features, treatment responses and prognostic patterns. Therefore, the identification of novel ideal diagnostic and prognostic biomarkers is of utmost importance. Long non-coding RNAs (lncRNAs) are commonly defined as transcripts longer than 200 nucleotides that lack coding potential. Extensive research has shown that lncRNAs are involved in multiple human cancers, including breast cancer. LncRNAs with dysregulated expression can act as oncogenes or tumor-suppressor genes to regulate malignant transformation processes, such as proliferation, invasion, migration and drug resistance. Intriguingly, the expression profiles of lncRNAs tend to be highly cell-type-specific, tissue-specific, disease-specific or developmental stage-specific, which makes them suitable biomarkers for breast cancer diagnosis and prognosis.
Collapse
Affiliation(s)
- Cuicui Lu
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Duncan Wei
- Department of Pharmacy, The First Affiliated Hospital of Medical College of Shantou University, Shantou, China
| | - Yahui Zhang
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Peng Wang
- Department of Pharmacy, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Wen Zhang
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
31
|
Long noncoding RNA PVT1 promotes tumour progression via the miR-128/ZEB1 axis and predicts poor prognosis in esophageal cancer. Clin Res Hepatol Gastroenterol 2021; 45:101701. [PMID: 33848670 DOI: 10.1016/j.clinre.2021.101701] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 03/24/2021] [Accepted: 03/30/2021] [Indexed: 02/04/2023]
Abstract
PURPOSE To confirm the value of PVT1 as a prognostic marker both in tumour tissue and serum of patients with esophageal cancer and clarify the mechanism. METHODS This study analyzed data obtained from 76 patients who were surgically treated from January 1, 2015, to December 31, 2016, and received a pathological diagnosis of ESCC. PVT1 levels in tumour tissue and serum were detected by qRT-PCR. Patient data were extracted from medical records, and follow-up evaluations were performed. The roles of PVT1 in proliferation, migration and invasion were by CCK-8 and Transwell in stable knockdown PVT1 cell lines. Signal pathways PVT1 promotes esophageal cancer were detected by qRT-PCR and western blot. RESULTS PVT1 was overexpression in esophageal cancer tissues and high levels of PVT1 were correlated with lymphatic metastasis, high TNM stage and postoperative metastasis. High levels of PVT1 in tissues were correlated with worse metastasis-free survival (MFS) (HR: 2.578, 95% CI: 1.369-4.853). High level of PVT1 in serum was correlated with postoperative metastasis. High levels of PVT1 in serum were correlated with worse overall survival (OS) (HR: 2.124, 95% CI: 1.078-4.186) and worse MFS (HR: 2.786, 95% CI: 1.557-4.985). Knockdown of PVT1 decreased the cell proliferation, migration and invasion abilities of esophageal cancer cell lines. The expression of ZEB1 was significantly downregulated, and the expression of E-cadherin was increased by the knockdown of PVT1. Knockdown of miR-128 restored the altered proliferation, migration and invasion and the expression of ZEB1 and E-cadherin caused by knockdown of PVT1. CONCLUSIONS High levels of PVT1 in serum were correlated with postoperative metastasis and a poor prognosis. PVT1 promoted ESCC progression via the miR-128/ZEB1/E-cadherin axis.
Collapse
|
32
|
Deciphering the Long Non-Coding RNAs and MicroRNAs Coregulation Networks in Ovarian Cancer Development: An Overview. Cells 2021; 10:cells10061407. [PMID: 34204094 PMCID: PMC8227049 DOI: 10.3390/cells10061407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/29/2021] [Accepted: 06/01/2021] [Indexed: 01/17/2023] Open
Abstract
Non-coding RNAs are emergent elements from the genome, which do not encode for proteins but have relevant cellular functions impacting almost all the physiological processes occurring in eukaryotic cells. In particular, microRNAs and long non-coding RNAs (lncRNAs) are a new class of small RNAs transcribed from the genome, which modulate the expression of specific genes at transcriptional and posttranscriptional levels, thus adding a new regulatory layer in the flux of genetic information. In cancer cells, the miRNAs and lncRNAs interactions with its target genes and functional pathways are deregulated as a consequence of epigenetic and genetic alterations occurring during tumorigenesis. In this review, we summarize the actual knowledge on the interplay of lncRNAs with its cognate miRNAs and mRNAs pairs, which interact in coregulatory networks with a particular emphasis on the mechanisms underlying its oncogenic behavior in ovarian cancer. Specifically, we reviewed here the evidences unraveling the relevant roles of lncRNAs/miRNAs pairs in altered regulation of cell migration, angiogenesis, therapy resistance, and Warburg effect. Finally, we also discussed its potential clinical implications in ovarian cancer and related endocrine disease therapies.
Collapse
|
33
|
Wang X, Cheng Z, Dai L, Jiang T, Li P, Jia L, Jing X, An L, Liu M, Wu S, Wang Y. LncRNA PVT1 Facilitates Proliferation, Migration and Invasion of NSCLC Cells via miR-551b/FGFR1 Axis. Onco Targets Ther 2021; 14:3555-3565. [PMID: 34113122 PMCID: PMC8180410 DOI: 10.2147/ott.s273794] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 05/17/2021] [Indexed: 12/30/2022] Open
Abstract
Background Long non-coding RNA (lncRNA) plasmacytoma variant translocation 1 (PVT1) plays a crucial role in non-small cell lung cancer (NSCLC). Nonetheless, regulatory effects of PVT1 on functions of NSCLC cells remain blurry. Methods Relative expression levels of PVT1, miR-551b and FGFR1 mRNA in tumor tissues and cells were examined employing quantitative real-time polymerase chain reaction (qRT-PCR); CCK-8 and BrdU assays were utilized for measuring cell viability and proliferation of H1299 and A549 cells; cell migration and invasion were detected deploying Transwell assay; dual-luciferase assay was used for the validation of binding sequence between PVT1 and miR-551b. FGFR1 expression in protein level was quantified employing Western blot. Results PVT1 was highly expressed in NSCLC tissues and cell lines, whereas miR-551b expression was down-regulated. Overexpression of PVT1 potentiated viability, proliferation, migration and invasion of NSCLC cells while miR-551b inhibited the biological behaviors mentioned above. MiR-551b was predicted and then confirmed as a direct downstream target of PVT1. Meanwhile, a negative correlation was observed between PVT1 expression and miR-551b expression in NSCLC tissues. Besides, PVT1 could increase FGFR1 expression by repressing miR-551b expression. Conclusion PVT1 promotes the proliferation, migration and invasion of NSCLC cells by indirectly mediating FGFR1 via targeting miR-551b.
Collapse
Affiliation(s)
- Xi Wang
- Department of Respiration, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
| | - Zhe Cheng
- Department of Respiration, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
| | - Lingling Dai
- Department of Respiration, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
| | - Tianci Jiang
- Department of Respiration, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
| | - Pengfei Li
- Department of Respiration, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
| | - Liuqun Jia
- Department of Respiration, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
| | - Xiaogang Jing
- Department of Respiration, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
| | - Lin An
- Department of Respiration, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
| | - Meng Liu
- Department of Respiration, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
| | - Shujun Wu
- Department of Respiration, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
| | - Yu Wang
- Department of Respiration, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
| |
Collapse
|
34
|
lncRNA PVT1 in the Pathogenesis and Clinical Management of Renal Cell Carcinoma. Biomolecules 2021; 11:biom11050664. [PMID: 33947142 PMCID: PMC8145429 DOI: 10.3390/biom11050664] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/22/2021] [Accepted: 04/27/2021] [Indexed: 12/24/2022] Open
Abstract
LncRNA PVT1 (plasmacytoma variant translocation 1) has become a staple of the lncRNA profile in patients with renal cell carcinoma (RCC). Common dysregulation in renal tumors outlines the essential role of PVT1 in the development of RCC. There is already a plethora of publications trying to uncover the cellular mechanisms of PVT1-mediated regulation and its potential exploitation in management of RCC. In this review, we summarize the literature focused on PVT1 in RCC and aim to synthesize the current knowledge on its role in the cells of the kidney. Further, we provide an overview of the lncRNA profiling studies that have identified a more or less significant association of PVT1 with the clinical behavior of RCC. Based on our search, we analyzed the 17 scientific papers discussed in this review that provide robust support for the indispensable role of PVT1 in RCC development and future personalized therapy.
Collapse
|
35
|
Tolomeo D, Agostini A, Visci G, Traversa D, Storlazzi CT. PVT1: A long non-coding RNA recurrently involved in neoplasia-associated fusion transcripts. Gene 2021; 779:145497. [PMID: 33600954 DOI: 10.1016/j.gene.2021.145497] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 02/04/2021] [Indexed: 12/12/2022]
Abstract
NGS technologies and bioinformatics tools allow the rapid identification of chimeric transcripts in cancer. More than 40,000 fusions are so far reported in the literature; however, for most of them, the role in oncogenesis is still not fully understood. This is the case for fusions involving the long non-coding RNA (lncRNA) Plasmacytoma variant translocation 1 (PVT1) (8q24.21). This lncRNA displays oncogenic functions in several cancer types interacting with microRNAs and proteins, but the role of PVT1 fusion transcripts is more obscure. These chimeras have been identified in both hematological malignancies and solid tumors, mainly arising from rearrangements and/or amplification of the 8q24 chromosomal region. In this review, we detail the full spectrum of PVT1 fusions in cancer, summarizing current knowledge about their genesis, function, and role as biomarkers.
Collapse
Affiliation(s)
- Doron Tolomeo
- Department of Biology, University of Bari, Via Orabona no.4, 70125 Bari, Italy.
| | - Antonio Agostini
- Department of Biomedical Sciences and Human Oncology, Unit of Internal Medicine "Guido Baccelli", University of Bari Medical School, Piazza Giulio Cesare 11, 70124 Bari, Italy.
| | - Grazia Visci
- Department of Biology, University of Bari, Via Orabona no.4, 70125 Bari, Italy.
| | - Debora Traversa
- Department of Biology, University of Bari, Via Orabona no.4, 70125 Bari, Italy.
| | | |
Collapse
|
36
|
Huang R, Bai C, Liu X, Zhou Y, Hu S, Li D, Xiang J, Chen J, Zhou P. The p53/RMRP/miR122 signaling loop promotes epithelial-mesenchymal transition during the development of silica-induced lung fibrosis by activating the notch pathway. CHEMOSPHERE 2021; 263:128133. [PMID: 33297121 DOI: 10.1016/j.chemosphere.2020.128133] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 07/13/2020] [Accepted: 08/24/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Understanding the roles of long noncoding RNAs (lncRNAs) in EMT would help with establishing novel avenues for further uncovering the mechanisms of lung fibrosis and identifying preventative and therapeutic targets. This study aimed to identify silica-induced specific lncRNAs and investigate the feedback loop regulation among their upstream and downstream genes. METHODS AND MATERIALS A microarray assay, quantitative real-time polymerase chain reaction and Western blot analysis dual-luciferase reporter gene activity and chromatin immunoprecipitation assays were used. Moreover, a silica-induced lung fibrosis mouse model was used to verify the roles of the lncRNAs. RESULTS Following silica exposure, both RNA component of mitochondrial RNA processing endoribonuclease (RMRP) and p53 were significantly upregulated during the EMT. The upregulation of p53 upon silica exposure activated RMRP expression, which promoted the EMT. When RMRP is overexpressed, additional RMRP acts as a sponge to bind to miR122, thus decreasing miR122 levels. Using microarrays, miR122 was identified as a potential upstream regulator of p53. This relationship was also verified using the dual-luciferase reporter gene. Hence, decreased miR122 levels result in an increase in p53 activity. More importantly, RMRP promotes the transcription of Notch 1, which, in turn, results in Notch pathway activation. We show that the p53/RMRP/miR122 pathway creates a positive feedback loop that promotes EMT progress by activating the Notch signaling pathway. CONCLUSION Our data indicated that p53/RMRP/miR122 feedback loop might contribute to the EMT development by activating Notch pathway, which provides new sight into understanding of the complex network regulating silica-induced lung fibrosis.
Collapse
Affiliation(s)
- Ruixue Huang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province, 410078, China.
| | - Chenjun Bai
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, AMMS, Beijing, 100850, China.
| | - Xiaodan Liu
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, AMMS, Beijing, 100850, China.
| | - Yao Zhou
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province, 410078, China.
| | - Sai Hu
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province, 410078, China.
| | - Decheng Li
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province, 410078, China.
| | - Jing Xiang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province, 410078, China.
| | - Jihua Chen
- Department of Nutrition Science and Food Hygiene, Xiangya School of Public Health, Central South University, 410078, Changsha, 63455553, China.
| | - Pingkun Zhou
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, AMMS, Beijing, 100850, China; Institute for Chemical Carcinogenesis, State Key Laboratory of Respiratory, School of Public Health, Guangzhou Medical University, Guangzhou, 511436, PR China.
| |
Collapse
|
37
|
Li M, Chi C, Zhou L, Chen Y, Tang X. Circular PVT1 regulates cell proliferation and invasion via miR-149-5p/FOXM1 axis in ovarian cancer. J Cancer 2021; 12:611-621. [PMID: 33391456 PMCID: PMC7738991 DOI: 10.7150/jca.52234] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 09/28/2020] [Indexed: 12/14/2022] Open
Abstract
Long non-coding RNA plasmacytoma variant translocation 1 (PVT1) is a dysregulated gene in malignancy and is associated with oncogenesis. In this study, we found PVT1 RNA was an ovarian specific expressing gene, and overexpressed in multiple cancer types, including ovarian cancer (OV). Higher expression levels of PVT1 are related to shorter survival time in OV patients, especially in patients with advanced stage and grade. Recent studies indicated circular PVT1 also had an important role in cancer progression, whose roles in OV remain unclear. Knockdown of circular PVT1 significantly suppressed OV cell proliferation, migration and invasion. Bioinformatics analysis demonstrated that circular PVT1 was involved in regulating angiogenesis, osteoblast differentiation, regulation of cell growth, type B pancreatic cell proliferation, negative regulation of apoptotic process, phospholipid homeostasis, regulation of neurogenesis, definitive hemopoiesis, cell migration, regulation of glucose metabolic process, central nervous system development and type 2 immune response. Our data showed miR-149-5p targeted FOXM1, which was regulated by circular PVT1. Forkhead Box M1 (FOXM1) expression in ovarian cancer exhibited high level when compared with normal tissues, and had relation with relatively poor survival. FOXM1 promoted cell viability and reduced FOXM1 could rescue circular influence of circular PVT1-caused carcinoma induction. In conclusion, circular PVT1 increased FOXM1 level via binding to miR-149-5p and thus affected ovarian cancer cell viability and migration.
Collapse
Affiliation(s)
- Min Li
- Department of Gynecology & Obstetrics, the First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China
| | - Chi Chi
- Department of Gynecology & Obstetrics, the First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China
| | - Liqin Zhou
- Department of Gynecology & Obstetrics, Suzhou Xiangcheng People's Hospital, Suzhou 215006, Jiangsu Province, China
| | - Youguo Chen
- Department of Gynecology & Obstetrics, the First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China
| | - Xiuwu Tang
- Department of Gynecology & Obstetrics, the First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China
| |
Collapse
|
38
|
Du R, Wu N, Li L. Aberrantly Expressed Non-Coding RNAs in the Placenta and Their Role in the Pathophysiology of Gestational Diabetes Mellitus. Diabetes Metab Syndr Obes 2021; 14:3719-3732. [PMID: 34456579 PMCID: PMC8387639 DOI: 10.2147/dmso.s325993] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/12/2021] [Indexed: 11/23/2022] Open
Abstract
Gestational diabetes mellitus (GDM), one of the most common complications during pregnancy, is associated with a high risk of short- and long-term adverse effects on the mother and offspring. Placenta-derived hormones and cytokines aggravate maternal insulin resistance (IR) during pregnancy, which in turn contribute to GDM. The hyperglycemia and IR in GDM result in aberrant placental structure and function adversely affecting fetal growth and well-being. Therefore, it is reasonable to assume that structural and functional alterations in the placenta contribute to the pathogenesis of GDM and GDM-related complications. Increasing evidence suggests that multiple non-coding RNAs (ncRNAs), including microRNAs, long non-coding RNAs, and circular RNAs, are dysregulated in placentas of patients with GDM and linked to abnormal placental structure, metabolism, and function. Manipulation of ncRNA expression led to some key pathophysiological features of GDM, such as trophoblast dysfunction, changes in intracellular glucose metabolism, and inflammation. Moreover, placenta-specific ncRNAs may be potential diagnostic biomarkers and even therapeutic targets for GDM. This review summarizes data published on the involvement of aberrantly expressed placental ncRNAs in GDM and provides information on their role in the pathogenesis of GDM and GDM-associated complications.
Collapse
Affiliation(s)
- Runyu Du
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, People’s Republic of China
| | - Na Wu
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, People’s Republic of China
| | - Ling Li
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, People’s Republic of China
- Correspondence: Ling Li Department of Endocrinology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, Liaoning Province, 110004, People’s Republic of ChinaTel +86 18940251181Fax +86 24-25944460 Email
| |
Collapse
|
39
|
Cáceres-Durán MÁ, Ribeiro-dos-Santos Â, Vidal AF. Roles and Mechanisms of the Long Noncoding RNAs in Cervical Cancer. Int J Mol Sci 2020; 21:ijms21249742. [PMID: 33371204 PMCID: PMC7766288 DOI: 10.3390/ijms21249742] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/03/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023] Open
Abstract
Cervical cancer (CC) continues to be one of the leading causes of death for women across the world. Although it has been determined that papillomavirus infection is one of the main causes of the etiology of the disease, genetic and epigenetic factors are also required for its progression. Among the epigenetic factors are included the long noncoding RNAs (lncRNAs), transcripts of more than 200 nucleotides (nt) that generally do not code for proteins and have been associated with diverse functions such as the regulation of transcription, translation, RNA metabolism, as well as stem cell maintenance and differentiation, cell autophagy and apoptosis. Recently, studies have begun to characterize the aberrant regulation of lncRNAs in CC cells and tissues, including Homeobox transcript antisense RNA (HOTAIR), H19, Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), Cervical Carcinoma High-Expressed 1 (CCHE1), Antisense noncoding RNA in the inhibitors of cyclin-dependent kinase 4 (ANRIL), Growth arrest special 5 (GAS5) and Plasmacytoma variant translocation 1 (PVT1). They have been associated with several disease-related processes such as cell growth, cell proliferation, cell survival, metastasis and invasion as well as therapeutic resistance, and are novel potential biomarkers for diagnosis and prognosis in CC. In this review, we summarize the current literature regarding the knowledge we have about the roles and mechanisms of the lncRNAs in cervical neoplasia.
Collapse
Affiliation(s)
- Miguel Ángel Cáceres-Durán
- Laboratory of Human and Medical Genetics, Institute of Biological Sciences, Graduate Program of Genetics and Molecular Biology, Federal University of Pará, Belém 66075-110, Brazil; (M.Á.C.-D.); (Â.R.-d.-S.)
| | - Ândrea Ribeiro-dos-Santos
- Laboratory of Human and Medical Genetics, Institute of Biological Sciences, Graduate Program of Genetics and Molecular Biology, Federal University of Pará, Belém 66075-110, Brazil; (M.Á.C.-D.); (Â.R.-d.-S.)
- Graduate Program in Oncology and Medical Sciences, Center of Oncology Researches, Federal University of Pará, Belém 66073-005, Brazil
| | - Amanda Ferreira Vidal
- Laboratory of Human and Medical Genetics, Institute of Biological Sciences, Graduate Program of Genetics and Molecular Biology, Federal University of Pará, Belém 66075-110, Brazil; (M.Á.C.-D.); (Â.R.-d.-S.)
- Correspondence: ; Tel.: +55-91-3201-7843
| |
Collapse
|
40
|
Poursheikhani A, Nokhandani N, Yousefi H, Rad DM, Sahebkar A. Clinicopathological Significance of Long Non-Coding RNA GHET1 in Human Cancers: A Meta-Analysis. Curr Pharm Biotechnol 2020; 21:1422-1432. [DOI: 10.2174/1389201021999200727163238] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 03/30/2020] [Accepted: 06/14/2020] [Indexed: 02/06/2023]
Abstract
Introduction:
Cancer is considered as the main public health problem and the second leading
cause of morbidity and mortality worldwide. Numerous environmental-lifestyle related risk factors
account for around one-third of cancer deaths. Recently, the key role of lncRNAs has been widely investigated
in a variety of disorders, including cancer. The lncRNA GHET1 has been considered as an
essential oncogenic lncRNA in many types of human cancers. Clinical investigations indicated that expression
of lncRNA GHET1 is correlated with clinicopathological characteristics in cancer. This metaanalysis
investigated the correlation between the lncRNA GHET1 expression and clinicopathological
features in different types of cancers.
Materials and Methods:
Comprehensive literature searches in PubMed, Scopus, and Web of
Knowledge were conducted up to April 11, 2019. Sixteen studies were included in this meta-analysis.
All statistical analyses were conducted using Stata software, version 12.0.
Results:
The pooled OR and 95%CIs of the sixteen relevant studies showed that over expression of
lncRNA GHET1 was associated with tumor-size ≥5 cm (OR= 2.51, 95% CI: 1.89-3.33, p=0.00,
I2=38.30%), positive lymph node metastasis (OR= 2.83, 95% CI: 1.78-4.52, p=0.00, I2=45.60%), advanced
tumor stage (OR= 3.92, 95% CI: 2.97-5.19, p=0.00, I2=0.00%), positive distant metastasis
(OR= 5.74, 95% CI: 2.58-12.77, p=0.00, I2=0.00%), advanced tumor status (OR= 2.97, 95% CI: 1.40-
6.29, p=0.01, I2=34.70%), and positive vascular invasion (OR= 2.69, 95% CI: 1.61-4.50, p=0.00,
I2=29.20%).
Conclusion:
Taken together, the current study demonstrated that overexpression of lncRNA GHET1 is
significantly associated with clinicopathological features in human cancers. Our results suggested that
lncRNA GHET1 can be utilized as a prognostic biomarker in human cancer.
Collapse
Affiliation(s)
- Arash Poursheikhani
- Medical Genetics Research Centre, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Negin Nokhandani
- Department of Medical Immunology, Faculty of Medicine, Golestan University of Medical Sciences, Golestan, Iran
| | - Hassan Yousefi
- Louisiana State University, School of Medicine, New Orleans, LA, United States
| | - Dorsa M. Rad
- Medical Genetics Research Centre, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | |
Collapse
|
41
|
Aznaourova M, Schmerer N, Schmeck B, Schulte LN. Disease-Causing Mutations and Rearrangements in Long Non-coding RNA Gene Loci. Front Genet 2020; 11:527484. [PMID: 33329688 PMCID: PMC7735109 DOI: 10.3389/fgene.2020.527484] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 11/02/2020] [Indexed: 12/12/2022] Open
Abstract
The classic understanding of molecular disease-mechanisms is largely based on protein-centric models. During the past decade however, genetic studies have identified numerous disease-loci in the human genome that do not encode proteins. Such non-coding DNA variants increasingly gain attention in diagnostics and personalized medicine. Of particular interest are long non-coding RNA (lncRNA) genes, which generate transcripts longer than 200 nucleotides that are not translated into proteins. While most of the estimated ~20,000 lncRNAs currently remain of unknown function, a growing number of genetic studies link lncRNA gene aberrations with the development of human diseases, including diabetes, AIDS, inflammatory bowel disease, or cancer. This suggests that the protein-centric view of human diseases does not capture the full complexity of molecular patho-mechanisms, with important consequences for molecular diagnostics and therapy. This review illustrates well-documented lncRNA gene aberrations causatively linked to human diseases and discusses potential lessons for molecular disease models, diagnostics, and therapy.
Collapse
Affiliation(s)
- Marina Aznaourova
- Institute for Lung Research, Philipps University Marburg, Marburg, Germany
| | - Nils Schmerer
- Institute for Lung Research, Philipps University Marburg, Marburg, Germany
| | - Bernd Schmeck
- Institute for Lung Research, Philipps University Marburg, Marburg, Germany.,Systems Biology Platform, German Center for Lung Research (DZL), Philipps University Marburg, Marburg, Germany.,Center for Synthetic Microbiology (SYNMIKRO), Philipps University Marburg, Marburg, Germany
| | - Leon N Schulte
- Institute for Lung Research, Philipps University Marburg, Marburg, Germany.,Systems Biology Platform, German Center for Lung Research (DZL), Philipps University Marburg, Marburg, Germany
| |
Collapse
|
42
|
Prognostic Value of Long Noncoding RNA SPRY4-IT1 on Survival Outcomes in Human Carcinomas: A Systematic Review and Meta-Analysis with TCGA Database. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5868602. [PMID: 33204703 PMCID: PMC7652610 DOI: 10.1155/2020/5868602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 10/16/2020] [Accepted: 10/20/2020] [Indexed: 12/27/2022]
Abstract
Background Emerging evidences have shown that long noncoding RNA SPRY4-IT1 can be aberrantly expressed in human cancers, and it could be an unfavorable prognostic factor in cancer patients. However, the prognostic mechanism of SPRY4-IT1 is still unclear. This study is aimed at evaluating its potential predictive value for cancer prognosis. Methods We thoroughly searched PubMed, Embase, Web of Science, and MEDLINE databases so as to explore the relationship between SPRY4-IT1 expression and cancer prognosis value. Then, TCGA datasets were used to validate the results of our meta-analysis. Results In all, seventeen studies involving 1650 patients were included in this meta-analysis. Pooled results showed that high expression of SPRY4-IT1 was significantly correlated with poor OS (HR = 1.96, 95% confidence interval (CI) = 1.47‐2.62, P < 0.001) in cancer patients. Furthermore, exploration of TCGA dataset further validated that SPRY4-IT1 was aberrantly expressed in various cancers, which partially confirmed our results in this meta-analysis. Conclusions The present systematic review and meta-analysis implicated that the aberrant expressions of lncRNA SPRY4-IT1 were strongly associated with clinical survival outcomes in various cancers and therefore might serve as a promising biomarker for predicting prognosis of human cancers.
Collapse
|
43
|
Zhang C, Ren X, Zhang W, He L, Qi L, Chen R, Tu C, Li Z. Prognostic and clinical significance of long non-coding RNA SNHG12 expression in various cancers. Bioengineered 2020; 11:1112-1123. [PMID: 33124951 PMCID: PMC8291808 DOI: 10.1080/21655979.2020.1831361] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Recently, increasing studies suggested that lncRNA SNHG12 was aberrantly expressed in kinds of cancers. However, definite prognostic value of SNHG12 remains unclear. We conducted this meta-analysis to evaluate the association between SNHG12 expression level and cancer prognosis. A literature retrieval was conducted by searching kinds of databases. The meta-analysis was performed by using Revman 5.2 and Stata 12.0 software. Besides, The Cancer Genome Atlas dataset was analyzed to validate the results in our meta-analysis via using Gene Expression Profiling Interactive Analysis. The pooled results showed that high SNHG12 expression significantly indicated worse overall survival and recurrence-free survival. Tumor type, sample size, survival analysis method, and cutoff value did not alter SNHG12 prognosis value according to stratified analysis results. Additionally, higher expression of SNHG12 suggested unfavorable clinicopathological outcomes including larger tumor size, lymph node metastasis, distant metastasis, and advanced clinical stage. Online cross-validation in TCGA dataset further indicated that cancer patients with upregulated SNHG12 expression had worse overall survival and disease-free survival. Therefore, elevated SNHG12 expression was associated with poor survival and unfavorable clinical outcomes in various cancers, and therefore might be a potential prognostic biomarker in human cancers. Abbreviations Akt: protein kinase B; CESC: cervical squamous cell carcinoma and endocervical adenocarcinoma; ceRNA: competitive endogenous RNA; CNKI: China National Knowledge Infrastructure; CI: confidence interval; CCNE1: cyclin E1; COAD: colon adenocarcinoma; DM: distant metastasis; DFS: disease-free survival; EMT: epithelial–mesenchymal transition; FISH: fluorescence in situ hybridization; FIGO: the International Federation of Gynecology and Obstetrics; GEPIA: Gene Expression Profiling Interactive Analysis; HR: hazard ratio; HIFα: hypoxia-inducible factor 1 α; KIRC: kidney renal clear cell carcinoma; KIRP: kidney renal papillary cell carcinoma; LIHC: hepatocellular carcinoma; LNM: lymph node metastasis; mTOR: mechanistic target of rapamycin kinase; MMP-9: matrix metalloproteinase 9; MCL1: myeloid cell leukemia 1; MLK3: mixed-lineage protein kinase 3; N/A: not available; NOS: Newcastle-Ottawa Scale; OR: odd ratio; OS: overall survival; PSA: prostate-specific antigen; PI3K: phosphoinositide 3-kinase; qRT-PCR: quantitative real-time polymerase chain reaction; READ: rectum adenocarcinoma; RFS: recurrence-free survival; SARC: sarcoma; SNHG12: small nucleolar RNA host gene 12; STAT3: signal transducer and activator of transcription 3; SOX4: SRY-box transcription factor 4; SOX5: SRY-box transcription factor 5; STAD: stomach adenocarcinoma; TCGA: The Cancer Genome Atlas; TNM: tumor node metastasis; WWP1: WW domain-containing E3 ubiquitin protein ligase 1; WHO grade: World Health Organization grade; ZEB2: zinc finger E-box-binding homeobox 2
Collapse
Affiliation(s)
- Chenghao Zhang
- Department of Orthopedics, the Second Xiangya Hospital, Central South University , Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, the Second Xiangya Hospital, Central South University , Changsha, China
| | - Xiaolei Ren
- Department of Orthopedics, the Second Xiangya Hospital, Central South University , Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, the Second Xiangya Hospital, Central South University , Changsha, China
| | - Wenchao Zhang
- Department of Orthopedics, the Second Xiangya Hospital, Central South University , Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, the Second Xiangya Hospital, Central South University , Changsha, China
| | - Lile He
- Department of Orthopedics, the Second Xiangya Hospital, Central South University , Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, the Second Xiangya Hospital, Central South University , Changsha, China
| | - Lin Qi
- Department of Orthopedics, the Second Xiangya Hospital, Central South University , Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, the Second Xiangya Hospital, Central South University , Changsha, China
| | - Ruiqi Chen
- Department of Orthopedics, the Second Xiangya Hospital, Central South University , Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, the Second Xiangya Hospital, Central South University , Changsha, China
| | - Chao Tu
- Department of Orthopedics, the Second Xiangya Hospital, Central South University , Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, the Second Xiangya Hospital, Central South University , Changsha, China
| | - Zhihong Li
- Department of Orthopedics, the Second Xiangya Hospital, Central South University , Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, the Second Xiangya Hospital, Central South University , Changsha, China
| |
Collapse
|
44
|
Li S, Zhao X, Cheng S, Li J, Bai X, Meng X. Downregulating long non-coding RNA PVT1 expression inhibited the viability, migration and phenotypic switch of PDGF-BB-treated human aortic smooth muscle cells via targeting miR-27b-3p. Hum Cell 2020; 34:335-348. [PMID: 33106979 DOI: 10.1007/s13577-020-00452-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 10/14/2020] [Indexed: 11/30/2022]
Abstract
Long non-coding RNA Plasmacytoma Variant Translocation 1 (LncRNA PVT1) was involved in various human diseases, but its role in aortic dissection (AD) remained to be fully examined. In this study, the viability and migration of human aortic smooth muscle cells (HASMCs) were respectively measured by MTT assay and wound-healing assay. Relative phenotypic switch-related protein expressions were measured with quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot as needed. An AD model was established in animals and hematoxylin-eosin (H&E) staining was used for pathological examination. We found that, in HASMCs, microRNA (miR)-27b-3p could competitively bind with PVT1. In AD, PVT1 expression was upregulated, yet that of miR-27b-3p was downregulated. Downregulating PVT1 reversed the effects of growth factor-BB (PDGF-BB) treatment on PVT1, miR-27b-3p and expressions of phenotypic switch-related markers, and cell viability and migration, while downregulating miR-27b-3p reversed the effects of downregulating PVT1. Moreover, downregulating PVT1 suppressed the effects of upregulated PVT1 and downregulated miR-27b-3p induced by AD as well as media degeneration in vivo. In conclusion, downregulating PVT1 expression suppressed the proliferation, migration and phenotypic switch of HASMCs treated by PDGF-BB via targeting miR-27b-3p.
Collapse
Affiliation(s)
- Shouming Li
- Department of Cardiovascular Surgery, Qilu Hospital of Shandong University, No.107, West Wenhua Road, Jinan, 250012, Shandong, China
| | - Xin Zhao
- Department of Cardiovascular Surgery, Qilu Hospital of Shandong University, No.107, West Wenhua Road, Jinan, 250012, Shandong, China.
| | - Shaopeng Cheng
- Department of Cardiovascular Surgery, Qilu Hospital of Shandong University, No.107, West Wenhua Road, Jinan, 250012, Shandong, China
| | - Jialiang Li
- Department of Cardiovascular Surgery, Qilu Hospital of Shandong University, No.107, West Wenhua Road, Jinan, 250012, Shandong, China
| | - Xiao Bai
- Department of Cardiovascular Surgery, Qilu Hospital of Shandong University, No.107, West Wenhua Road, Jinan, 250012, Shandong, China
| | - Xiangbin Meng
- Department of Cardiovascular Surgery, Qilu Hospital of Shandong University, No.107, West Wenhua Road, Jinan, 250012, Shandong, China
| |
Collapse
|
45
|
Safarzadeh E, Asadzadeh Z, Safaei S, Hatefi A, Derakhshani A, Giovannelli F, Brunetti O, Silvestris N, Baradaran B. MicroRNAs and lncRNAs-A New Layer of Myeloid-Derived Suppressor Cells Regulation. Front Immunol 2020; 11:572323. [PMID: 33133086 PMCID: PMC7562789 DOI: 10.3389/fimmu.2020.572323] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/28/2020] [Indexed: 12/23/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) constitute an important component in regulating immune responses in several abnormal physiological conditions such as cancer. Recently, novel regulatory tumor MDSC biology modulating mechanisms, including differentiation, expansion and function, were defined. There is growing evidence that miRNAs and long non-coding RNAs (lncRNA) are involved in modulating transcriptional factors to become complex regulatory networks that regulate the MDSCs in the tumor microenvironment. It is possible that aberrant expression of miRNAs and lncRNA contributes to MDSC biological characteristics under pathophysiological conditions. This review provides an overview on miRNAs and lncRNAs epiregulation of MDSCs development and immunosuppressive functions in cancer.
Collapse
Affiliation(s)
- Elham Safarzadeh
- Department of Microbiology & Immunology, Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Asadzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sahar Safaei
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Arash Hatefi
- Department of Pharmaceutics, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
| | - Afshin Derakhshani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Medical Oncology Unit-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Tumori "Giovanni Paolo II" of Bari, Bari, Italy
| | - Francesco Giovannelli
- Medical Oncology Unit-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Tumori "Giovanni Paolo II" of Bari, Bari, Italy
| | - Oronzo Brunetti
- Medical Oncology Unit-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Tumori "Giovanni Paolo II" of Bari, Bari, Italy
| | - Nicola Silvestris
- Medical Oncology Unit-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Tumori "Giovanni Paolo II" of Bari, Bari, Italy.,Department of Biomedical Sciences and Human Oncology, Department of Internal Medicine and Oncology (DIMO)-University of Bari, Bari, Italy
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
46
|
Handa H, Honma K, Oda T, Kobayashi N, Kuroda Y, Kimura-Masuda K, Watanabe S, Ishihara R, Murakami Y, Masuda Y, Tahara KI, Takei H, Kasamatsu T, Saitoh T, Murakami H. Long Noncoding RNA PVT1 Is Regulated by Bromodomain Protein BRD4 in Multiple Myeloma and Is Associated with Disease Progression. Int J Mol Sci 2020; 21:ijms21197121. [PMID: 32992461 PMCID: PMC7583953 DOI: 10.3390/ijms21197121] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/08/2020] [Accepted: 09/24/2020] [Indexed: 12/14/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are deregulated in human cancers and are associated with disease progression. Plasmacytoma Variant Translocation 1 (PVT1), a lncRNA, is located adjacent to the gene MYC, which has been linked to multiple myeloma (MM). PVT1 is expressed in MM and is associated with carcinogenesis. However, its role and regulation remain uncertain. We examined PVT1/MYC expression using real-time PCR in plasma cells purified from 59 monoclonal gammopathy of undetermined significance (MGUS) and 140 MM patients. The MM cell lines KMS11, KMS12PE, OPM2, and RPMI8226 were treated with JQ1, an MYC super-enhancer inhibitor, or MYC inhibitor 10058-F4. The expression levels of PVT1 and MYC were significantly higher in MM than in MGUS (p < 0.0001) and were positively correlated with disease progression (r = 0.394, p < 0.0001). JQ1 inhibited cell proliferation and decreased the expression levels of MYC and PVT1. However, 10054-F4 did not alter the expression level of PVT1. The positive correlation between MYC and PVT1 in patients, the synchronous downregulation of MYC and PVT1 by JQ1, and the lack of effect of the MYC inhibitor on PVT1 expression suggest that the expression of these two genes is co-regulated by a super-enhancer. Cooperative effects between these two genes may contribute to MM pathogenesis and progression.
Collapse
Affiliation(s)
- Hiroshi Handa
- Department of Hematology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan; (N.K.); (K.-i.T.); (H.T.)
- Correspondence: ; Tel.: +81-27-220-8166; Fax: +81-27-220-8173
| | - Kazuki Honma
- Department of Laboratory Science, Gunma University Graduate School of Health Science, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan; (K.H.); (Y.K.); (K.K.-M.); (S.W.); (R.I.); (Y.M.); (Y.M.); (T.K.); (T.S.); (H.M.)
| | - Tsukasa Oda
- Institute of Molecular and Cellular Regulation, Gunma University, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan;
| | - Nobuhiko Kobayashi
- Department of Hematology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan; (N.K.); (K.-i.T.); (H.T.)
| | - Yuko Kuroda
- Department of Laboratory Science, Gunma University Graduate School of Health Science, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan; (K.H.); (Y.K.); (K.K.-M.); (S.W.); (R.I.); (Y.M.); (Y.M.); (T.K.); (T.S.); (H.M.)
| | - Kei Kimura-Masuda
- Department of Laboratory Science, Gunma University Graduate School of Health Science, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan; (K.H.); (Y.K.); (K.K.-M.); (S.W.); (R.I.); (Y.M.); (Y.M.); (T.K.); (T.S.); (H.M.)
| | - Saki Watanabe
- Department of Laboratory Science, Gunma University Graduate School of Health Science, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan; (K.H.); (Y.K.); (K.K.-M.); (S.W.); (R.I.); (Y.M.); (Y.M.); (T.K.); (T.S.); (H.M.)
| | - Rei Ishihara
- Department of Laboratory Science, Gunma University Graduate School of Health Science, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan; (K.H.); (Y.K.); (K.K.-M.); (S.W.); (R.I.); (Y.M.); (Y.M.); (T.K.); (T.S.); (H.M.)
| | - Yuki Murakami
- Department of Laboratory Science, Gunma University Graduate School of Health Science, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan; (K.H.); (Y.K.); (K.K.-M.); (S.W.); (R.I.); (Y.M.); (Y.M.); (T.K.); (T.S.); (H.M.)
| | - Yuta Masuda
- Department of Laboratory Science, Gunma University Graduate School of Health Science, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan; (K.H.); (Y.K.); (K.K.-M.); (S.W.); (R.I.); (Y.M.); (Y.M.); (T.K.); (T.S.); (H.M.)
| | - Ken-ichi Tahara
- Department of Hematology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan; (N.K.); (K.-i.T.); (H.T.)
| | - Hisashi Takei
- Department of Hematology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan; (N.K.); (K.-i.T.); (H.T.)
| | - Tetsuhiro Kasamatsu
- Department of Laboratory Science, Gunma University Graduate School of Health Science, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan; (K.H.); (Y.K.); (K.K.-M.); (S.W.); (R.I.); (Y.M.); (Y.M.); (T.K.); (T.S.); (H.M.)
| | - Takayuki Saitoh
- Department of Laboratory Science, Gunma University Graduate School of Health Science, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan; (K.H.); (Y.K.); (K.K.-M.); (S.W.); (R.I.); (Y.M.); (Y.M.); (T.K.); (T.S.); (H.M.)
| | - Hirokazu Murakami
- Department of Laboratory Science, Gunma University Graduate School of Health Science, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan; (K.H.); (Y.K.); (K.K.-M.); (S.W.); (R.I.); (Y.M.); (Y.M.); (T.K.); (T.S.); (H.M.)
| |
Collapse
|
47
|
Xia H, Zhang Z, Yuan J, Niu Q. The lncRNA PVT1 promotes invasive growth of lung adenocarcinoma cells by targeting miR-378c to regulate SLC2A1 expression. Hum Cell 2020; 34:201-210. [PMID: 32960438 DOI: 10.1007/s13577-020-00434-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/11/2020] [Indexed: 12/11/2022]
Abstract
As an oncogene, plasmacytoma variant translocation 1 (PVT1) has been found to be highly expressed in several cancers. However, its specific role in lung adenocarcinoma (ADC) has not been fully elucidated. In this study, the expression of PVT1, miR-378c, and solute carrier family 2 member 1 (SLC2A1) was determined by quantitative real-time PCR and western blot. Dual-luciferase reporter assay was used to explore the relationship between PVT1 and miR-378c, as well as miR-378c and SLC2A1. The effects of PVT1 on the lung ADC cells proliferation, invasion, and migration were detected using MTT, wound-healing, and transwell assays. The results revealed that PVT1 was highly expressed in lung ADC cells, and the overexpression of PVT1 promoted the proliferation, migration, and invasion of lung ADC cells. In lung ADC cells, PVT1 negatively regulated miR-378c expression, and miR-378c negatively regulated SLC2A1 expression through binding to its 3'-untranslated coding regions. Knocking down of PVT1 inhibited the abilities of cell proliferation, migration, and invasion, while miR-378c inhibitor or SLC2A1 Vector diminished the effect. Together, silencing PVT1 downregulated SLC2A1 expression via targeting miR-378c, and then repressed lung ADC cells growth, migration, and invasion.
Collapse
Affiliation(s)
- Hongwei Xia
- Department of Thoracic, Qingpu Branch of Zhongshan Hospital Affiliated To Fudan University, Shanghai, 201700, China
| | - Zhiqiang Zhang
- Department of Thoracic, Qingpu Branch of Zhongshan Hospital Affiliated To Fudan University, Shanghai, 201700, China
| | - Jun Yuan
- Department of Thoracic, Qingpu Branch of Zhongshan Hospital Affiliated To Fudan University, Shanghai, 201700, China
| | - Qingling Niu
- Department of Peditrict, Qingpu Branch of Zhongshan Hospital Affiliated To Fudan University, No. 1158, East Park Road, Qingpu District, Shanghai, 201700, China.
| |
Collapse
|
48
|
Khalifa O, Errafii K, Al-Akl NS, Arredouani A. Noncoding RNAs in Nonalcoholic Fatty Liver Disease: Potential Diagnosis and Prognosis Biomarkers. DISEASE MARKERS 2020; 2020:8822859. [PMID: 33133304 PMCID: PMC7593715 DOI: 10.1155/2020/8822859] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/25/2020] [Accepted: 07/31/2020] [Indexed: 12/14/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is currently the most common chronic liver disease worldwide in part due to the concomitant obesity pandemic and insulin resistance (IR). It is increasingly becoming evident that NAFLD is a disease affecting numerous extrahepatic vital organs and regulatory pathways. The molecular mechanisms underlying the nonalcoholic steatosis formation are poorly understood, and little information is available on the pathways that are responsible for the progressive hepatocellular damage that follows lipid accumulation. Recently, much research has focused on the identification of the epigenetic modifications that contribute to NAFLD pathogenesis. Noncoding RNAs (ncRNAs) are one of such epigenetic factors that could be implicated in the NAFLD development and progression. In this review, we summarize the current knowledge of the genetic and epigenetic factors potentially underlying the disease. Particular emphasis will be put on the contribution of microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs) to the pathophysiology of NAFLD as well as their potential use as therapeutic targets or as markers for the prediction and the progression of the disease.
Collapse
Affiliation(s)
- Olfa Khalifa
- Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Khaoula Errafii
- Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Education City, Doha, Qatar
| | - Nayla S. Al-Akl
- Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Abdelilah Arredouani
- Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Education City, Doha, Qatar
| |
Collapse
|
49
|
Feng Y, Wu M, Hu S, Peng X, Chen F. LncRNA DDX11-AS1: a novel oncogene in human cancer. Hum Cell 2020; 33:946-953. [PMID: 32772230 DOI: 10.1007/s13577-020-00409-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 07/25/2020] [Indexed: 12/20/2022]
Abstract
Long noncoding RNA (lncRNA) is a newly identified type of noncoding RNA with a length of more than 200 nucleotides. The latest research shows that lncRNAs play important roles in the occurrence and development of human tumours by acting both as carcinogenic genes and as tumour suppressor genes. LncRNAs plays a role in various biological processes, such as cell growth, apoptosis, migration and invasion. The newly discovered lncRNA DDX11-AS1 is abnormally highly expressed in various malignant tumours, such as hepatocellular carcinoma, colorectal cancer, osteosarcoma, bladder cancer, NSCLC and gastric cancer. DDX11-AS1 mainly regulates the expression of related genes through direct or indirect ways to perform its functions in carcinogenicity. These results indicate that DDX11-AS1 may be a marker or therapeutic target of tumours. This review summarizes the biological function and mechanism of DDX11-AS1 in the process of tumour development.
Collapse
Affiliation(s)
- Yubin Feng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, 230032, Anhui Province, China.,The Key Laboratory of Anti-inflammatory and Immune medicines, Ministry of Education, Hefei, Anhui, China
| | - Maomao Wu
- Department of Pharmacy, Anhui Chest Hospital, Hefei, Anhui Province, China
| | - Shuang Hu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, 230032, Anhui Province, China.,The Key Laboratory of Anti-inflammatory and Immune medicines, Ministry of Education, Hefei, Anhui, China
| | - Xiaoqing Peng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, 230032, Anhui Province, China. .,The Key Laboratory of Anti-inflammatory and Immune medicines, Ministry of Education, Hefei, Anhui, China.
| | - Feihu Chen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, 230032, Anhui Province, China. .,The Key Laboratory of Anti-inflammatory and Immune medicines, Ministry of Education, Hefei, Anhui, China.
| |
Collapse
|
50
|
Wu H, Tian X, Zhu C. Knockdown of lncRNA PVT1 inhibits prostate cancer progression in vitro and in vivo by the suppression of KIF23 through stimulating miR-15a-5p. Cancer Cell Int 2020; 20:283. [PMID: 32624708 PMCID: PMC7330980 DOI: 10.1186/s12935-020-01363-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/17/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Prostate cancer (PCa) greatly threatens men's lives, with high incidence and mortality. Recently, the research of long non-coding RNAs (lncRNAs) has made breakthroughs in the development of human cancers. This study aimed to figure out the role and action mechanism of lncRNA PVT1 (PVT1) in PCa. METHODS The expression of PVT1, microRNA-15a-5p (miR-15a-5p) and kinesin family member 23 (KIF23) was detected by quantitative real-time polymerase chain reaction (qRT-PCR). Cell proliferation, apoptosis, migration and invasion were assessed by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT), flow cytometry and transwell assays, respectively. The protein levels of KIF23 and proliferation, apoptosis, and epithelial-mesenchymal transition (EMT)-related markers were quantified by western blot. The relationship between miR-15a-5p and PVT1 or KIF23 was predicted by starBase v2.0 and verified by dual-luciferase reporter assay. Xenograft assay was conducted to determine the role of PVT1 in vivo. RESULTS The expression of PVT1 and KIF23 was enhanced, while miR-15a-5p expression was reduced in PCa tissues and cells. PVT1 interference inhibited proliferation, migration and invasion but promoted apoptosis of PCa cells. MiR-15a-5p was a target of PVT1, and KIF23 was a target of miR-15a-5p. The inhibition of miR-15a-5p reversed the effects of PVT1 interference and suppressed the roles of KIF23 knockdown. KIF23 expression was regulated by PVT1 through miR-15a-5p. PVT1 interference blocked PCa progression in vivo. CONCLUSION PVT1 knockdown had effects on the progression of PCa by inhibiting the expression of KIF23 via enriching miR-15a-5p in vitro and in vivo, suggesting that PVT1 might be a novel biomarker for the treatment of PCa.
Collapse
Affiliation(s)
- Huijuan Wu
- Department of Telemedicine and Internet Medical Center, The Huaihe Hospital of Henan University, No. 115 Ximen Avenue, Kaifeng, 475000 Henan China
| | - Xin Tian
- Department of Urology Surgery, The Huaihe Hospital of Henan University, Kaifeng, Henan China
| | - Chaoyang Zhu
- Department of Urology Surgery, The Huaihe Hospital of Henan University, Kaifeng, Henan China
| |
Collapse
|