1
|
Production and Characterization of Peptide Antibodies to the C-Terminal of Frameshifted Calreticulin Associated with Myeloproliferative Diseases. Int J Mol Sci 2022; 23:ijms23126803. [PMID: 35743246 PMCID: PMC9223637 DOI: 10.3390/ijms23126803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/04/2022] [Accepted: 06/15/2022] [Indexed: 11/25/2022] Open
Abstract
Myeloproliferative Neoplasms (MPNs) constitute a group of rare blood cancers that are characterized by mutations in bone marrow stem cells leading to the overproduction of erythrocytes, leukocytes, and thrombocytes. Mutations in calreticulin (CRT) genes may initiate MPNs, causing a novel variable polybasic stretch terminating in a common C-terminal sequence in the frameshifted CRT (CRTfs) proteins. Peptide antibodies to the mutated C-terminal are important reagents for research in the molecular mechanisms of MPNs and for the development of new diagnostic assays and therapies. In this study, eight peptide antibodies targeting the C-terminal of CRTfs were produced and characterised by modified enzyme-linked immunosorbent assays using resin-bound peptides. The antibodies reacted to two epitopes: CREACLQGWTE for SSI-HYB 385-01, 385-02, 385-03, 385-04, 385-07, 385-08, and 385-09 and CLQGWT for SSI-HYB 385-06. For the majority of antibodies, the residues Cys1, Trp9, and Glu11 were essential for reactivity. SSI-HYB 385-06, with the highest affinity, recognised recombinant CRTfs produced in yeast and the MARIMO cell line expressing CRTfs when examined in Western immunoblotting. Moreover, SSI-HYB 385-06 occasionally reacted to CRTfs from MPN patients when analysed by flow cytometry. The characterized antibodies may be used to understand the role of CRTfs in the pathogenesis of MPNs and to design and develop new diagnostic assays and therapeutic targets.
Collapse
|
2
|
Zakaria NA, Rosle NA, Siti Asmaa MJ, Aziee S, Haiyuni MY, Samat NA, Husin A, Hassan R, Ramli M, Mohamed Yusoff S, Ibrahim IK, Al-Jamal HAN, Johan MF. Conformation sensitive gel electrophoresis for the detection of calreticulin mutations in BCR-ABL1-negative myeloproliferative neoplasms. Int J Lab Hematol 2021; 43:1451-1457. [PMID: 34125992 DOI: 10.1111/ijlh.13628] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 05/20/2021] [Accepted: 05/25/2021] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Calreticulin (CALR) mutations in myeloproliferative neoplasms (MPN) have been reported to be key markers in the molecular diagnosis, particularly in patients lacking JAK2 V617F mutation. In most current reports, CALR mutations were analysed by either allele-specific PCR (AS-PCR), or the more expensive quantitative real-time PCR, pyrosequencing and next-generation sequencing. Hence, we report the use of an alternative method, the conformation sensitive gel electrophoresis (CSGE) for the detection of CALR mutations in BCR-ABL1-negative MPN patients. METHODS Forty BCR-ABL1-negative MPN patients' DNA: 19 polycythemia vera (PV), 7 essential thrombocytosis (ET) and 14 primary myelofibrosis (PMF), were screened for CALR mutations by CSGE. PCR primers were designed to amplify sequences spanning between exons 8 and 9 to target the mutation hotspots in CALR. Amplicons displaying abnormal CSGE profiles by electrophoresis were directly sequenced, and results were analysed by BioEdit Sequence Alignment Editor v7.2.6. CSGE results were compared with AS-PCR and confirmed by Sanger sequencing. RESULTS CSGE identified 4 types of mutations; 2 PMF patients with either CALR type 1 (c.1099_1150del52) or type 2 (c.1155_1156insTTGTC), 1 ET patient with nucleotide deletion (c.1121delA) and insertion (c.1190insA) and 1 PV patient with p.K368del (c.1102_1104delAAG) and insertion (c.1135insA) inframe mutations. Three patients have an altered KDEL motif at the C-terminal of CALR protein. In comparison, AS-PCR only able to detect two PMF patients with mutations, either type 1 and type 2. CONCLUSION CSGE is inexpensive, sensitive and reliable alternative method for the detection of CALR mutations in BCR-ABL1-negative MPN patients.
Collapse
Affiliation(s)
- Nur Atikah Zakaria
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Norfifiana Alisa Rosle
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Mat Jusoh Siti Asmaa
- School of Health Sciences, Universiti Sains Malaysia, Kelantan, Malaysia.,Universiti Sains Malaysia (USM)-RIKEN Interdisciplinary Collaboration for Advanced Sciences (URICAS), Penang, Malaysia
| | - Sudin Aziee
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Mohd Yassim Haiyuni
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Nurul Ameera Samat
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Azlan Husin
- Department of Medicine, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia.,Hospital USM, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Rosline Hassan
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia.,Hospital USM, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Marini Ramli
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia.,Hospital USM, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Shafini Mohamed Yusoff
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia.,Hospital USM, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Ibrahim Khidir Ibrahim
- Faculty of Medical Laboratory Sciences, Department of Haematology, Al-Neelain University, Khartoum, Sudan
| | - Hamid Ali Nagi Al-Jamal
- Diagnostic and Biomedicine, Faculty of Health Sciences, Universiti Sultan Zainal Abidin, Terengganu, Malaysia
| | - Muhammad Farid Johan
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia.,Hospital USM, Universiti Sains Malaysia, Kelantan, Malaysia
| |
Collapse
|
3
|
Cytogenetic evolution in myeloproliferative neoplasms with different molecular abnormalities. Blood Cells Mol Dis 2019; 77:120-128. [PMID: 31059941 DOI: 10.1016/j.bcmd.2019.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 04/12/2019] [Accepted: 04/12/2019] [Indexed: 11/20/2022]
Abstract
We investigated the changes in chromosomal abnormalities in myeloproliferative neoplasm (MPN) patients during long-term follow-up. In total, 28 MPN patients (22 with primary myelofibrosis and 6 with polycythemia vera) were included. Among them, 25 patients underwent serial bone marrow (BM) biopsies during disease progression, and 3 patients had cytogenetic abnormalities at initial diagnosis but lacked follow-up BM biopsies. JAK2, CALR, and MPL mutation analyses were performed. Targeted sequencing analysis was conducted in 11 patients. Among the 28 patients, 21 (75.0%) had cytogenetic abnormalities either at diagnosis (8/26) or during follow-up. The median time from the initial analysis to the appearance of additional cytogenetic abnormalities was 8.4 years. Among the chromosomal abnormalities at initial diagnosis, trisomy 8 (3/26, 11.5%) was the most frequent, followed by gain of 1q, del(20q), and del(9q) (each in 2/26). Among all chromosomal abnormalities, including those that occurred during follow-up, the most frequent was del(20q) and +1q (8/28, 28.6%), followed by del(6p) (14.3%) and trisomy 8 (10.7%). Del(20q) was more frequent in CALR-mutated patients (4/6, 66.7%) than in JAK2-mutated patients (3/19, 15.8%, P = 0.016). The presence of cytogenetic abnormalities at initial diagnosis was associated with poor prognosis. Cytogenetic evolution may provide interesting insights into the disease course.
Collapse
|
4
|
Palumbo GA, Stella S, Pennisi MS, Pirosa C, Fermo E, Fabris S, Cattaneo D, Iurlo A. The Role of New Technologies in Myeloproliferative Neoplasms. Front Oncol 2019; 9:321. [PMID: 31106152 PMCID: PMC6498877 DOI: 10.3389/fonc.2019.00321] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 04/09/2019] [Indexed: 12/17/2022] Open
Abstract
The hallmark of BCR-ABL1-negative myeloproliferative neoplasms (MPNs) is the presence of a driver mutation in JAK2, CALR, or MPL gene. These genetic alterations represent a key feature, useful for diagnostic, prognostic and therapeutical approaches. Molecular biology tests are now widely available with different specificity and sensitivity. Recently, the allele burden quantification of driver mutations has become a useful tool, both for prognostication and efficacy evaluation of therapies. Moreover, other sub-clonal mutations have been reported in MPN patients, which are associated with poorer prognosis. ASXL1 mutation appears to be the worst amongst them. Both driver and sub-clonal mutations are now taken into consideration in new prognostic scoring systems and may be better investigated using next generation sequence (NGS) technology. In this review we summarize the value of NGS and its contribution in providing a comprehensive picture of mutational landscape to guide treatment decisions. Finally, discussing the role that NGS has in defining the potential risk of disease development, we forecast NGS as the standard molecular biology technique for evaluating these patients.
Collapse
Affiliation(s)
- Giuseppe A Palumbo
- Department of Scienze Mediche, Chirurgiche e Tecnologie Avanzate "G.F. Ingrassia," University of Catania, Catania, Italy
| | - Stefania Stella
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico-Vittorio Emanuele, Catania, Italy.,Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Maria Stella Pennisi
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico-Vittorio Emanuele, Catania, Italy.,Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Cristina Pirosa
- Postgraduate School of Hematology, University of Catania, Catania, Italy
| | - Elisa Fermo
- Hematology Division, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Sonia Fabris
- Hematology Division, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Daniele Cattaneo
- Hematology Division, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Alessandra Iurlo
- Hematology Division, Myeloproliferative Syndromes Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
5
|
Mózes R, Gángó A, Sulák A, Vida L, Reiniger L, Timár B, Krenács T, Alizadeh H, Masszi T, Gaál-Weisinger J, Demeter J, Csomor J, Matolcsy A, Kajtár B, Bödör C. Calreticulin mutation specific CAL2 immunohistochemistry accurately identifies rare calreticulin mutations in myeloproliferative neoplasms. Pathology 2018; 51:301-307. [PMID: 30606612 DOI: 10.1016/j.pathol.2018.11.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/31/2018] [Accepted: 11/08/2018] [Indexed: 12/23/2022]
Abstract
Mutations of the multifunctional protein calreticulin (CALR) are recognised as one of the main driver alterations involved in the pathogenesis of Philadelphia negative myeloproliferative neoplasms (Ph- MPN) and also represent a major diagnostic criterion in the most recent World Health Organization classification of myeloid neoplasms. Nowadays, quantitative assessment of the driver mutations is gaining importance, as recent studies demonstrated the clinical relevance of the mutation load reflecting the size of the mutant clone. Here, we performed for the first time a manual and automated quantitative assessment of the CALR mutation load at protein level using CAL2, a recently developed CALR mutation specific monoclonal antibody, on a cohort of 117 patients with essential thrombocythemia (ET) or primary myelofibrosis (PMF) and compared the CALR protein mutation loads with the CALR mutation load values established by a molecular assay. Eighteen different CALR mutations were detected in the cohort of the 91 CALR mutant cases. Mutation loads of the CALR mutations were between 13% and 94% with mean value in PMF cases significantly higher than ET cases (49.94 vs 41.09; t-test, p=0.004). Cases without CALR mutation (n=26) showed no or only minimal labelling with the CAL2 antibody, while all 18 different types of CALR mutations were associated with CAL2 labelling. The CALR mutation load showed a significant correlation (p=0.03) with the occurrence of major thrombotic events, with higher mutation load in patients presenting with these complications. We report a 100% concordance between the mutation status determined by immunohistochemistry and the CALR molecular assay, and we extend the applicability of this approach to 16 rare CALR mutations previously not analysed at protein level.
Collapse
Affiliation(s)
- Réka Mózes
- MTA-SE Momentum Molecular Oncohematology Research Group, Semmelweis University, 1st Department of Pathology and Experimental Cancer Research, Budapest, Hungary
| | - Ambrus Gángó
- MTA-SE Momentum Molecular Oncohematology Research Group, Semmelweis University, 1st Department of Pathology and Experimental Cancer Research, Budapest, Hungary
| | - Adrienn Sulák
- 2nd Department of Internal Medicine and Cardiology Center, University of Szeged, Szeged, Hungary
| | - Livia Vida
- Department of Pathology, University of Pécs, Pécs, Hungary
| | - Lilla Reiniger
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Botond Timár
- MTA-SE Momentum Molecular Oncohematology Research Group, Semmelweis University, 1st Department of Pathology and Experimental Cancer Research, Budapest, Hungary
| | - Tibor Krenács
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Hussain Alizadeh
- 1st Department of Internal Medicine, Hematology Division, University of Pécs, Pécs, Hungary
| | - Tamás Masszi
- 3rd Department of Internal Medicine, Semmelweis University, Budapest, Hungary
| | | | - Judit Demeter
- 1st Department of Internal Medicine, Semmelweis University, Budapest, Hungary
| | - Judit Csomor
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - András Matolcsy
- MTA-SE Momentum Molecular Oncohematology Research Group, Semmelweis University, 1st Department of Pathology and Experimental Cancer Research, Budapest, Hungary
| | - Béla Kajtár
- Department of Pathology, University of Pécs, Pécs, Hungary.
| | - Csaba Bödör
- MTA-SE Momentum Molecular Oncohematology Research Group, Semmelweis University, 1st Department of Pathology and Experimental Cancer Research, Budapest, Hungary.
| |
Collapse
|