1
|
Kciuk M, Marciniak B, Celik I, Zerroug E, Dubey A, Sundaraj R, Mujwar S, Bukowski K, Mojzych M, Kontek R. Pyrazolo[4,3- e]tetrazolo[1,5- b][1,2,4]triazine Sulfonamides as an Important Scaffold for Anticancer Drug Discovery-In Vitro and In Silico Evaluation. Int J Mol Sci 2023; 24:10959. [PMID: 37446136 DOI: 10.3390/ijms241310959] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Pyrazolo[4,3-e]tetrazolo[1,5-b][1,2,4]triazine sulfonamides (MM-compounds) are a relatively new class of heterocyclic compounds that exhibit a wide variety of biological actions, including anticancer properties. Here, we used caspase enzyme activity assays, flow cytometry analysis of propidium iodide (PI)-stained cells, and a DNA laddering assay to investigate the mechanisms of cell death triggered by the MM-compounds (MM134, -6, -7, and -9). Due to inconsistent results in caspase activity assays, we have performed a bromodeoxyuridine (BrdU) incorporation assay, colony formation assay, and gene expression profiling. The compounds' cytotoxic and pro-oxidative properties were also assessed. Additionally, computational studies were performed to demonstrate the potential of the scaffold for future drug discovery endeavors. MM-compounds exhibited strong micromolar (0.06-0.35 µM) anti-proliferative and pro-oxidative activity in two cancer cell lines (BxPC-3 and PC-3). Activation of caspase 3/7 was observed following a 24-h treatment of BxPC-3 cells with IC50 concentrations of MM134, -6, and -9 compounds. However, no DNA fragmentation characteristics for apoptosis were observed in the flow cytometry and DNA laddering analysis. Gene expression data indicated up-regulation of BCL10, GADD45A, RIPK2, TNF, TNFRSF10B, and TNFRSF1A (TNF-R1) following treatment of cells with the MM134 compound. Moreover, in silico studies indicated AKT2 kinase as the primary target of compounds. MM-compounds exhibit strong cytotoxic activity with pro-oxidative, pro-apoptotic, and possibly pro-necroptotic properties that could be employed for further drug discovery approaches.
Collapse
Affiliation(s)
- Mateusz Kciuk
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
- Doctoral School of Exact and Natural Sciences, University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland
| | - Beata Marciniak
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Ismail Celik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri 38280, Turkey
| | - Enfale Zerroug
- Group of Computational and Pharmaceutical Chemistry, LMCE Laboratory, University of Biskra, BP 145, Biskra 07000, Algeria
| | - Amit Dubey
- Computational Chemistry and Drug Discovery Division, Quanta Calculus, Greater Noida 274203, Uttar Prades, India
- Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai 602105, Tamil Nadu, India
| | - Rajamanikandan Sundaraj
- Centre for Drug Discovery, Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore 641021, Tamil Nadu, India
| | - Somdutt Mujwar
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
| | - Karol Bukowski
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Mariusz Mojzych
- Department of Chemistry, Siedlce University of Natural Sciences and Humanities, 3 Maja 54, 08-110 Siedlce, Poland
| | - Renata Kontek
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| |
Collapse
|
2
|
Adinew GM, Messeha SS, Taka E, Badisa RB, Antonie LM, Soliman KFA. Thymoquinone Alterations of the Apoptotic Gene Expressions and Cell Cycle Arrest in Genetically Distinct Triple-Negative Breast Cancer Cells. Nutrients 2022; 14:2120. [PMID: 35631261 PMCID: PMC9144154 DOI: 10.3390/nu14102120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/12/2022] [Accepted: 05/16/2022] [Indexed: 02/08/2023] Open
Abstract
Breast cancer (BC) is the most common cancer in women worldwide, and it is one of the leading causes of cancer death in women. triple-negative breast Cancer (TNBC), a subtype of BC, is typically associated with the highest pathogenic grade and incidence in premenopausal and young African American (AA) women. Chemotherapy, the most common treatment for TNBC today, can lead to acquired resistance and ineffective treatment. Therefore, novel therapeutic approaches are needed to combat medication resistance and ineffectiveness in TNBC patients. Thymoquinone (TQ) is shown to have a cytotoxic effect on human cancer cells in vitro. However, TQ's mode of action and precise mechanism in TNBC disease in vitro have not been adequately investigated. Therefore, TQ's effects on the genetically different MDA-MB-468 and MDA-MB-231 human breast cancer cell lines were assessed. The data obtained show that TQ displayed cytotoxic effects on MDA-MB-468 and MDA-MB-231 cells in a time- and concentration-dependent manner after 24 h, with IC50 values of 25.37 µM and 27.39 µM, respectively. Moreover, MDA-MB-231 and MDA-MB-468 cells in a scratched wound-healing assay displayed poor wound closure, inhibiting invasion and migration via cell cycle blocking after 24 h. TQ arrested the cell cycle phase in MDA-MB-231 and MDA-MB-468 cells. The three cell cycle stages in MDA-MB-468 cells were significantly affected at 15 and 20 µM for G0/G1 and S phases, as well as all TQ concentrations for G2/M phases. In MDA-MB-468 cells, there was a significant decrease in G0/G1 phases with a substantial increase in the S phase and G2/M phases. In contrast, MDA-MB-231 showed a significant effect only during the two cell cycle stages (S and G2/M), at concentrations of 15 and 20 µM for S phases and all TQ values for G2/M phases. The TQ effect on the apoptotic gene profiles indicated that TQ upregulated 15 apoptotic genes in MDA-MB-231 TNBC cells, including caspases, GADD45A, TP53, DFFA, DIABLO, BNIP3, TRAF2/3, and TNFRSF10A. In MDA-MB-468 cells, 16 apoptotic genes were upregulated, including TNFRSF10A, TNF, TNFRSF11B, FADD TNFRSF10B, CASP2, and TRAF2, all of which are important for the apoptotic pathway andsuppress the expression of one anti-apoptotic gene, BIRC5, in MDA-MB-231 cells. Compared to MDA-MB-231 cells, elevated levels of TNF and their receptor proteins may contribute to their increased sensitivity to TQ-induced apoptosis. It was concluded from this study that TQ targets the MDA-MB-231 and MDA-MB-468 cells differently. Additionally, due to the aggressive nature of TNBC and the lack of specific therapies in chemoresistant TNBC, our findings related to the identified apoptotic gene profile may point to TQ as a potential agent for TNBC therapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Karam F. A. Soliman
- Division of Pharmaceutical Sciences, Institute of Public Health, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA; (G.M.A.); (S.S.M.); (E.T.); (R.B.B.); (L.M.A.)
| |
Collapse
|
3
|
Li R, Liu B, Xu W, Yu L, Zhang C, Cheng J, Tao L, Li Z, Zhang Y. DNA damage and cell apoptosis induced by fungicide difenoconazole in mouse mononuclear macrophage RAW264.7. ENVIRONMENTAL TOXICOLOGY 2022; 37:650-659. [PMID: 34877763 DOI: 10.1002/tox.23432] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/25/2021] [Accepted: 11/27/2021] [Indexed: 06/13/2023]
Abstract
Difenoconazole (DFC) is a typical triazole fungicide. Because of its effective bactericidal activity, it has been widely used in agricultural products such as fruits and vegetables. This study revealed the cytotoxic effect of fungicide DFC on mouse monocyte macrophage RAW264.7. The results showed that the IC50 value of DFC on RAW264.7 cells was 37.08 μM (24 h). DFC can significantly inhibit the viability of RAW264.7 cells, induce DNA damage and enhance apoptosis. The established cytotoxicity test showed that DFC-induced DNA double strand breaks in RAW264.7 cells. DFC-treated cells showed typical morphological changes of apoptosis, including chromatin condensation and nuclear lysis. In addition, DFC can induce the release of Cyt c, promote the collapse of mitochondrial membrane potential and increase the Bax/Bcl-2 ratio in RAW264.7 cells. Through this research, people further understand the toxicity of DFC and provide a more scientific basis for its safety application and risk management.
Collapse
Affiliation(s)
- Ruirui Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Bin Liu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
- Shanghai Qingpu District Agricultural Technology Extension Service Center, Shanghai, China
| | - Wenping Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Lvnan Yu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Cheng Zhang
- Department of Pathology, UT southwestern Medical Center, Dallas, Texas, USA
| | - Jiagao Cheng
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Liming Tao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Zhong Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Yang Zhang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
4
|
Challenging the Ex Vivo Lung Perfusion Procedure With Continuous Dialysis in a Pig Model. Transplantation 2021; 106:979-987. [PMID: 34468431 DOI: 10.1097/tp.0000000000003931] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Normothermic ex vivo lung perfusion (EVLP) increases the pool of donor lungs by requalifying marginal lungs refused for transplantation through the recovery of macroscopic and functional properties. However the cell response and metabolism occurring during EVLP generate a nonphysiological accumulation of electrolytes, metabolites, cytokines and other cellular byproducts which may have deleterious effects both at the organ and cell levels, with impact on transplantation outcomes. METHODS We analyzed the physiological, metabolic and genome-wide response of lungs undergoing a 6-hour EVLP procedure in a pig model in 4 experimental conditions: without perfusate modification, with partial replacement of fluid, and with adult or pediatric dialysis filters. RESULTS Adult and pediatric dialysis stabilized the electrolytic and metabolic profiles while maintaining acid-base and gas exchanges. Pediatric dialysis increased the level of IL-10 and IL-6 in the perfusate. Despite leading to modification of the perfusate composition, the 4 EVLP conditions did not affect the gene expression profiles which were associated in all cases with increased cell survival, cell proliferation, inflammatory response and cell movement, and with inhibition of bleeding. CONCLUSIONS Management of EVLP perfusate by periodic replacement and continuous dialysis has no significant effect on the lung function nor on the gene expression profiles ex vivo. These results suggest that the accumulation of dialysable cell products does not significantly alter the lung cell response during EVLP, a finding that may have impact on EVLP management in the clinic.
Collapse
|
5
|
Al Dubayee M, Alshahrani A, Aljada D, Zahra M, Alotaibi A, Ababtain I, Alnaim M, Alahmari A, Aljarallah A, Elahi MA, Fakhoury HMA. Gene Expression Profiling of Apoptotic Proteins in Circulating Peripheral Blood Mononuclear Cells in Type II Diabetes Mellitus and Modulation by Metformin. Diabetes Metab Syndr Obes 2021; 14:1129-1139. [PMID: 33758522 PMCID: PMC7979348 DOI: 10.2147/dmso.s300048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 02/23/2021] [Indexed: 11/23/2022] Open
Abstract
INTRODUCTION Insulin resistance in obesity and type 2 diabetes mellitus (T2DM) is associated with cardiovascular complications such as atherosclerosis. On the other hand, the reduction of apoptosis in macrophages has been linked with accelerated atherosclerosis. Apoptosis is controlled by a different family of proteins including Bcl-2 and caspases. METHODS To examine apoptosis in insulin resistance, we assessed the mRNA expression by qRT-PCR of several Bcl-2 family members, as well as caspase-3, -7, -8, and -9 in peripheral blood mononuclear cells (PBMCs) isolated from lean, obese, diabetic, and diabetic on metformin individuals. RESULTS PBMCs of diabetic individuals exhibited reduced expression of caspase-7 and increased expression of Bcl-10, Bad, Bax, Bid, and caspase-3. T2DM on metformin group had significantly higher Bad, Bax, and caspase-7 expression. DISCUSSION The moderate up-regulation of pro-apoptotic Bcl-10, Bax, Bad, Bid, and the effector caspase-3 coupled with inhibition of caspase-7 in circulating PBMCs of T2DM could be the result of increased inflammation in T2DM. Metformin treatment significantly inhibited the expression of Bcl-10, Bid, and caspase-3 and upregulated Bad/Bax/caspase-7 pathway suggesting the activation of Bad/Bax/caspase-7 apoptotic pathway. Further studies are warranted to elicit the underlying apoptotic pathways of PBMCs in T2DM and following metformin treatment.
Collapse
Affiliation(s)
- Mohammed Al Dubayee
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center (KAIMRC), Riyadh, Saudi Arabia
- Department of Medicine, Ministry of National Guard Health Affairs (MNG-HA), Riyadh, Saudi Arabia
- Correspondence: Mohammed Al Dubayee College of Medicine, King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), P.O. Box 22490, Riyadh, Saudi ArabiaTel +966 11 801 1111 ext: 53551 Email
| | - Awad Alshahrani
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center (KAIMRC), Riyadh, Saudi Arabia
- Department of Medicine, Ministry of National Guard Health Affairs (MNG-HA), Riyadh, Saudi Arabia
| | - Dana Aljada
- College of Liberal Arts and Sciences, Hofstra University, Hempstead, NY, USA
| | - Mahmoud Zahra
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Ahmed Alotaibi
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Riyadh, Saudi Arabia
| | - Ibrahim Ababtain
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Riyadh, Saudi Arabia
| | - Malik Alnaim
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Riyadh, Saudi Arabia
| | - Ali Alahmari
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Riyadh, Saudi Arabia
| | - Abdullah Aljarallah
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Riyadh, Saudi Arabia
| | - Muhammad Affan Elahi
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Hana M A Fakhoury
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| |
Collapse
|