1
|
Zhou W, Lv X, Zhang S, Gao Z, Li B, Wang X. A new approach towards highly sensitive detection of endogenous N-acetylaspartic acid, N-acetylglutamic acid, and N-acetylaspartylglutamic acid in brain tissues based on strong anion exchange monolith microextraction coupled with UHPLC-MS/MS. Mikrochim Acta 2024; 191:360. [PMID: 38819644 DOI: 10.1007/s00604-024-06431-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/12/2024] [Indexed: 06/01/2024]
Abstract
A novel in-tube solid-phase microextraction coupled with an ultra-high performance liquid chromatography-mass spectrometry method has been established for simultaneous quantification of three crucial brain biomarkers N-acetylaspartic acid (NAA), N-acetylglutamic acid (NAG), and N-acetylaspartylglutamic acid (NAAG). A polymer monolith with quaternary ammonium as the functional group was designed and exhibited efficient enrichment of target analytes through strong anion exchange interaction. Under the optimized conditions, the proposed method displayed wide linear ranges (0.1-80 nM for NAA and NAG, 0.2-160 nM for NAAG) with good precision (RSDs were lower than 15%) and low limits of detection (0.019-0.052 nM), which is by far the most sensitive approach for NAA, NAG, and NAAG determination. Furthermore, this approach has been applied to measure the target analytes in mouse brain samples, and endogenous NAA, NAG, and NAAG were successfully detected and quantified from only around 5 mg of cerebral cortex, cerebellum, and hippocampus. Compared with existing methods, the newly developed method in the current study provides highest sensitivity and lowest sample consumption for NAA, NAG, and NAAG measurements, which would potentially be utilized in determining and tracking these meaningful brain biomarkers in diseases or treatment processes, benefiting the investigations of pathophysiology and treatment of brain disorders.
Collapse
Affiliation(s)
- Wenxiu Zhou
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, Engineering Research Center of Cell & Therapeutic Antibody, National Key Laboratory of Innovative Immunotherapy, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Xiaoyuan Lv
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, Engineering Research Center of Cell & Therapeutic Antibody, National Key Laboratory of Innovative Immunotherapy, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Shengman Zhang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, Engineering Research Center of Cell & Therapeutic Antibody, National Key Laboratory of Innovative Immunotherapy, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Zhenye Gao
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, Engineering Research Center of Cell & Therapeutic Antibody, National Key Laboratory of Innovative Immunotherapy, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Bingjie Li
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, Engineering Research Center of Cell & Therapeutic Antibody, National Key Laboratory of Innovative Immunotherapy, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Xin Wang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, Engineering Research Center of Cell & Therapeutic Antibody, National Key Laboratory of Innovative Immunotherapy, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China.
| |
Collapse
|
2
|
Xiao X, Zhou Y, Li X, Jin J, Durham J, Ye Z, Wang Y, Hennig B, Deng P. 13C-Stable isotope resolved metabolomics uncovers dynamic biochemical landscape of gut microbiome-host organ communications in mice. MICROBIOME 2024; 12:90. [PMID: 38750595 PMCID: PMC11094917 DOI: 10.1186/s40168-024-01808-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 04/04/2024] [Indexed: 05/19/2024]
Abstract
BACKGROUND Gut microbiome metabolites are important modulators of host health and disease. However, the overall metabolic potential of the gut microbiome and interactions with the host organs have been underexplored. RESULTS Using stable isotope resolved metabolomics (SIRM) in mice orally gavaged with 13C-inulin (a tracer), we first observed dynamic enrichment of 13C-metabolites in cecum contents in the amino acids and short-chain fatty acid metabolism pathways. 13C labeled metabolites were subsequently profiled comparatively in plasma, liver, brain, and skeletal muscle collected at 6, 12, and 24 h after the tracer administration. Organ-specific and time-dependent 13C metabolite enrichments were observed. Carbons from the gut microbiome were preferably incorporated into choline metabolism and the glutamine-glutamate/GABA cycle in the liver and brain, respectively. A sex difference in 13C-lactate enrichment was observed in skeletal muscle, which highlights the sex effect on the interplay between gut microbiome and host organs. Choline was identified as an interorgan metabolite derived from the gut microbiome and fed the lipogenesis of phosphatidylcholine and lysophosphatidylcholine in host organs. In vitro and in silico studies revealed the de novo synthesis of choline in the human gut microbiome via the ethanolamine pathway, and Enterococcus faecalis was identified as a major choline synthesis species. These results revealed a previously underappreciated role for gut microorganisms in choline biosynthesis. CONCLUSIONS Multicompartmental SIRM analyses provided new insights into the current understanding of dynamic interorgan metabolite transport between the gut microbiome and host at the whole-body level in mice. Moreover, this study singled out microbiota-derived metabolites that are potentially involved in the gut-liver, gut-brain, and gut-skeletal muscle axes. Video Abstract.
Collapse
Affiliation(s)
- Xia Xiao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, 1132 Yunxuan Bldg, Suzhou, 215123, China
| | - Yixuan Zhou
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, 1132 Yunxuan Bldg, Suzhou, 215123, China
| | - Xinwei Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, 1132 Yunxuan Bldg, Suzhou, 215123, China
| | - Jing Jin
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, 1132 Yunxuan Bldg, Suzhou, 215123, China
| | - Jerika Durham
- Superfund Research Center, University of Kentucky, Lexington, KY, USA
- Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Zifan Ye
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Yipeng Wang
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Bernhard Hennig
- Superfund Research Center, University of Kentucky, Lexington, KY, USA.
- Department of Animal and Food Sciences, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, 900 S. Limestone St, 501 Wethington Health Sciences Bldg, Lexington, KY, 40536, USA.
| | - Pan Deng
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, 1132 Yunxuan Bldg, Suzhou, 215123, China.
| |
Collapse
|
3
|
Becker I, Eckhardt M. An enzymatic fluorimetric assay for determination of N-acetylaspartate. Anal Biochem 2023; 667:115083. [PMID: 36804395 DOI: 10.1016/j.ab.2023.115083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/27/2023] [Accepted: 02/11/2023] [Indexed: 02/17/2023]
Abstract
N-acetylaspartate (NAA) is an abundant metabolite in the mammalian brain and a precursor of the neuropeptide N-acetylaspartylglutamate (NAAG). The physiological role of NAA is not fully understood and requires further studies. We here describe the development of a coupled enzymatic fluorimetric assay for the determination of NAA in biological samples. Deproteinized tissue extracts are first passed through a strong cation exchange column to remove aspartate. NAA in the sample is hydrolysed by aspartoacylase and released aspartate oxidized using l-aspartate oxidase. Generated H2O2 is measured with peroxidase in a fluorimetric assay using Ampliflu Red. The limit of detection and the lower limit of quantification are 1.0 μM (10 pmol/well) and 3.3 μM (33 pmol/well), respectively, with a linear range to 100 μM. Specificity of the assay was confirmed using samples from mice deficient in NAA synthase Nat8l that were spiked with NAA. Analysis of samples from aspartoacylase-deficient mice showed a 2 to 3-fold increase in brain NAA concentration, in line with previous reports. Mice lacking NAAG synthetases had a slightly reduced (-10%) brain NAA level. Thus, the new fluorimetric enzymatic assay is useful to perform sensitive and large scale quantification of NAA in biological samples without the need for expensive equipment.
Collapse
Affiliation(s)
- Ivonne Becker
- Institute of Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Nussallee 11, 53115, Bonn, Germany
| | - Matthias Eckhardt
- Institute of Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Nussallee 11, 53115, Bonn, Germany.
| |
Collapse
|
4
|
Insulin Resistance and the Brain–Novel Insights Combining Metabolic Research and Neuroscience. Metabolites 2022; 12:metabo12090780. [PMID: 36144185 PMCID: PMC9503398 DOI: 10.3390/metabo12090780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 08/22/2022] [Indexed: 11/23/2022] Open
|
5
|
Circulating N-Acetylaspartate does not track brain NAA concentrations, cognitive function or features of small vessel disease in humans. Sci Rep 2022; 12:11530. [PMID: 35798828 PMCID: PMC9262942 DOI: 10.1038/s41598-022-15670-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 04/15/2022] [Indexed: 01/07/2023] Open
Abstract
N-acetylaspartate (NAA) is the second most abundant metabolite in the human brain; although it is assumed to be a proxy for a neuronal marker, its function is not fully elucidated. NAA is also detectable in plasma, but its relation to cerebral NAA levels, cognitive performance, or features of cerebral disease has not been investigated. To study whether circulating NAA tracks cerebral NAA levels, and whether circulating NAA correlates with cognitive function and features of cerebral small vessel disease (SVD). Two datasets were analyzed. In dataset 1, structural MRI was acquired in 533 subjects to assess four features of cerebral SVD. Cognitive function was evaluated with standardized test scores (N = 824). In dataset 2, brain 1H-MRS from the occipital region was acquired (N = 49). In all subjects, fasting circulating NAA was measured with mass spectrometry. Dataset 1: in univariate and adjusted for confounders models, we found no correlation between circulating NAA and the examined features of cerebral SVD. In univariate analysis, circulating NAA levels were associated inversely with the speed in information processing and the executive function score, however these associations were lost after accounting for confounders. In line with the negative findings of dataset 1, in dataset 2 there was no correlation between circulating and central NAA or total NAA levels. This study indicates that circulating NAA levels do not reflect central (occipital) NAA levels, cognitive function, or cerebral small vessel disease in man.
Collapse
|
6
|
Nontargeted Metabolomic Analysis of Plasma Metabolite Changes in Patients with Adolescent Idiopathic Scoliosis. Mediators Inflamm 2021; 2021:5537811. [PMID: 34121924 PMCID: PMC8172289 DOI: 10.1155/2021/5537811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/20/2021] [Accepted: 04/27/2021] [Indexed: 11/17/2022] Open
Abstract
Objective Adolescent idiopathic scoliosis (AIS) is a relatively common spinal rotation deformity, and the pathogenesis of AIS is accompanied by metabolic dysfunction and changes in biochemical factors. In this study, plasma metabolite changes in AIS patients were analyzed based on nontargeted metabolomics to provide new insights for clarifying functional metabolic abnormalities in AIS patients. Methods Clinical indexes and blood samples were collected from 12 healthy subjects and 16 AIS patients. Metabolomics was used to analyze the changes in metabolites in plasma samples. The correlation between plasma metabolites and clinical indexes was analyzed by the Spearman rank correlation coefficient. Results Analysis of clinical data showed that the body weight, body mass index (BMI), and bone mineral density (BMD) index of the AIS group significantly decreased, while the blood phosphorus and Cobb angles increased significantly. Metabolomic analysis showed significant changes in 72 differential metabolites in the plasma of the AIS group, mainly including organooxygen compounds, carboxylic acids and derivatives, fatty acyls, steroids and steroid derivatives, and keto acids and derivatives. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway showed that arginine biosynthesis, D-glutamine and D-glutamate metabolism, alanine, aspartate and glutamate metabolism, and citrate cycle (TCA cycle) were significantly enriched in the AIS and healthy groups. Spearman rank correlation coefficient analysis showed that the plasma metabolites C00026 (oxoglutarate), C00062 (L-arginine, arginine), C01042 (N-acetylaspartate), and C00158 (citrate) were significantly correlated with clinical indexes in AIS patients. In the healthy group, the plasma metabolites C00122 (fumarate), C00025 (glutamate and L-glutamic acid) and C00149 (malate, L-malic acid) were significantly correlated with clinical indexes, while C00624 (N-acetylglutamate) was not significantly correlated with the clinical indexes. Conclusion The occurrence of AIS led to changes in clinical indexes and plasma metabolites. Plasma biomarkers and functional metabolic pathways were correlated with clinical indexes, which might provide new insights for the diagnosis and treatment of AIS.
Collapse
|