1
|
Xu X, Yu D, Wang Y, Jiang X, Lu F, Liu S. Investigating the mechanisms of resveratrol in the treatment of gouty arthritis through the integration of network pharmacology and metabolics. Front Endocrinol (Lausanne) 2024; 15:1438405. [PMID: 39534253 PMCID: PMC11555470 DOI: 10.3389/fendo.2024.1438405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 09/18/2024] [Indexed: 11/16/2024] Open
Abstract
Objective This study integrates network pharmacology and metabolomics techniques to explore the potential regulatory mechanisms of Res on gouty arthritis (GA). Methods Network pharmacology was used to predict the mechanism of Res in regulating GA, and methods such as HE staining, ELISA, immunohistochemistry, Real-time PCR, Western blot, and molecular docking were used to verify the role of NF-κB, MAPK, and JAK/STAT inflammatory signaling pathways in the MSU-induced GA rat model. In addition, non-targeted metabolomics techniques were combined to further investigate the mechanism of Res in treating GA. Results The results of network pharmacology showed that Res may exert its therapeutic effects through the NF-κB signaling pathway. Animal experiments demonstrated that in the MSU-induced GA rat model, pathological damage, serum biochemical indicators, and levels of inflammatory factors were significantly increased, and the NF-κB signaling pathway was activated. The intervention of Res significantly reduced pathological damage, serum biochemical indicators, levels of inflammatory factors, and the activation of NF-κB, MAPK, and JAK/STAT signaling pathways in the model rats. Metabolomics results showed that Res could improve the metabolic trajectory deviations in serum and joint fluid of GA model rats. Through related metabolic pathway analysis, the most affected metabolic pathways were found to be Sphingolipid metabolism, Glycerophospholipid metabolism, Phenylalanine, tyrosine and tryptophan biosynthesis, Pantothenate and CoA, Citrate cycle (TCA cycle), and Arachidonic acid metabolism. Conclusion Resveratrol can regulate the biosynthetic pathways of arachidonic acid, phenylalanine, tyrosine, and tryptophan, pantothenic acid and CoA biosynthesis pathways, TCA cycle, and other metabolic pathways, thereby regulating the NF-κB, MAPK, and JAK/STAT3 signaling pathways, and inhibiting the acute inflammatory response during GA attacks, showing characteristics of multi-pathway and multi-target action.
Collapse
Affiliation(s)
| | | | | | | | - Fang Lu
- Research Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese
Medicine, Harbin, China
| | - Shumin Liu
- Research Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese
Medicine, Harbin, China
| |
Collapse
|
2
|
Wu ZP, Wei W, Cheng Y, Chen JY, Liu Y, Liu S, Hu MD, Zhao H, Li XF, Chen X. Altered adolescents obesity metabolism is associated with hypertension: a UPLC-MS-based untargeted metabolomics study. Front Endocrinol (Lausanne) 2023; 14:1172290. [PMID: 37229452 PMCID: PMC10203610 DOI: 10.3389/fendo.2023.1172290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/19/2023] [Indexed: 05/27/2023] Open
Abstract
Objective This study aimed to explore the relationship between the plasma metabolites of adolescent obesity and hypertension and whether metabolite alterations had a mediating effort between adolescent obesity and hypertension. Methods We applied untargeted ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) to detect the plasma metabolomic profiles of 105 adolescents. All participants were selected randomly based on a previous cross-sectional study. An orthogonal partial least squares- discriminant analysis (OPLS-DA), followed by univariate statistics and enrichment analysis, was used to identify differential metabolites. Using logistic regression for variable selection, an obesity-related metabolite score (OMS, OMS=∑k=1nβnmetabolite n) was constructed from the metabolites identified, and hypertension risk was estimated. Results In our study, based on P< 0.05, variable importance in projection (VIP) > 1.0, and impact value > 0.1, we identified a total of 12 differential metabolites. Significantly altered metabolic pathways were the sphingolipid metabolism, purine metabolism, pyrimidine metabolism, phospholipid metabolism, steroid hormone biosynthesis, tryptophan, tyrosine, and phenylalanine biosynthesis. The logistic regression selection resulted in a four-metabolite score (thymidine, sphingomyelin (SM) d40:1, 4-hydroxyestradiol, and L-lysinamide), which was positively associated with hypertension risk (odds ratio: 7.79; 95% confidence interval: 2.13, 28.47; for the quintile 4 compared with quartile 1 of OMS) after multivariable adjustment. Conclusions The OMS constructed from four differential metabolites was used to predict the risk of hypertension in adolescents. These findings could provide sensitive biomarkers for the early recognition of hypertension in adolescents with obesity.
Collapse
Affiliation(s)
- Zhi-Ping Wu
- Department of Epidemiology, School of Public Health, Dalian Medical University, Dalian, China
| | - Wei Wei
- Department of Neurosurgery, Central Hospital of Dalian University of Technology, Dalian, China
| | - Yuan Cheng
- Department of Epidemiology, School of Public Health, Dalian Medical University, Dalian, China
| | - Jing-Yi Chen
- Department of Epidemiology, School of Public Health, Dalian Medical University, Dalian, China
| | - Yang Liu
- Institute of Health Science, China Medical University, Shenyang, China
| | - Shan Liu
- Department of Epidemiology, School of Public Health, Dalian Medical University, Dalian, China
| | - Meng-Die Hu
- Department of Epidemiology, School of Public Health, Dalian Medical University, Dalian, China
| | - Heng Zhao
- Department of Epidemiology, School of Public Health, Dalian Medical University, Dalian, China
| | - Xiao-Feng Li
- Department of Epidemiology, School of Public Health, Dalian Medical University, Dalian, China
| | - Xin Chen
- Department of Epidemiology, School of Public Health, Dalian Medical University, Dalian, China
| |
Collapse
|
3
|
Wei X, Jia X, Liu R, Zhang S, Liu S, An J, Zhou L, Zhang Y, Mo Y, Li X. Metabolic pathway analysis of hyperuricaemia patients with hyperlipidaemia based on high-throughput mass spectrometry: a case‒control study. Lipids Health Dis 2022; 21:151. [PMID: 36585694 PMCID: PMC9805114 DOI: 10.1186/s12944-022-01765-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 12/25/2022] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Both hyperuricaemia and hyperlipidaemia are common metabolic diseases that are closely related to each other, and both are independent risk factors for the development of a variety of diseases. HUA combined with hyperlipidaemia increases the risk of nonalcoholic fatty liver disease and coronary heart disease. This study aimed to investigate the relationship between HUA and hyperlipidaemia and study the metabolic pathway changes in patients with HUA associated with hyperlipidaemia using metabolomics. METHODS This was a case‒control study. The prevalence of hyperlipidaemia in HUA patients in the physical examination population of Tianjin Union Medical Centre in 2018 was investigated. Metabolomics analysis was performed on 308 HUA patients and 100 normal controls using Orbitrap mass spectrometry. A further metabolomics study of 30 asymptomatic HUA patients, 30 HUA patients with hyperlipidaemia, and 30 age-and sex-matched healthy controls was conducted. Differential metabolites were obtained from the three groups by orthogonal partial least-squares discrimination analysis, and relevant metabolic pathways changes were analysed using MetaboAnalyst 5.0 software. RESULTS The prevalence of hyperlipidaemia in HUA patients was 69.3%. Metabolomic analysis found that compared with the control group, 33 differential metabolites, including arachidonic acid, alanine, aspartate, phenylalanine and tyrosine, were identified in asymptomatic HUA patients. Pathway analysis showed that these changes were mainly related to 3 metabolic pathways, including the alanine, aspartate and glutamate metabolism pathway. Thirty-eight differential metabolites, including linoleic acid, serine, glutamate, and tyrosine, were identified in HUA patients with hyperlipidaemia. Pathway analysis showed that they were mainly related to 7 metabolic pathways, including the linoleic acid metabolism pathway, phenylalanine, tyrosine and tryptophan biosynthesis pathway, and glycine, serine and threonine metabolism pathway. CONCLUSIONS Compared to the general population, the HUA population had a higher incidence of hyperlipidaemia. HUA can cause hyperlipidaemia. by affecting the metabolic pathways of linoleic acid metabolism and alanine, aspartate and glutamate metabolism. Fatty liver is closely associated with changes in the biosynthesis pathway of pahenylalanine, tyrosine, and tryptophan in HUA patients with hyperlipidaemia. Changes in the glycine, serine and threonine metabolism pathway in HUA patients with hyperlipidaemia may lead to chronic kidney disease.
Collapse
Affiliation(s)
- Xue Wei
- Tianjin Union Medical Center, Tianjin Medical University, Tianjin, 300070 China
| | - Xiaodong Jia
- Tianjin Union Medical Center, Tianjin Medical University, Tianjin, 300070 China
| | - Rui Liu
- Tianjin Union Medical Centre, Tianjin, 300121 China
| | - Sha Zhang
- Tianjin Union Medical Center, Tianjin Medical University, Tianjin, 300070 China
| | - Shixuan Liu
- Tianjin Yunjian Medical Technology Co., Ltd., Tianjin, China
| | - Jing An
- Tianjin Yunjian Medical Technology Co., Ltd., Tianjin, China
| | - Lei Zhou
- Tianjin Yunjian Medical Technology Co., Ltd., Tianjin, China
| | - Yushi Zhang
- Tianjin Yunjian Medical Technology Co., Ltd., Tianjin, China
| | - Yuanning Mo
- Tianjin Yunjian Medical Technology Co., Ltd., Tianjin, China
| | - Xiao Li
- Tianjin Yunjian Medical Technology Co., Ltd., Tianjin, China
| |
Collapse
|
4
|
Li H, Zhang X, Gu L, Li Q, Ju Y, Zhou X, Hu M, Li Q. Anti-Gout Effects of the Medicinal Fungus Phellinus igniarius in Hyperuricaemia and Acute Gouty Arthritis Rat Models. Front Pharmacol 2022; 12:801910. [PMID: 35087407 PMCID: PMC8787200 DOI: 10.3389/fphar.2021.801910] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/16/2021] [Indexed: 12/23/2022] Open
Abstract
Background:Phellinus igniarius (P. igniarius) is an important medicinal and edible fungus in China and other Southeast Asian countries and has diverse biological activities. This study was performed to comparatively investigate the therapeutic effects of wild and cultivated P. igniarius on hyperuricaemia and gouty arthritis in rat models. Methods: UPLC-ESI-qTOF-MS was used to identify the chemical constituents of polyphenols from wild P. igniarius (WPP) and cultivated P. igniarius (CPP). Furthermore, WPP and CPP were evaluated in an improved hyperuricaemia rat model induced by yeast extract, adenine and potassium oxonate, which was used to examine xanthine oxidase (XO) activity inhibition and anti-hyperuricemia activity. WPP and CPP therapies for acute gouty arthritis were also investigated in a monosodium urate (MSU)-induced ankle swelling model. UHPLC-QE-MS was used to explore the underlying metabolic mechanisms of P. igniarius in the treatment of gout. Results: The main active components of WPP and CPP included protocatechuic aldehyde, hispidin, davallialactone, phelligridimer A, hypholomine B and inoscavin A as identified by UPLC-ESI-qTOF-MS. Wild P. igniarius and cultivated P. igniarius showed similar activities in reducing uric acid levels through inhibiting XO activity and down-regulating the levels of UA, Cr and UN, and they had anti-inflammatory activities through down-regulating the secretions of ICAM-1, IL-1β and IL-6 in the hyperuricaemia rat model. The pathological progression of kidney damage was also reversed. The polyphenols from wild and cultivated P. igniarius also showed significant anti-inflammatory activity by suppressing the expression of ICAM-1, IL-1β and IL-6 and by reducing the ankle joint swelling degree in an MSU-induced acute gouty arthritis rat model. The results of metabolic pathway enrichment indicated that the anti-hyperuricemia effect of WPP was mainly related to the metabolic pathways of valine, leucine and isoleucine biosynthesis and histidine metabolism. Additionally, the anti-hyperuricemia effect of CPP was mainly related to nicotinate and nicotinamide metabolism and beta-alanine metabolism. Conclusions: Wild P. igniarius and cultivated P. igniarius both significantly affected the treatment of hyperuricaemia and acute gouty arthritis models in vivo and therefore may be used as potential active agents for the treatment of hyperuricaemia and acute gouty arthritis.
Collapse
Affiliation(s)
- Hongxing Li
- School of Pharmacy, Hangzhou Medical College, Hangzhou, China.,Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| | - Xinyue Zhang
- School of Pharmacy, Hangzhou Medical College, Hangzhou, China.,Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| | - Lili Gu
- School of Pharmacy, Hangzhou Medical College, Hangzhou, China.,Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| | - Qín Li
- School of Pharmacy, Hangzhou Medical College, Hangzhou, China.,Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| | - Yue Ju
- School of Pharmacy, Hangzhou Medical College, Hangzhou, China.,Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| | - Xuebin Zhou
- School of Pharmacy, Hangzhou Medical College, Hangzhou, China.,Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| | - Min Hu
- School of Pharmacy, Hangzhou Medical College, Hangzhou, China.,Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| | - Qīn Li
- School of Pharmacy, Hangzhou Medical College, Hangzhou, China.,Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
5
|
Sun J, Ding W, Liu X, Zhao M, Xi B. Serum metabolites of hypertension among Chinese adolescents aged 12-17 years. J Hum Hypertens 2021; 36:925-932. [PMID: 34480101 DOI: 10.1038/s41371-021-00602-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 08/17/2021] [Accepted: 08/26/2021] [Indexed: 11/09/2022]
Abstract
The regulatory mechanisms of hypertension in youth are incompletely understood. We aimed to identify potential serum metabolic alterations associated with hypertension in adolescents. A 1:1 age- and sex-matched case-control study including 30 hypertensive adolescents aged 12-17 years and 30 normotensive adolescents for the training set and 14 hypertensive adolescents and 14 normotensive adolescents for the test set was performed, which came from one cross-sectional study in Ningxia, China. Hypertension was defined based on blood pressure (BP) values measured on three different occasions according to the BP reference of Chinese children and adolescents. Untargeted ultra-high-performance liquid tandem chromatography quadrupole time of flight mass spectrometry was used to identify differential metabolites between hypertensive and normotensive adolescents. A total of 77 metabolites in positive mode and 101 in negative mode were identified (VIP > 1.0 and P < 0.05). After adjustment for the false discovery rate, 4 differential metabolites in positive mode and 10 in negative mode were found (Q value < 0.05). The logistic regression model adjusted for body mass index and lipid profile selected four significant metabolites (4-hydroxybutanoic acid, L-serine, acetone, and pterostilbene). The main metabolic pathways of amino acid metabolism, pantothenate and CoA biosynthesis, glyoxylate and dicarboxylate metabolism, fructose and mannose metabolism, and linoleic acid metabolism may contribute to the development of hypertension in Chinese adolescents. Based on the receiver operating characteristic plot, 4-hydroxybutanoic acid, L-serine, acetone, and pterostilbene may preliminarily help distinguish hypertension from normal BP in adolescents, with AUC values of 0.857 in the training set and 0.934 in the test set. The identified metabolites and pathways may foster a better understanding of hypertension pathogenesis in Chinese adolescents.
Collapse
Affiliation(s)
- Jiahong Sun
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Wenqing Ding
- Department of Children and Adolescents Health Care, School of Public Health, Ningxia Medical University, Ningxia, China
| | - Xue Liu
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Min Zhao
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Bo Xi
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
6
|
Zhu Z, Liu J, Yang Y, Adu-Frimpong M, Ji H, Toreniyazov E, Wang Q, Yu J, Xu X. SMEDDS for improved oral bioavailability and anti-hyperuricemic activity of licochalcone A. J Microencapsul 2021; 38:459-471. [DOI: 10.1080/02652048.2021.1963341] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Zhongan Zhu
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jing Liu
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yuhang Yang
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Michael Adu-Frimpong
- Department of Applied Chemistry and Biochemistry, Faculty of Applied Sciences, C. K. Tedam University of Technology and Applied Sciences (CKT-UTAS), Navrongo, GH, UK
| | - Hao Ji
- Jiangsu Tian Sheng Pharmaceutical Co., Ltd., Zhenjiang, China
| | - Elmurat Toreniyazov
- Tashkent State Agricultural University (Nukus Branch), Nukus, Uzbekistan
- Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, China
| | - Qilong Wang
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jiangnan Yu
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
- Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, China
| | - Ximing Xu
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
- Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, China
| |
Collapse
|