1
|
Guo W, Xu M, Song X, Cheng Y, Deng Y, Liu M. Association of Serum Macrophage Migration Inhibitory Factor with 3-Month Poor Outcome and Malignant Cerebral Edema in Patients with Large Hemispheric Infarction. Neurocrit Care 2024; 41:558-567. [PMID: 38561586 DOI: 10.1007/s12028-024-01958-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/06/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND We aimed to investigate the associations of macrophage migration inhibitory factor (MIF), toll-like receptors 2 and 4 (TLR2/4), and matrix metalloproteinase 9 (MMP9) with 3-month poor outcome, death, and malignant cerebral edema (MCE) in patients with large hemispheric infarction (LHI). METHODS Patients with LHI within 24 h of onset were enrolled consecutively. Serum MIF, TLR2/4, and MMP9 concentrations on admission were measured. Poor outcome was defined as a modified Rankin Scale score of ≥ 3 at 3 months. MCE was defined as a decreased level of consciousness, anisocoria and midline shift > 5 mm or basal cistern effacement, or indications for decompressive craniectomy during hospitalization. The cutoff values for MIF/MMP9 were obtained from the receiver operating characteristic curve. RESULTS Of the 130 patients with LHI enrolled, 90 patients (69.2%) had 3-month poor outcome, and MCE occurred in 55 patients (42.3%). Patients with serum MIF concentrations ≤ 7.82 ng/mL for predicting 3-month poor outcome [adjusted odds ratio (OR) 2.827, 95% confidence interval (CI) 1.144-6.990, p = 0.024] also distinguished death (adjusted OR 4.329, 95% CI 1.841-10.178, p = 0.001). Similarly, MMP9 concentrations ≤ 46.56 ng/mL for predicting 3-month poor outcome (adjusted OR 2.814, 95% CI 1.236-6.406, p = 0.014) also distinguished 3-month death (adjusted OR 3.845, 95% CI 1.534-9.637, p = 0.004). CONCLUSIONS Lower serum MIF and MMP9 concentrations at an early stage were independently associated with 3-month poor outcomes and death in patients with LHI. These findings need further confirmation in larger sample studies.
Collapse
Affiliation(s)
- Wen Guo
- Center of Cerebrovascular Disease, Department of Neurology, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, Sichuan Province, People's Republic of China
- The Center of Gerontology and Geriatrics, Sichuan University West China Hospital, No. 37 Guo Xue Xiang, Chengdu, 610041, Sichuan Province, People's Republic of China
| | - Mangmang Xu
- Center of Cerebrovascular Disease, Department of Neurology, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, Sichuan Province, People's Republic of China
| | - Xindi Song
- Center of Cerebrovascular Disease, Department of Neurology, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, Sichuan Province, People's Republic of China
| | - Yajun Cheng
- Center of Cerebrovascular Disease, Department of Neurology, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, Sichuan Province, People's Republic of China
| | - Yilun Deng
- Center of Cerebrovascular Disease, Department of Neurology, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, Sichuan Province, People's Republic of China
| | - Ming Liu
- Center of Cerebrovascular Disease, Department of Neurology, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, Sichuan Province, People's Republic of China.
| |
Collapse
|
2
|
Dritsoula A, Camilli C, Moss SE, Greenwood J. The disruptive role of LRG1 on the vasculature and perivascular microenvironment. Front Cardiovasc Med 2024; 11:1386177. [PMID: 38745756 PMCID: PMC11091338 DOI: 10.3389/fcvm.2024.1386177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/17/2024] [Indexed: 05/16/2024] Open
Abstract
The establishment of new blood vessels, and their subsequent stabilization, is a critical process that facilitates tissue growth and organ development. Once established, vessels need to diversify to meet the specific needs of the local tissue and to maintain homeostasis. These processes are tightly regulated and fundamental to normal vessel and tissue function. The mechanisms that orchestrate angiogenesis and vessel maturation have been widely studied, with signaling crosstalk between endothelium and perivascular cells being identified as an essential component. In disease, however, new vessels develop abnormally, and existing vessels lose their specialization and function, which invariably contributes to disease progression. Despite considerable research into the vasculopathic mechanisms in disease, our knowledge remains incomplete. Accordingly, the identification of angiocrine and angiopathic molecules secreted by cells within the vascular microenvironment, and their effect on vessel behaviour, remains a major research objective. Over the last decade the secreted glycoprotein leucine-rich α-2 glycoprotein 1 (LRG1), has emerged as a significant vasculopathic molecule, stimulating defective angiogenesis, and destabilizing the existing vasculature mainly, but not uniquely, by altering both canonical and non-canonical TGF-β signaling in a highly cell and context dependent manner. Whilst LRG1 does not possess any overt homeostatic role in vessel development and maintenance, growing evidence provides a compelling case for LRG1 playing a pleiotropic role in disrupting the vasculature in many disease settings. Thus, LRG1 has now been reported to damage vessels in various disorders including cancer, diabetes, chronic kidney disease, ocular disease, and lung disease and the signaling processes that drive this dysfunction are being defined. Moreover, therapeutic targeting of LRG1 has been widely proposed to re-establish a quiescent endothelium and normalized vasculature. In this review, we consider the current status of our understanding of the role of LRG1 in vascular pathology, and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Athina Dritsoula
- UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | | | | | | |
Collapse
|
3
|
Cheng X, Wei H, Liu Y, Sun Y, Ye J, Lu P, Han B. Relation between LRG1 and CD4 + T cells, cognitive impairment and neurological function in patients with acute ischemic stroke. Biomark Med 2024; 18:5-14. [PMID: 38380988 DOI: 10.2217/bmm-2023-0674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024] Open
Abstract
Objective: To assess the relationship between LRG1 and CD4+ T cells, cognitive impairment and neurological function in acute ischemic stroke (AIS). Methods: Plasma LRG1 was detected by ELISA in 175 patients with AIS at baseline, day (D) 1, D7, month (M) 1 and M3. Results: LRG1 was negatively related to Th2 and Treg cells and positively linked to Th17 (all p < 0.05). LRG1 increased from baseline to D1, then decreased until M3 (p < 0.001). LRG1 at each assessment point was increased in patients with cognitive impairment or poor neurological function at M3 versus those without (all p < 0.05). Conclusion: LRG1 is linked to decreased Th2 and Tregs, increased Th17, cognitive impairment and nonideal neurological function recovery in patients with AIS.
Collapse
Affiliation(s)
- Xiao Cheng
- Department of Neurology, The Fifth Clinical Medical College of Shanxi Medical University (Fifth Hospital of Shanxi Medical University), Taiyuan, 030009, China
- Shanxi Key Laboratory of Brain Disease Control, Shanxi Provincial People's Hospital, Taiyuan, 030009, China
| | - Hongen Wei
- Department of Neurology, The Fifth Clinical Medical College of Shanxi Medical University (Fifth Hospital of Shanxi Medical University), Taiyuan, 030009, China
- Shanxi Key Laboratory of Brain Disease Control, Shanxi Provincial People's Hospital, Taiyuan, 030009, China
| | - Yi Liu
- Department of Neurology, The Fifth Clinical Medical College of Shanxi Medical University (Fifth Hospital of Shanxi Medical University), Taiyuan, 030009, China
| | - Yaxuan Sun
- Department of Neurology, The Fifth Clinical Medical College of Shanxi Medical University (Fifth Hospital of Shanxi Medical University), Taiyuan, 030009, China
| | - Jianxin Ye
- Department of Neurology, The 900th Hospital of the Joint Logistics Support Force of the Chinese People's Liberation Army, Fuzhou, 350000, China
| | - Pengyu Lu
- Department of Neurology, The Fifth Clinical Medical College of Shanxi Medical University (Fifth Hospital of Shanxi Medical University), Taiyuan, 030009, China
| | - Bin Han
- Department of Neurology, The Fifth Clinical Medical College of Shanxi Medical University (Fifth Hospital of Shanxi Medical University), Taiyuan, 030009, China
| |
Collapse
|
4
|
Hu W, Li P, Zeng N, Tan S. DIA-based technology explores hub pathways and biomarkers of neurological recovery in ischemic stroke after rehabilitation. Front Neurol 2023; 14:1079977. [PMID: 36959823 PMCID: PMC10027712 DOI: 10.3389/fneur.2023.1079977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 02/06/2023] [Indexed: 03/09/2023] Open
Abstract
Objective Ischemic stroke (IS) is a common disease that causes severe and long-term neurological disability in people worldwide. Although rehabilitation is indispensable to promote neurological recovery in ischemic stroke, it is limited to providing a timely and efficient reference for developing and adjusting treatment strategies because neurological assessment after stroke treatment is mostly performed using scales and imaging. Therefore, there is an urgent need to find biomarkers that can help us evaluate and optimize the treatment plan. Methods We used data-independent acquisition (DIA) technology to screen differentially expressed proteins (DEPs) before and after ischemic stroke rehabilitation treatment, and then performed Gene Ontology (GO) and pathway enrichment analysis of DEPs using bioinformatics tools such as KEGG pathway and Reactome. In addition, the protein-protein interaction (PPI) network and modularity analysis of DEPs were integrated to identify the hub proteins (genes) and hub signaling pathways for neurological recovery in ischemic stroke. PRM-targeted proteomics was also used to validate some of the screened proteins of interest. Results Analyzing the serum protein expression profiles before and after rehabilitation, we identified 22 DEPs that were upregulated and downregulated each. Through GO and pathway enrichment analysis and subsequent PPI network analysis constructed using STRING data and subsequent Cytoscape MCODE analysis, we identified that complement-related pathways, lipoprotein-related functions and effects, thrombosis and hemostasis, coronavirus disease (COVID-19), and inflammatory and immune pathways are the major pathways involved in the improvement of neurological function after stroke rehabilitation. Conclusion Complement-related pathways, lipoprotein-related functions and effects, thrombosis and hemostasis, coronavirus disease (COVID-19), and inflammation and immunity pathways are not only key pathways in the pathogenesis of ischemic stroke but also the main pathways of action of rehabilitation therapy. In addition, IGHA1, LRG1, IGHV3-64D, and CP are upregulated in patients with ischemic stroke and downregulated after rehabilitation, which may be used as biomarkers to monitor neurological impairment and recovery after stroke.
Collapse
Affiliation(s)
- Wei Hu
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Department of Rehabilitation, Xiangya Bo'ai Rehabilitation Hospital, Changsha, China
| | - Ping Li
- Department of Rehabilitation, Xiangya Bo'ai Rehabilitation Hospital, Changsha, China
| | - Nianju Zeng
- Department of Rehabilitation, Xiangya Bo'ai Rehabilitation Hospital, Changsha, China
- *Correspondence: Nianju Zeng
| | - Sheng Tan
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Sheng Tan
| |
Collapse
|
5
|
Zou Y, Xu Y, Chen X, Wu Y, Fu L, Lv Y. Research Progress on Leucine-Rich Alpha-2 Glycoprotein 1: A Review. Front Pharmacol 2022; 12:809225. [PMID: 35095520 PMCID: PMC8797156 DOI: 10.3389/fphar.2021.809225] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/13/2021] [Indexed: 12/18/2022] Open
Abstract
Leucine-rich alpha⁃2 glycoprotein 1 (LRG1) is an important member of the leucine-rich repetitive sequence protein family. LRG1 was mainly involved in normal physiological activities of the nervous system, such as synapse formation, synapse growth, the development of nerve processes, neurotransmitter transfer and release, and cell adhesion molecules or ligand-binding proteins. Also, LRG1 affected the development of respiratory diseases, hematological diseases, endocrine diseases, tumor diseases, eye diseases, cardiovascular diseases, rheumatic immune diseases, infectious diseases, etc. LRG1 was a newly discovered important upstream signaling molecule of transforming growth factor⁃β (TGF⁃β) that affected various pathological processes through the TGF⁃β signaling pathway. However, research on LRG1 and its involvement in the occurrence and development of diseases was still in its infancy and the current studies were mainly focused on proteomic detection and basic animal experimental reports. We could reasonably predict that LRG1 might act as a new direction and strategy for the treatment of many diseases.
Collapse
Affiliation(s)
- Yonghui Zou
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, China.,School of Clinical Medicine, Nanchang University, Nanchang, China
| | - Yi Xu
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, China.,School of Clinical Medicine, Nanchang University, Nanchang, China
| | - Xiaofeng Chen
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, China.,School of Clinical Medicine, Nanchang University, Nanchang, China
| | - Yaoqi Wu
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, China.,College of Pharmacy, Nanchang University, Nanchang, China
| | - Longsheng Fu
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yanni Lv
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|