1
|
Femi-Lawal VO, Anyinkeng ABS, Effiom VB. Unmet need for heart transplantation in Africa. Ann Med Surg (Lond) 2024; 86:4643-4646. [PMID: 39118759 PMCID: PMC11305795 DOI: 10.1097/ms9.0000000000002311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/14/2024] [Indexed: 08/10/2024] Open
Abstract
Heart transplantation is a critical treatment option for end-stage heart failure patients, offering a lifeline for those with severe cardiac conditions. However, in Africa, the unmet need for heart transplantation is a significant issue that poses challenges to the healthcare system and patient outcomes. Africa faces multiple barriers to heart transplantation, including limited infrastructure, a shortage of skilled healthcare professionals, a lack of funding, and inadequate organ donation systems. These challenges result in a considerable gap between the demand for heart transplants and the available resources to meet this need. As a result, many patients in Africa do not have access to life-saving heart transplantation procedures, leading to high mortality rates among those awaiting transplants. Addressing the unmet need for heart transplantation in Africa requires a multifaceted approach. The authors recommend that Africa as a continent build up a heart transplantation workforce involving a multidisciplinary team that consists of transplant surgeons, transplant physicians, nurses, anesthetists, pharmacists, etc. Heart transplant education and training programs should be well-constructed to ensure the delivery of safe and effective transplantation services. International collaborations have proven to be effective and should be encouraged between African institutions and transplant centers worldwide to facilitate knowledge transfer. Foreign and local organizations should promote public awareness about organ donation to address the myths about heart transplantation and promote heart donation. With these, African countries can improve access to heart transplantation, enhance patient outcomes, save lives in the region, and ultimately reduce the mortality rate in Africa.
Collapse
Affiliation(s)
- Victor O. Femi-Lawal
- College of Medicine, University of Ibadan, Ibadan Nigeria
- Department of Research, Association of Future African Cardiothoracic Surgeons, Yaounde, Cameroon
| | - Achanga Bill-Smith Anyinkeng
- Department of Research, Association of Future African Cardiothoracic Surgeons, Yaounde, Cameroon
- Faculty of Health Sciences, University of Buea, Buea, Cameroon
| | - Victory B. Effiom
- Faculty of Clinical Sciences, University of Calabar, Calabar, Nigeria
- Department of Research, Association of Future African Cardiothoracic Surgeons, Yaounde, Cameroon
| |
Collapse
|
2
|
Zhou P, Liu H, Liu X, Ling X, Xiao Z, Zhu P, Zhu Y, Lu J, Zheng S. Donor heart preservation with hypoxic-conditioned medium-derived from bone marrow mesenchymal stem cells improves cardiac function in a heart transplantation model. Stem Cell Res Ther 2021; 12:56. [PMID: 33435991 PMCID: PMC7805188 DOI: 10.1186/s13287-020-02114-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 12/21/2020] [Indexed: 12/12/2022] Open
Abstract
Background In heart transplantation, donor hearts inevitably suffer from ischemia/reperfusion (I/R) injury, which leads to primary graft dysfunction and affects patients’ survival rate. Bone marrow mesenchymal stem cells (BMSCs) have been reported to attenuate myocardial I/R injury via their paracrine effects, which can be enhanced by hypoxic preconditioning. We hypothesized that the donor heart preservation with hypoxic conditioned medium (CdM) derived from BMSCs would improve post-transplant graft function. Methods Normoxic or hypoxic CdM were isolated from rat BMSCs cultured under normoxic (20% O2) or hypoxic (1% O2) condition. Donor hearts were explanted; stored in cardioplegic solution supplemented with either a medium (vehicle), normoxic CdM (N-CdM), or hypoxic CdM (H-CdM); and then heterotopically transplanted. Antibody arrays were performed to compare the differences between hypoxic and normoxic CdM. Results After heart transplantation, the donor heart preservation with normoxic CdM was associated with a shorter time to return of spontaneous contraction and left ventricular systolic diameter, lower histopathological scores, higher ejection fraction, and fractional shortening of the transplanted hearts. The cardioprotective effects may be associated with the inhibition of apoptosis and inflammation, as reflected by less TUNEL-positive cells and lower levels of plasma proinflammatory cytokines (interleukin-1β, interleukin-6, tumor necrosis factor-α) and cardiac troponin I in the N-CdM group compared with the vehicle group. These therapeutic effects can be further enhanced by hypoxic preconditioning. Antibody arrays revealed that nine proteins were significantly increased in hypoxic CdM compared with normoxic CdM. Furthermore, compared with vehicle and N-CdM groups, the protein levels of PI3K and p-Akt/Akt ratio in the transplanted hearts significantly increased in the H-CdM group. However, no significant difference was found in the phosphorylation of Smad2 and Smad3 for the donor hearts among the three groups. Conclusions Our results indicate that the cardioplegic solution-enriched with hypoxic CdM can be a novel and promising preservation solution for donor hearts.
Collapse
Affiliation(s)
- Pengyu Zhou
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, No.1838 North Guangzhou Avenue, Baiyun District, Guangzhou, People's Republic of China
| | - Hao Liu
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, No.1838 North Guangzhou Avenue, Baiyun District, Guangzhou, People's Republic of China
| | - Ximao Liu
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, No.1838 North Guangzhou Avenue, Baiyun District, Guangzhou, People's Republic of China
| | - Xiao Ling
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, No.1838 North Guangzhou Avenue, Baiyun District, Guangzhou, People's Republic of China
| | - Zezhou Xiao
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, No.1838 North Guangzhou Avenue, Baiyun District, Guangzhou, People's Republic of China
| | - Peng Zhu
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, No.1838 North Guangzhou Avenue, Baiyun District, Guangzhou, People's Republic of China
| | - Yufeng Zhu
- Laboratory Animal Research Center, Nanfang Hospital, Southern Medical University, No.1838 North Guangzhou Avenue, Baiyun District, Guangzhou, People's Republic of China.
| | - Jun Lu
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, No.1838 North Guangzhou Avenue, Baiyun District, Guangzhou, People's Republic of China.
| | - Shaoyi Zheng
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, No.1838 North Guangzhou Avenue, Baiyun District, Guangzhou, People's Republic of China.
| |
Collapse
|
3
|
Qasim M, Arunkumar P, Powell HM, Khan M. Current research trends and challenges in tissue engineering for mending broken hearts. Life Sci 2019; 229:233-250. [PMID: 31103607 PMCID: PMC6799998 DOI: 10.1016/j.lfs.2019.05.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/01/2019] [Accepted: 05/06/2019] [Indexed: 02/07/2023]
Abstract
Cardiovascular disease (CVD) is among the leading causes of mortality worldwide. The shortage of donor hearts to treat end-stage heart failure patients is a critical problem. An average of 3500 heart transplant surgeries are performed globally, half of these transplants are performed in the US alone. Stem cell therapy is growing rapidly as an alternative strategy to repair or replace the damaged heart tissue after a myocardial infarction (MI). Nevertheless, the relatively poor survival of the stem cells in the ischemic heart is a major challenge to the therapeutic efficacy of stem-cell transplantation. Recent advancements in tissue engineering offer novel biomaterials and innovative technologies to improve upon the survival of stem cells as well as to repair the damaged heart tissue following a myocardial infarction (MI). However, there are several limitations in tissue engineering technologies to develop a fully functional, beating cardiac tissue. Therefore, the main goal of this review article is to address the current advancements and barriers in cardiac tissue engineering to augment the survival and retention of stem cells in the ischemic heart.
Collapse
Affiliation(s)
- Muhammad Qasim
- Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Research Center (SRC), Konkuk University, Seoul, Republic of Korea
| | - Pala Arunkumar
- Department of Emergency Medicine, College of Medicine, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Heather M Powell
- Department of Materials Science and Engineering, Department of Biomedical Engineering, The Ohio State University, Columbus, OH, United States; Research Department, Shriners Hospitals for Children, Cincinnati, OH, United States
| | - Mahmood Khan
- Department of Emergency Medicine, College of Medicine, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States; Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, United States.
| |
Collapse
|
4
|
Trindade F, Leite-Moreira A, Ferreira-Martins J, Ferreira R, Falcão-Pires I, Vitorino R. Towards the standardization of stem cell therapy studies for ischemic heart diseases: Bridging the gap between animal models and the clinical setting. Int J Cardiol 2016; 228:465-480. [PMID: 27870978 DOI: 10.1016/j.ijcard.2016.11.236] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 11/09/2016] [Accepted: 11/10/2016] [Indexed: 12/20/2022]
Abstract
Today there is an increasing demand for heart transplantations for patients diagnosed with heart failure. Though, shortage of donors as well as the large number of ineligible patients hurdle such treatment option. This, in addition to the considerable number of transplant rejections, has driven the clinical research towards the field of regenerative medicine. Nonetheless, to date, several stem cell therapies tested in animal models fall by the wayside and when they meet the criteria to clinical trials, subjects often exhibit modest improvements. A main issue slowing down the admission of such therapies in the domain of human trials is the lack of protocol standardization between research groups, which hampers comparison between different approaches as well as the lack of thought regarding the clinical translation. In this sense, given the large amount of reports on stem cell therapy studies in animal models reported in the last 3years, we sought to evaluate their advantages and limitations towards the clinical setting and provide some suggestions for the forthcoming investigations. We expect, with this review, to start a new paradigm on regenerative medicine, by evoking the debate on how to plan novel stem cell therapy studies with animal models in order to achieve more consistent scientific production and accelerate the admission of stem cell therapies in the clinical setting.
Collapse
Affiliation(s)
- Fábio Trindade
- iBiMED, Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Portugal; Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Portugal.
| | - Adelino Leite-Moreira
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Portugal
| | | | - Rita Ferreira
- QOPNA, Mass Spectrometry Center, Department of Chemistry, University of Aveiro, Portugal
| | - Inês Falcão-Pires
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Portugal
| | - Rui Vitorino
- iBiMED, Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Portugal; Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Portugal.
| |
Collapse
|