1
|
Wang J, An Z, Wu Z, Zhou W, Sun P, Wu P, Dang S, Xue R, Bai X, Du Y, Chen R, Wang W, Huang P, Lam SM, Ai Y, Liu S, Shui G, Zhang Z, Liu Z, Huang J, Fang X, He K. Spatial organization of PI3K-PI(3,4,5)P 3-AKT signaling by focal adhesions. Mol Cell 2024; 84:4401-4418.e9. [PMID: 39488211 DOI: 10.1016/j.molcel.2024.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 08/17/2024] [Accepted: 10/08/2024] [Indexed: 11/04/2024]
Abstract
The class I phosphatidylinositol 3-kinase (PI3K)-AKT signaling pathway is a key regulator of cell survival, growth, and proliferation and is among the most frequently mutated pathways in cancer. However, where and how PI3K-AKT signaling is spatially activated and organized in mammalian cells remains poorly understood. Here, we identify focal adhesions (FAs) as subcellular signaling hubs organizing the activation of PI3K-PI(3,4,5)P3-AKT signaling in human cancer cells containing p110α mutations under basal conditions. We find that class IA PI3Ks are preferentially recruited to FAs for activation, resulting in localized production of PI(3,4,5)P3 around FAs. As the effector protein of PI(3,4,5)P3, AKT1 molecules are dynamically recruited around FAs for activation. The spatial recruitment/activation of the PI3K-PI(3,4,5)P3-AKT cascade is regulated by activated FA kinase (FAK). Furthermore, combined inhibition of p110α and FAK results in a more potent inhibitory effect on cancer cells. Thus, our results unveil a growth-factor independent, compartmentalized organization mechanism for PI3K-PI(3,4,5)P3-AKT signaling.
Collapse
Affiliation(s)
- Jing Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhengyang An
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhongsheng Wu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Zhou
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Pengyu Sun
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Piyu Wu
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Song Dang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Rui Xue
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China
| | - Xue Bai
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
| | - Yongtao Du
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rongmei Chen
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenxu Wang
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Pei Huang
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Sin Man Lam
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Lipidall Technologies Company Limited, Changzhou, Jiangsu 213000, China
| | - Youwei Ai
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Suling Liu
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Fudan University, Shanghai 200032, China
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhe Zhang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China; Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Zheng Liu
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Jianyong Huang
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China
| | - Xiaohong Fang
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China.
| | - Kangmin He
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
2
|
Broege A, Rossetti S, Sen A, Menon AS, MacNeil I, Molden J, Laing L. Functional Assessments of Gynecologic Cancer Models Highlight Differences Between Single-Node Inhibitors of the PI3K/AKT/mTOR Pathway and a Pan-PI3K/mTOR Inhibitor, Gedatolisib. Cancers (Basel) 2024; 16:3520. [PMID: 39456616 PMCID: PMC11505998 DOI: 10.3390/cancers16203520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/04/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: The PI3K/AKT/mTOR (PAM) pathway is frequently activated in gynecological cancers. Many PAM inhibitors selectively target single PAM pathway nodes, which can lead to reduced efficacy and increased drug resistance. To address these limitations, multiple PAM pathway nodes may need to be inhibited. Gedatolisib, a well-tolerated panPI3K/mTOR inhibitor targeting all Class I PI3K isoforms, mTORC1 and mTORC2, could represent an effective treatment option for patients with gynecologic cancers. Methods: Gedatolisib and other PAM inhibitors (e.g., alpelisib, capivasertib, and everolimus) were tested in endometrial, ovarian, and cervical cancer cell lines by using cell viability, cell proliferation, and flow cytometry assays. Xenograft studies evaluated gedatolisib in combination with a CDK4/6 inhibitor (palbociclib) or an anti-estrogen (fulvestrant). A pseudo-temporal transcriptomic trajectory of endometrial cancer clinical progression was computationally modeled employing data from 554 patients to correlate non-clinical studies with a potential patient group. Results: Gedatolisib induced a substantial decrease in PAM pathway activity in association with the inhibition of cell cycle progression and the decreased cell viability in vitro. Compared to single-node PAM inhibitors, gedatolisib exhibited greater growth-inhibitory effects in almost all cell lines, regardless of the PAM pathway mutations. Gedatolisib combined with either fulvestrant or palbociclib inhibited tumor growth in endometrial and ovarian cancer xenograft models. Conclusions: Gedatolisib in combination with other therapies has shown an acceptable safety profile and promising preliminary efficacy in clinical studies with various solid tumor types. The non-clinical data presented here support the development of gedatolisib combined with CDK4/6 inhibitors and/or hormonal therapy for gynecologic cancer treatment.
Collapse
Affiliation(s)
- Aaron Broege
- Celcuity, Inc., 16305 36th Ave N, Suite 100, Minneapolis, MN 55446, USA; (A.B.); (A.S.); (I.M.); (J.M.)
| | - Stefano Rossetti
- Celcuity, Inc., 16305 36th Ave N, Suite 100, Minneapolis, MN 55446, USA; (A.B.); (A.S.); (I.M.); (J.M.)
| | - Adrish Sen
- Celcuity, Inc., 16305 36th Ave N, Suite 100, Minneapolis, MN 55446, USA; (A.B.); (A.S.); (I.M.); (J.M.)
| | - Arul S. Menon
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA;
- College of Computing, Data Science, and Society, University of California, Berkeley, CA 94720, USA
| | - Ian MacNeil
- Celcuity, Inc., 16305 36th Ave N, Suite 100, Minneapolis, MN 55446, USA; (A.B.); (A.S.); (I.M.); (J.M.)
| | - Jhomary Molden
- Celcuity, Inc., 16305 36th Ave N, Suite 100, Minneapolis, MN 55446, USA; (A.B.); (A.S.); (I.M.); (J.M.)
| | - Lance Laing
- Celcuity, Inc., 16305 36th Ave N, Suite 100, Minneapolis, MN 55446, USA; (A.B.); (A.S.); (I.M.); (J.M.)
| |
Collapse
|
3
|
Atıcı S, Çizmecioğlu O. Molecular mechanisms of PI3K isoform dependence in embryonic growth. J Turk Ger Gynecol Assoc 2024; 25:159-166. [PMID: 39219229 DOI: 10.4274/jtgga.galenos.2024.2024-6-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Objective The phosphoinositide 3-kinase (PI3K) pathway is an important signaling mechanism for cell proliferation and metabolism. Mutations that activate PIK3CA may make cells p110α dependent, but when phosphatase tensin homolog (PTEN) is lost, the p110β isoform of PI3Ks becomes more important. However, the exact mechanism underlying the prevalence of p110s remains unclear. In this study, our aim was to elucidate the processes behind PI3K isoform dependency in a cellular model of embryonic development. Material and Methods In order to understand PI3K isoform prevalence, mouse embryonic fibroblasts (MEFs) were used and p110β, PTEN and Rac1 activity was modulated using retroviral plasmids. Expression levels and cellular growth were assessed by performing immunoblots and crystal violet assays. Results The levels of PTEN had only a partial effect on the prevalence of PI3K isoforms in MEFs. The dependency on p110α diminished when PTEN was depleted. Of note, when PTEN expression was repressed, there was no full transition in dependency from one PI3K isoform to the other. Interestingly, the viability of PTEN-depleted MEFs became less dependent on p110α and more dependent on p110β when p110β was overexpressed. Nevertheless, the overexpression of p110β in conjunction with PTEN knock-downs did not result in a complete shift of isoforms in PI3Ks. Finally, we investigated Rac1 activation with a mutant allele and determined a more potent increase in p110β prominence in MEFs. Conclusion These findings suggest that multiple cellular parameters, including PTEN status, PI3K isoform levels, and Rac1 activity, combine to influence PI3K isoform prevalence, rather than a single determinant.
Collapse
Affiliation(s)
- Sena Atıcı
- Department of Molecular Biology and Genetics, Bilkent University Faculty of Medicine, Ankara, Turkey
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Onur Çizmecioğlu
- Department of Molecular Biology and Genetics, Bilkent University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
4
|
Li H, Wen X, Ren Y, Fan Z, Zhang J, He G, Fu L. Targeting PI3K family with small-molecule inhibitors in cancer therapy: current clinical status and future directions. Mol Cancer 2024; 23:164. [PMID: 39127670 DOI: 10.1186/s12943-024-02072-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
The Phosphatidylinositol-3-kinase (PI3K) family is well-known to comprise three classes of intracellular enzymes. Class I PI3Ks primarily function in signaling by responding to cell surface receptor stimulation, while class II and III are more involved in membrane transport. Under normal physiological conditions, the PI3K signaling network orchestrates cell growth, division, migration and survival. Aberrant activation of the PI3K signaling pathway disrupts cellular activity and metabolism, often marking the onset of cancer. Currently, the Food and Drug Administration (FDA) has approved the clinical use of five class I PI3K inhibitors. These small-molecule inhibitors, which exhibit varying selectivity for different class I PI3K family members, are primarily used in the treatment of breast cancer and hematologic malignancies. Therefore, the development of novel class I PI3K inhibitors has been a prominent research focus in the field of oncology, aiming to enhance potential therapeutic selectivity and effectiveness. In this review, we summarize the specific structures of PI3Ks and their functional roles in cancer progression. Additionally, we critically evaluate small molecule inhibitors that target class I PI3K, with a particular focus on their clinical applications in cancer treatment. Moreover, we aim to analyze therapeutic approaches for different types of cancers marked by aberrant PI3K activation and to identify potential molecular targets amenable to intervention with small-molecule inhibitors. Ultimately, we propose future directions for the development of therapeutic strategies that optimize cancer treatment outcomes by modulating the PI3K family.
Collapse
Affiliation(s)
- Hongyao Li
- Institute of Precision Drug Innovation and Cancer Center, the Second Hospital of Dalian Medical University, Dalian, 116023, China
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
- Department of Dermatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Sichuan University, Chengdu, 610041, China
| | - Xiang Wen
- Department of Dermatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Sichuan University, Chengdu, 610041, China
| | - Yueting Ren
- Department of Dermatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Sichuan University, Chengdu, 610041, China
- Department of Brain Science, Faculty of Medicine, Imperial College, London, SW72AZ, UK
| | - Zhichao Fan
- Institute of Precision Drug Innovation and Cancer Center, the Second Hospital of Dalian Medical University, Dalian, 116023, China
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
- Department of Dermatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Sichuan University, Chengdu, 610041, China
| | - Jin Zhang
- School of Pharmaceutical Sciences of Medical School, Shenzhen University, Shenzhen, 518000, China.
| | - Gu He
- Department of Dermatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Sichuan University, Chengdu, 610041, China.
| | - Leilei Fu
- Institute of Precision Drug Innovation and Cancer Center, the Second Hospital of Dalian Medical University, Dalian, 116023, China.
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
| |
Collapse
|
5
|
Rescigno P, Porta N, Finneran L, Riisnaes R, Figueiredo I, Carreira S, Flohr P, Miranda S, Bertan C, Ferreira A, Crespo M, Rodrigues DN, Gurel B, Nobes J, Crabb S, Malik Z, Ralph C, McGovern U, Hoskin P, Jones RJ, Birtle A, Gale J, Sankey P, Jain S, McLaren D, Chadwick E, Espinasse A, Hall E, de Bono J. Capivasertib in combination with enzalutamide for metastatic castration resistant prostate cancer after docetaxel and abiraterone: Results from the randomized phase II RE-AKT trial. Eur J Cancer 2024; 205:114103. [PMID: 38729054 PMCID: PMC11181075 DOI: 10.1016/j.ejca.2024.114103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/22/2024] [Accepted: 04/28/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND PTEN loss and aberrations in PI3K/AKT signaling kinases associate with poorer response to abiraterone acetate (AA) in metastatic castration-resistant prostate cancer (mCRPC). In this study, we assessed antitumor activity of the AKT inhibitor capivasertib combined with enzalutamide in mCRPC with prior progression on AA and docetaxel. METHODS This double-blind, placebo-controlled, randomized phase 2 trial, recruited men ≥ 18 years with progressing mCRPC and performance status 0-2 from 15 UK centers. Randomized participants (1:1) received enzalutamide (160 mg orally, once daily) with capivasertib (400 mg)/ placebo orally, twice daily on an intermittent (4 days on, 3 days off) schedule. Primary endpoint was composite response rate (RR): RECIST 1.1 objective response, ≥ 50 % PSA decrease from baseline, or circulating tumor cell count conversion (from ≥ 5 at baseline to < 5 cells/7.5 mL). Subgroup analyses by PTENIHC status were pre-planned. RESULTS Overall, 100 participants were randomized (50:50); 95 were evaluable for primary endpoint (47:48); median follow-up was 43 months. RR were 9/47 (19.1 %) enzalutamide/capivasertib and 9/48 (18.8 %) enzalutamide/placebo (absolute difference 0.4 % 90 %CI -12.8 to 13.6, p = 0.58), with similar results in the PTENIHC loss subgroup. Irrespective of treatment, OS was significantly worse for PTENIHC loss (10.1 months [95 %CI: 4.6-13.9] vs 14.8 months [95 %CI: 10.8-18]; p = 0.02). Most common treatment-emergent grade ≥ 3 adverse events for the combination were diarrhea (13 % vs 2 %) and fatigue (10 % vs 6 %). CONCLUSIONS Combined capivasertib/enzalutamide was well tolerated but didn't significantly improve outcomes from abiraterone pre-treated mCRPC.
Collapse
Affiliation(s)
- Pasquale Rescigno
- The Institute of Cancer Research, London, UK; The Royal Marsden NHS Foundation Trust, London, UK; Newcastle University, Newcastle upon Tyne, UK
| | - Nuria Porta
- The Institute of Cancer Research, London, UK
| | | | | | | | | | - Penny Flohr
- The Institute of Cancer Research, London, UK
| | | | | | | | | | | | - Bora Gurel
- The Institute of Cancer Research, London, UK
| | | | - Simon Crabb
- University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Zafar Malik
- The Clatterbridge Cancer Centre, Liverpool, UK
| | | | | | | | - Robert J Jones
- University of Glasgow, Beatson West of Scotland Cancer Centre, Glasgow, UK
| | - Alison Birtle
- Rosemere Cancer Centre, Lancashire Teaching Hospitals, Preston, UK; University of Manchester, Manchester, UK; University of Central Lancashire, Preston, UK
| | | | | | | | | | | | | | - Emma Hall
- The Institute of Cancer Research, London, UK
| | - Johann de Bono
- The Institute of Cancer Research, London, UK; The Royal Marsden NHS Foundation Trust, London, UK.
| |
Collapse
|
6
|
Browne IM, Okines AFC. Resistance to Targeted Inhibitors of the PI3K/AKT/mTOR Pathway in Advanced Oestrogen-Receptor-Positive Breast Cancer. Cancers (Basel) 2024; 16:2259. [PMID: 38927964 PMCID: PMC11201395 DOI: 10.3390/cancers16122259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
The PI3K/AKT/mTOR signalling pathway is one of the most frequently activated pathways in breast cancer and also plays a central role in the regulation of several physiologic functions. There are major efforts ongoing to exploit precision medicine by developing inhibitors that target the three kinases (PI3K, AKT, and mTOR). Although multiple compounds have been developed, at present, there are just three inhibitors approved to target this pathway in patients with advanced ER-positive, HER2-negative breast cancer: everolimus (mTOR inhibitor), alpelisib (PIK3CA inhibitor), and capivasertib (AKT inhibitor). Like most targeted cancer drugs, resistance poses a major problem in the clinical setting and is a factor that has frequently limited the overall efficacy of these agents. Drug resistance can be categorised into intrinsic or acquired resistance depending on the timeframe it has developed within. Whereas intrinsic resistance exists prior to a specific treatment, acquired resistance is induced by a therapy. The majority of patients with ER-positive, HER2-negative advanced breast cancer will likely be offered an inhibitor of the PI3K/AKT/mTOR pathway at some point in their cancer journey, with the options available depending on the approval criteria in place and the cancer's mutation status. Within this large cohort of patients, it is likely that most will develop resistance at some point, which makes this an area of interest and an unmet need at present. Herein, we review the common mechanisms of resistance to agents that target the PI3K/AKT/mTOR signalling pathway, elaborate on current management approaches, and discuss ongoing clinical trials attempting to mitigate this significant issue. We highlight the need for additional studies into AKT1 inhibitor resistance in particular.
Collapse
|
7
|
Rossetti S, Broege A, Sen A, Khan S, MacNeil I, Molden J, Kopher R, Schulz S, Laing L. Gedatolisib shows superior potency and efficacy versus single-node PI3K/AKT/mTOR inhibitors in breast cancer models. NPJ Breast Cancer 2024; 10:40. [PMID: 38839777 PMCID: PMC11153628 DOI: 10.1038/s41523-024-00648-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/23/2024] [Indexed: 06/07/2024] Open
Abstract
The PI3K, AKT, and mTOR (PAM) pathway is frequently dysregulated in breast cancer (BC) to accommodate high catabolic and anabolic activities driving tumor growth. Current therapeutic options for patients with hormone receptor (HR) + / HER2- advanced BC (ABC) include PAM inhibitors that selectively inhibit only one PAM pathway node, which can lead to drug resistance as cells rapidly adapt to maintain viability. We hypothesized that gedatolisib, which potently inhibits all Class I PI3K isoforms, as well as mTORC1 and mTORC2, may be more effective in BC cells than single-node PAM inhibitors by limiting adaptive resistances. By using multiple functional assays, a panel of BC cell lines was evaluated for their sensitivity to four different PAM inhibitors: gedatolisib (pan-PI3K/mTOR inhibitor), alpelisib (PI3Kα inhibitor), capivasertib (AKT inhibitor), and everolimus (mTORC1 inhibitor). Gedatolisib exhibited more potent and efficacious anti-proliferative and cytotoxic effects regardless of the PAM pathway mutational status of the cell lines compared to the single-node PAM inhibitors. The higher efficacy of gedatolisib was confirmed in three-dimensional culture and in BC PDX models. Mechanistically, gedatolisib decreased cell survival, DNA replication, cell migration and invasion, protein synthesis, glucose consumption, lactate production, and oxygen consumption more effectively than the other PAM inhibitors tested. These results indicate that inhibition of multiple PAM pathway nodes by a pan-PI3K/mTOR inhibitor like gedatolisib may be more effective at inducing anti-tumor activity than single-node PAM inhibitors. A global Phase 3 study is currently evaluating gedatolisib plus fulvestrant with and without palbociclib in patients with HR+/HER2- ABC.
Collapse
Affiliation(s)
- Stefano Rossetti
- Celcuity, Inc. 16305 36th Ave N, Suite 100, Minneapolis, MN, 55446, USA
| | - Aaron Broege
- Celcuity, Inc. 16305 36th Ave N, Suite 100, Minneapolis, MN, 55446, USA
| | - Adrish Sen
- Celcuity, Inc. 16305 36th Ave N, Suite 100, Minneapolis, MN, 55446, USA
| | - Salmaan Khan
- Celcuity, Inc. 16305 36th Ave N, Suite 100, Minneapolis, MN, 55446, USA
| | - Ian MacNeil
- Celcuity, Inc. 16305 36th Ave N, Suite 100, Minneapolis, MN, 55446, USA
| | - Jhomary Molden
- Celcuity, Inc. 16305 36th Ave N, Suite 100, Minneapolis, MN, 55446, USA
| | - Ross Kopher
- Celcuity, Inc. 16305 36th Ave N, Suite 100, Minneapolis, MN, 55446, USA
| | - Stephen Schulz
- Celcuity, Inc. 16305 36th Ave N, Suite 100, Minneapolis, MN, 55446, USA
| | - Lance Laing
- Celcuity, Inc. 16305 36th Ave N, Suite 100, Minneapolis, MN, 55446, USA.
| |
Collapse
|
8
|
Sychev ZE, Day A, Bergom HE, Larson G, Ali A, Ludwig M, Boytim E, Coleman I, Corey E, Plymate SR, Nelson PS, Hwang JH, Drake JM. Unraveling the Global Proteome and Phosphoproteome of Prostate Cancer Patient-Derived Xenografts. Mol Cancer Res 2024; 22:452-464. [PMID: 38345532 PMCID: PMC11063764 DOI: 10.1158/1541-7786.mcr-23-0976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/26/2024] [Accepted: 02/08/2024] [Indexed: 02/21/2024]
Abstract
Resistance to androgen-deprivation therapies leads to metastatic castration-resistant prostate cancer (mCRPC) of adenocarcinoma (AdCa) origin that can transform into emergent aggressive variant prostate cancer (AVPC), which has neuroendocrine (NE)-like features. In this work, we used LuCaP patient-derived xenograft (PDX) tumors, clinically relevant models that reflect and retain key features of the tumor from advanced prostate cancer patients. Here we performed proteome and phosphoproteome characterization of 48 LuCaP PDX tumors and identified over 94,000 peptides and 9,700 phosphopeptides corresponding to 7,738 proteins. We compared 15 NE versus 33 AdCa samples, which included six different PDX tumors for each group in biological replicates, and identified 309 unique proteins and 476 unique phosphopeptides that were significantly altered and corresponded to proteins that are known to distinguish these two phenotypes. Assessment of concordance from PDX tumor-matched protein and mRNA revealed increased dissonance in transcriptionally regulated proteins in NE and metabolite interconversion enzymes in AdCa. IMPLICATIONS Overall, our study highlights the importance of protein-based identification when compared with RNA and provides a rich resource of new and feasible targets for clinical assay development and in understanding the underlying biology of these tumors.
Collapse
Affiliation(s)
- Zoi E. Sychev
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota
| | - Abderrahman Day
- Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, Minnesota
- Institute for Health Informatics, University of Minnesota, Minneapolis, Minnesota
| | - Hannah E. Bergom
- Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, Minnesota
| | - Gabrianne Larson
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota
| | - Atef Ali
- Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, Minnesota
| | - Megan Ludwig
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota
| | - Ella Boytim
- Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, Minnesota
| | - Ilsa Coleman
- Fred Hutchinson Cancer Center, Seattle, Washington
| | - Eva Corey
- Department of Urology, University of Washington, Seattle, Washington
| | - Stephen R. Plymate
- Department of Urology, University of Washington, Seattle, Washington
- Division of Gerontology and Geriatrics Medicine, University of Washington, Seattle, Washington
- Geriatric Research Education and Clinical Center, Seattle Veterans Affairs Medical Center, Seattle Washington
| | | | - Justin H. Hwang
- Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, Minnesota
- Department of Medicine, University of Minnesota Masonic Cancer Center, Minneapolis, Minnesota
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Justin M. Drake
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
- Department of Urology, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
9
|
Meuten TK, Dean GA, Thamm DH. Review: The PI3K-AKT-mTOR signal transduction pathway in canine cancer. Vet Pathol 2024; 61:339-356. [PMID: 37905509 DOI: 10.1177/03009858231207021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Tumors in dogs and humans share many similar molecular and genetic features, incentivizing a better understanding of canine neoplasms not only for the purpose of treating companion animals, but also to facilitate research of spontaneously developing tumors with similar biologic behavior and treatment approaches in an immunologically competent animal model. Multiple tumor types of both species have similar dysregulation of signal transduction through phosphatidylinositol 3-kinase (PI3K), protein kinase B (PKB; AKT), and mechanistic target of rapamycin (mTOR), collectively known as the PI3K-AKT-mTOR pathway. This review aims to delineate the pertinent aspects of the PI3K-AKT-mTOR signaling pathway in health and in tumor development. It will then present a synopsis of current understanding of PI3K-AKT-mTOR signaling in important canine cancers and advancements in targeted inhibitors of this pathway.
Collapse
|
10
|
Eberlein C, Williamson SC, Hopcroft L, Ros S, Moss JI, Kerr J, van Weerden WM, de Bruin EC, Dunn S, Willis B, Ross SJ, Rooney C, Barry ST. Capivasertib combines with docetaxel to enhance anti-tumour activity through inhibition of AKT-mediated survival mechanisms in prostate cancer. Br J Cancer 2024; 130:1377-1387. [PMID: 38396173 PMCID: PMC11014923 DOI: 10.1038/s41416-024-02614-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/25/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND/OBJECTIVE To explore the anti-tumour activity of combining AKT inhibition and docetaxel in PTEN protein null and WT prostate tumours. METHODS Mechanisms associated with docetaxel capivasertib treatment activity in prostate cancer were examined using a panel of in vivo tumour models and cell lines. RESULTS Combining docetaxel and capivasertib had increased activity in PTEN null and WT prostate tumour models in vivo. In vitro short-term docetaxel treatment caused cell cycle arrest in the majority of cells. However, a sub-population of docetaxel-persister cells did not undergo G2/M arrest but upregulated phosphorylation of PI3K/AKT pathway effectors GSK3β, p70S6K, 4E-BP1, but to a lesser extent AKT. In vivo acute docetaxel treatment induced p70S6K and 4E-BP1 phosphorylation. Treating PTEN null and WT docetaxel-persister cells with capivasertib reduced PI3K/AKT pathway activation and cell cycle progression. In vitro and in vivo it reduced proliferation and increased apoptosis or DNA damage though effects were more marked in PTEN null cells. Docetaxel-persister cells were partly reliant on GSK3β as a GSK3β inhibitor AZD2858 reversed capivasertib-induced apoptosis and DNA damage. CONCLUSION Capivasertib can enhance anti-tumour effects of docetaxel by targeting residual docetaxel-persister cells, independent of PTEN status, to induce apoptosis and DNA damage in part through GSK3β.
Collapse
Affiliation(s)
- Cath Eberlein
- Bioscience, Early Oncology, AstraZeneca, Alderley Park, UK
| | | | | | - Susana Ros
- Bioscience, Early Oncology, AstraZeneca, Cambridge, UK
| | | | - James Kerr
- Bioscience, Early Oncology, AstraZeneca, Cambridge, UK
| | - Wytske M van Weerden
- Department of Experimental Urology, Josephine Nefkens Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | | | - Shanade Dunn
- Bioscience, Early Oncology, AstraZeneca, Cambridge, UK
| | - Brandon Willis
- Bioscience, Early Oncology, AstraZeneca, Boston, MA, USA
| | - Sarah J Ross
- Bioscience, Early Oncology, AstraZeneca, Cambridge, UK
| | | | - Simon T Barry
- Bioscience, Early Oncology, AstraZeneca, Cambridge, UK.
| |
Collapse
|
11
|
Peng X, Huang X, Lulu TB, Jia W, Zhang S, Cohen L, Huang S, Fan J, Chen X, Liu S, Wang Y, Wang K, Isoyama S, Dan S, Wang F, Zhang Z, Elkabets M, Kong D. A novel pan-PI3K inhibitor KTC1101 synergizes with anti-PD-1 therapy by targeting tumor suppression and immune activation. Mol Cancer 2024; 23:54. [PMID: 38486218 PMCID: PMC10938783 DOI: 10.1186/s12943-024-01978-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/03/2024] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND Phosphoinositide 3-kinases (PI3Ks) are critical regulators of diverse cellular functions and have emerged as promising targets in cancer therapy. Despite significant progress, existing PI3K inhibitors encounter various challenges such as suboptimal bioavailability, potential off-target effects, restricted therapeutic indices, and cancer-acquired resistance. Hence, novel inhibitors that overcome some of these challenges are needed. Here, we describe the characterization of KTC1101, a novel pan-PI3K inhibitor that simultaneously targets tumor cell proliferation and the tumor microenvironment. Our studies demonstrate that KTC1101 significantly increases the anti-PD-1 efficacy in multiple pre-clinical mouse models. METHODS KTC1101 was synthesized and characterized employing chemical synthesis, molecular modeling, Nuclear Magnetic Resonance (NMR), and mass spectrometry. Its target specificity was confirmed through the kinase assay, JFCR39 COMPARE analysis, and RNA-Seq analysis. Metabolic stability was verified via liver microsome and plasma assays, pharmacokinetics determined by LC-MS/MS, and safety profile established through acute toxicity assays to determine the LD50. The antiproliferative effects of KTC1101 were evaluated in a panel of cancer cell lines and further validated in diverse BALB/c nude mouse xenograft, NSG mouse xenograft and syngeneic mouse models. The KTC1101 treatment effect on the immune response was assessed through comprehensive RNA-Seq, flow cytometry, and immunohistochemistry, with molecular pathways investigated via Western blot, ELISA, and qRT-PCR. RESULTS KTC1101 demonstrated strong inhibition of cancer cell growth in vitro and significantly impeded tumor progression in vivo. It effectively modulated the Tumor Microenvironment (TME), characterized by increased infiltration of CD8+ T cells and innate immune cells. An intermittent dosing regimen of KTC1101 enhanced these effects. Notably, KTC1101 synergized with anti-PD-1 therapy, significantly boosting antitumor immunity and extending survival in preclinical models. CONCLUSION KTC1101's dual mechanism of action-directly inhibiting tumor cell growth and dynamically enhancing the immune response- represents a significant advancement in cancer treatment strategies. These findings support incorporating KTC1101 into future oncologic regimens to improve the efficacy of immunotherapy combinations.
Collapse
Affiliation(s)
- Xin Peng
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education), Tianjin Medical University, Tianjin, 300070, China
| | - Xin Huang
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education), Tianjin Medical University, Tianjin, 300070, China
| | - Talal Ben Lulu
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Wenqing Jia
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education), Tianjin Medical University, Tianjin, 300070, China
| | - Shaolu Zhang
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education), Tianjin Medical University, Tianjin, 300070, China
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Limor Cohen
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Shengfan Huang
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education), Tianjin Medical University, Tianjin, 300070, China
| | - Jindian Fan
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education), Tianjin Medical University, Tianjin, 300070, China
| | - Xi Chen
- Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin Eye Hospital, Tianjin, 300020, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Shanshan Liu
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education), Tianjin Medical University, Tianjin, 300070, China
| | - Yongzhe Wang
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education), Tianjin Medical University, Tianjin, 300070, China
| | - Kailin Wang
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education), Tianjin Medical University, Tianjin, 300070, China
| | - Sho Isoyama
- Division of Molecular Pharmacology, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, 135-8550, Japan
| | - Shingo Dan
- Division of Molecular Pharmacology, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, 135-8550, Japan
| | - Feng Wang
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Zhe Zhang
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China.
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education), Tianjin Medical University, Tianjin, 300070, China.
| | - Moshe Elkabets
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel.
| | - Dexin Kong
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China.
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education), Tianjin Medical University, Tianjin, 300070, China.
- Department of Pharmacy, Tianjin Medical University General Hospital, Tianjin, 300052, China.
- International Joint Laboratory of Ocular Diseases (Ministry of Education), Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
12
|
Chaudhary M, Kumar S, Kaur P, Sahu SK, Mittal A. Comprehensive Review on Recent Strategies for Management of Prostate Cancer: Therapeutic Targets and SAR. Mini Rev Med Chem 2024; 24:721-747. [PMID: 37694781 DOI: 10.2174/1389557523666230911141339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/09/2023] [Accepted: 07/18/2023] [Indexed: 09/12/2023]
Abstract
Prostate cancer is a disease that is affecting a large population worldwide. Androgen deprivation therapy (ADT) has become a foundation for the treatment of advanced prostate cancer, as used in most clinical settings from neo-adjuvant to metastatic stage. In spite of the success of ADT in managing the disease in the majority of men, hormonal manipulation fails eventually. New molecules are developed for patients with various hormone-refractory diseases. Advancements in molecular oncology have increased understanding of numerous cellular mechanisms which control cell death in the prostate and these insights can lead to the development of more efficacious and tolerable therapies for carcinoma of the prostate. This review is focused on numerous therapies that might be a boon for prostate therapy like signaling inhibitors, vaccines, and inhibitors of androgen receptors. Along with these, various bioactive molecules and their derivatives are highlighted, which act as potential antiprostate cancer agents. This article also emphasized the recent advances in the field of medicinal chemistry of prostate cancer agents.
Collapse
Affiliation(s)
- Manish Chaudhary
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road, Phagwara, Punjab, 144001, India
| | - Shubham Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road, Phagwara, Punjab, 144001, India
| | - Paranjeet Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sanjeev Kumar Sahu
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road, Phagwara, Punjab, 144001, India
| | - Amit Mittal
- Faculty of Pharmaceutical Sciences, Desh Bhagat University, Amloh Road, Mandi Gobindgarh, Punjab, 147301, India
| |
Collapse
|
13
|
Miller KA, Degan S, Wang Y, Cohen J, Ku SY, Goodrich DW, Gelman IH. PTEN-regulated PI3K-p110 and AKT isoform plasticity controls metastatic prostate cancer progression. Oncogene 2024; 43:22-34. [PMID: 37875657 PMCID: PMC10766561 DOI: 10.1038/s41388-023-02875-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 10/04/2023] [Accepted: 10/13/2023] [Indexed: 10/26/2023]
Abstract
PTEN loss, one of the most frequent mutations in prostate cancer (PC), is presumed to drive disease progression through AKT activation. However, two transgenic PC models with Akt activation plus Rb loss exhibited different metastatic development: Pten/RbPE:-/- mice produced systemic metastatic adenocarcinomas with high AKT2 activation, whereas RbPE:-/- mice deficient for the Src-scaffolding protein, Akap12, induced high-grade prostatic intraepithelial neoplasias and indolent lymph node dissemination, correlating with upregulated phosphotyrosyl PI3K-p85α. Using PC cells isogenic for PTEN, we show that PTEN-deficiency correlated with dependence on both p110β and AKT2 for in vitro and in vivo parameters of metastatic growth or motility, and with downregulation of SMAD4, a known PC metastasis suppressor. In contrast, PTEN expression, which dampened these oncogenic behaviors, correlated with greater dependence on p110α plus AKT1. Our data suggest that metastatic PC aggressiveness is controlled by specific PI3K/AKT isoform combinations influenced by divergent Src activation or PTEN-loss pathways.
Collapse
Affiliation(s)
- Karina A Miller
- Department of Cancer Genetics & Genomics, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14209, USA
- American Society of Human Genetics, Rockville, MD, 20852, USA
| | - Seamus Degan
- Department of Cancer Genetics & Genomics, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14209, USA
| | - Yanqing Wang
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14209, USA
| | - Joseph Cohen
- Department of Cancer Genetics & Genomics, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14209, USA
- Sequence, Inc., Morrisville, NC, USA
| | - Sheng Yu Ku
- Dana Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - David W Goodrich
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14209, USA
| | - Irwin H Gelman
- Department of Cancer Genetics & Genomics, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14209, USA.
| |
Collapse
|
14
|
Sharifi MN, O'Regan RM, Wisinski KB. Is the Androgen Receptor a Viable Target in Triple Negative Breast Cancer in 5 Years? Clin Breast Cancer 2023; 23:813-824. [PMID: 37419745 DOI: 10.1016/j.clbc.2023.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/09/2023] [Accepted: 06/17/2023] [Indexed: 07/09/2023]
Abstract
Triple negative breast cancer (TNBC) is characterized by high rates of disease recurrence after definitive therapy, and median survival of less than 18 months in the metastatic setting. Systemic therapy options for TNBC consist primarily of cytotoxic chemotherapy-containing regimens, and while recently FDA-approved chemo-immunotherapy combinations and antibody-drug conjugates such as Sacituzumab govitecan have improved clinical outcomes, there remains an unmet need for more effective and less toxic therapies. A subset of TNBC expresses the androgen receptor (AR), a nuclear hormone steroid receptor that activates an androgen-responsive transcriptional program, and gene expression profiling has revealed a TNBC molecular subtype with AR expression and luminal and androgen responsive features. Both preclinical and clinical data suggest biologic similarities between luminal AR (LAR) TNBC and ER+ luminal breast cancer, including lower proliferative activity, relative chemoresistance, and high rates of oncogenic activating mutations in the phosphatidylinositol-3-kinase (PI3K) pathway. Preclinical LAR-TNBC models are sensitive to androgen signaling inhibitors (ASIs), and particularly given the availability of FDA-approved ASIs with robust efficacy in prostate cancer, there has been great interest in targeting this pathway in AR+ TNBC. Here, we review the underlying biology and completed and ongoing androgen-targeted therapy studies in early stage and metastatic AR+ TNBC.
Collapse
Affiliation(s)
- Marina N Sharifi
- UW Carbone Cancer Center, University of Wisconsin, Madison, Madison, WI.
| | - Ruth M O'Regan
- Department of Medicine, University of Rochester, Rochester, NY
| | - Kari B Wisinski
- UW Carbone Cancer Center, University of Wisconsin, Madison, Madison, WI
| |
Collapse
|
15
|
Lin H, Cheng S, Yang S, Zhang Q, Wang L, Li J, Zhang X, Liang L, Zhou X, Yang F, Song J, Cao X, Yang W, Weng Z. Isoforskolin modulates AQP4-SPP1-PIK3C3 related pathway for chronic obstructive pulmonary disease via cAMP signaling. Chin Med 2023; 18:128. [PMID: 37817209 PMCID: PMC10566078 DOI: 10.1186/s13020-023-00778-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/01/2023] [Indexed: 10/12/2023] Open
Abstract
BACKGROUND Cyclic adenosine monophosphate (cAMP) levels are directly activated by adenylate cyclase (AC) and play an anti-inflammatory role in chronic obstructive pulmonary disease (COPD). Previously, we have shown that isoforskolin (ISOF) can effectively activate AC1 and AC2 in vitro, improve pulmonary ventilation and reduce the inflammatory response in COPD model rats, supporting that ISOF may be a potential drug for the prevention and treatment of COPD, but the mechanism has not been explored in detail. METHODS The potential pharmacological mechanisms of ISOF against COPD were analyzed by network pharmacology and multi-omics based on pharmacodynamic study. To use specific agonists, inhibitors and/or SiRNA for gene regulation function studies, combined qPCR, WB were applied to detect changes in mRNA and protein expression of important targets PIK3C3, AKT, mTOR, SPP1 and AQP4 which related to ISOF effect on COPD. And the key inflammatory factors detected by ELISA. RESULTS Bioinformatics suggested that the anti-COPD pharmacological mechanism of ISOF was related to PI3K-AKT signaling pathway, and suggested target protein like PIK3C3, AQP4, SPP1, AKT, mTOR. Using the AQP4 inhibitor,or inhibiting SPP1 expression by siRNA-SPP1 could block the PIK3C3-AKT-mTOR pathway and ameliorate chronic inflammation. ISOF showed cAMP-promoting effect then suppressed AQP4 expression, together with decreased level of IL-1β, IL-6, and IL-8. CONCLUSIONS These findings demonstrate ISOF controlled the cAMP-regulated PIK3C3-AKT-mTOR pathway, thereby alleviating inflammatory development in COPD. The cAMP/AQP4/PIK3C3 axis also modulate Th17/Treg differentiation, revealed potential therapeutic targets for this disease.
Collapse
Affiliation(s)
- Haochang Lin
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, No. 1168, Chunrong West Road, Yuhua Street, Chenggong New Town, Kunming, 650500, China
| | - Sha Cheng
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, No. 1168, Chunrong West Road, Yuhua Street, Chenggong New Town, Kunming, 650500, China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, Guizhou, China
- Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, 550014, Guizhou, China
| | - Songye Yang
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, No. 1168, Chunrong West Road, Yuhua Street, Chenggong New Town, Kunming, 650500, China
| | - Qian Zhang
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, No. 1168, Chunrong West Road, Yuhua Street, Chenggong New Town, Kunming, 650500, China
| | - Lueli Wang
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, No. 1168, Chunrong West Road, Yuhua Street, Chenggong New Town, Kunming, 650500, China
| | - Jiangya Li
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, No. 1168, Chunrong West Road, Yuhua Street, Chenggong New Town, Kunming, 650500, China
| | - Xinyue Zhang
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, No. 1168, Chunrong West Road, Yuhua Street, Chenggong New Town, Kunming, 650500, China
| | - Liju Liang
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, No. 1168, Chunrong West Road, Yuhua Street, Chenggong New Town, Kunming, 650500, China
| | - Xiaoqian Zhou
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, No. 1168, Chunrong West Road, Yuhua Street, Chenggong New Town, Kunming, 650500, China
| | - Furong Yang
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, No. 1168, Chunrong West Road, Yuhua Street, Chenggong New Town, Kunming, 650500, China
| | - Jingfeng Song
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, No. 1168, Chunrong West Road, Yuhua Street, Chenggong New Town, Kunming, 650500, China.
| | - Xue Cao
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, No. 1168, Chunrong West Road, Yuhua Street, Chenggong New Town, Kunming, 650500, China.
- Department of Laboratory Animal Science, Kunming Medical University, Kunming, 650500, China.
| | - Weimin Yang
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, No. 1168, Chunrong West Road, Yuhua Street, Chenggong New Town, Kunming, 650500, China.
| | - Zhiying Weng
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, No. 1168, Chunrong West Road, Yuhua Street, Chenggong New Town, Kunming, 650500, China.
| |
Collapse
|
16
|
Su WY, Tian LY, Guo LP, Huang LQ, Gao WY. PI3K signaling-regulated metabolic reprogramming: From mechanism to application. Biochim Biophys Acta Rev Cancer 2023; 1878:188952. [PMID: 37499988 DOI: 10.1016/j.bbcan.2023.188952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/29/2023]
Abstract
Oncogenic signaling involved in tumor metabolic reprogramming. Tumorigenesis was not only determined by the mutations or deletion of oncogenes but also accompanied by the reprogramming of cellular metabolism. Metabolic alterations play a crucial regulatory role in the development and progression of tumors. Oncogenic PI3K/AKT signaling mediates the metabolic switch in cancer cells and immune cells in the tumor microenvironment. PI3K/AKT and its downstream effector branch off and connect to multiple steps of metabolism, such as glucose, lipids, and amino acids. Thus, PI3K inhibitor could effectively regulate metabolic pathway and impede the oncogenic process and some key metabolic proteins or critical enzymes also constitute biomarkers for tumor diagnosis and treatment. In the current review, we summarize the significant effect of PI3K/AKT signaling toward tumor metabolism, it enables us to obtain the better understanding for this interaction and develop more effective therapeutic strategies targeting cancer cell metabolism.
Collapse
Affiliation(s)
- Wen Ya Su
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Lu Yao Tian
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Lan Pin Guo
- National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Lu Qi Huang
- National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Wen Yuan Gao
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China.
| |
Collapse
|
17
|
Sychev ZE, Day A, Bergom HE, Larson G, Ali A, Ludwig M, Boytim E, Coleman I, Corey E, Plymate SR, Nelson PS, Hwang JH, Drake JM. Unraveling the Global Proteome and Phosphoproteome of Prostate Cancer Patient-Derived Xenografts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.02.551697. [PMID: 37577653 PMCID: PMC10418188 DOI: 10.1101/2023.08.02.551697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Resistance to androgen deprivation therapies leads to metastatic castration-resistant prostate cancer (mCRPC) of adenocarcinoma (AdCa) origin that can transform to emergent aggressive variant prostate cancer (AVPC) which has neuroendocrine (NE)-like features. To this end, we used LuCaP patient-derived xenograft (PDX) tumors, clinically relevant models that reflects and retains key features of the tumor from advanced prostate cancer patients. Here we performed proteome and phosphoproteome characterization of 48 LuCaP PDX tumors and identified over 94,000 peptides and 9,700 phosphopeptides corresponding to 7,738 proteins. When we compared 15 NE versus 33 AdCa PDX samples, we identified 309 unique proteins and 476 unique phosphopeptides that were significantly altered and corresponded to proteins that are known to distinguish these two phenotypes. Assessment of protein and RNA concordance from these tumors revealed increased dissonance in transcriptionally regulated proteins in NE and metabolite interconversion enzymes in AdCa.
Collapse
Affiliation(s)
- Zoi E. Sychev
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, University of Minnesota, Minneapolis, MN
| | - Abderrahman Day
- Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN
| | - Hannah E. Bergom
- Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN
| | - Gabrianne Larson
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, University of Minnesota, Minneapolis, MN
| | - Atef Ali
- Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN
| | - Megan Ludwig
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, University of Minnesota, Minneapolis, MN
| | - Ella Boytim
- Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN
| | | | - Eva Corey
- Depart of Urology, University of Washington, Seattle, WA
| | - Stephen R. Plymate
- Division of gerontology and Geriatrics Medicine, University of Washington, Seattle, WA
| | | | - Justin H. Hwang
- Department of Medicine, University of Minnesota Masonic Cancer Center, Minneapolis, MN
- Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| | - Justin M. Drake
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, University of Minnesota, Minneapolis, MN
- Department of Urology, University of Minnesota, Minneapolis, MN
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| |
Collapse
|
18
|
Cahuzac KM, Lubin A, Bosch K, Stokes N, Shoenfeld SM, Zhou R, Lemon H, Asara J, Parsons RE. AKT activation because of PTEN loss upregulates xCT via GSK3β/NRF2, leading to inhibition of ferroptosis in PTEN-mutant tumor cells. Cell Rep 2023; 42:112536. [PMID: 37210723 PMCID: PMC10558134 DOI: 10.1016/j.celrep.2023.112536] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 01/25/2023] [Accepted: 05/03/2023] [Indexed: 05/23/2023] Open
Abstract
Here, we show that the tumor suppressor phosphatase and tensin homolog deleted from chromosome 10 (PTEN) sensitizes cells to ferroptosis, an iron-dependent form of cell death, by restraining the expression and activity of the cystine/glutamate antiporter system Xc- (xCT). Loss of PTEN activates AKT kinase to inhibit GSK3β, increasing NF-E2 p45-related factor 2 (NRF2) along with transcription of one of its known target genes encoding xCT. Elevated xCT in Pten-null mouse embryonic fibroblasts increases the flux of cystine transport and synthesis of glutathione, which enhances the steady-state levels of these metabolites. A pan-cancer analysis finds that loss of PTEN shows evidence of increased xCT, and PTEN-mutant cells are resistant to ferroptosis as a consequence of elevated xCT. These findings suggest that selection of PTEN mutation during tumor development may be due to its ability to confer resistance to ferroptosis in the setting of metabolic and oxidative stress that occurs during tumor initiation and progression.
Collapse
Affiliation(s)
- Kaitlyn M Cahuzac
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Abigail Lubin
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kaitlyn Bosch
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nicole Stokes
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - Royce Zhou
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Haddy Lemon
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - John Asara
- Division of Signal Transduction, Beth Israel Deaconess Medical Center and Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Ramon E Parsons
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
19
|
Miller K, Degan S, Wang Y, Cohen J, Ku SY, Goodrich D, Gelman I. PTEN regulated PI3K-p110 and AKT isoform plasticity controls metastatic prostate cancer progression. RESEARCH SQUARE 2023:rs.3.rs-2924750. [PMID: 37292818 PMCID: PMC10246239 DOI: 10.21203/rs.3.rs-2924750/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
PTEN loss, one of the most frequent mutations in prostate cancer (PC), is presumed to drive disease progression through AKT activation. However, two transgenic PC models with Akt activation plus Rb loss exhibited different metastasis development: Pten/RbPE:-/- mice produced systemic metastatic adenocarcinomas with high AKT2 activation, whereas RbPE:-/- mice deficient for the Src-scaffolding protein, Akap12, induced high-grade prostatic intraepithelial neoplasias and indolent lymph node disseminations, correlating with upregulated phosphotyrosyl PI3K-p85α. Using PC cells isogenic for PTEN, we show that PTEN-deficiency correlated with dependence on both p110β and AKT2 for in vitro and in vivo parameters of metastatic growth or motility, and with downregulation of SMAD4, a known PC metastasis suppressor. In contrast, PTEN expression, which dampened these oncogenic behaviors, correlated with greater dependence on p110α plus AKT1. Our data suggest that metastatic PC aggressiveness is controlled by specific PI3K/AKT isoform combinations influenced by divergent Src activation or PTEN-loss pathways.
Collapse
|
20
|
Gao H, Li Z, Wang K, Zhang Y, Wang T, Wang F, Xu Y. Design, Synthesis, and Biological Evaluation of Sulfonamide Methoxypyridine Derivatives as Novel PI3K/mTOR Dual Inhibitors. Pharmaceuticals (Basel) 2023; 16:ph16030461. [PMID: 36986560 PMCID: PMC10054477 DOI: 10.3390/ph16030461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/10/2023] [Accepted: 03/12/2023] [Indexed: 03/30/2023] Open
Abstract
Phosphatidylinositol 3-kinase (PI3K) plays an important role in cell proliferation, survival, migration, and metabolism, and has become an effective target for cancer treatment. Meanwhile, inhibiting both PI3K and mammalian rapamycin receptor (mTOR) can simultaneously improve the efficiency of anti-tumor therapy. Herein, a series of 36 sulfonamide methoxypyridine derivatives with three different aromatic skeletons were synthesized as novel potent PI3K/mTOR dual inhibitors based on a scaffold hopping strategy. Enzyme inhibition assay and cell anti-proliferation assay were employed to assess all derivatives. Then, the effects of the most potent inhibitor on cell cycle and apoptosis were performed. Furthermore, the phosphorylation level of AKT, an important downstream effector of PI3K, was evaluated by Western blot assay. Finally, molecular docking was used to confirm the binding mode with PI3Kα and mTOR. Among them, 22c with the quinoline core showed strong PI3Kα kinase inhibitory activity (IC50 = 0.22 nM) and mTOR kinase inhibitory activity (IC50 = 23 nM). 22c also showed a strong proliferation inhibitory activity, both in MCF-7 cells (IC50 = 130 nM) and HCT-116 cells (IC50 = 20 nM). 22c could effectively cause cell cycle arrest in G0/G1 phase and induce apoptosis of HCT-116 cells. Western blot assay showed that 22c could decrease the phosphorylation of AKT at a low concentration. The results of the modeling docking study also confirmed the binding mode of 22c with PI3Kα and mTOR. Hence, 22c is a promising PI3K/mTOR dual inhibitor, which is worthy of further research in the area.
Collapse
Affiliation(s)
- Haotian Gao
- Key Laboratory of Structure-Based Drug Design and Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zaolin Li
- Key Laboratory of Structure-Based Drug Design and Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Kai Wang
- Faculty of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yuhan Zhang
- Key Laboratory of Structure-Based Drug Design and Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Tong Wang
- Key Laboratory of Structure-Based Drug Design and Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Fang Wang
- Faculty of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Youjun Xu
- Key Laboratory of Structure-Based Drug Design and Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
21
|
Fiascarelli A, Merlino G, Capano S, Talucci S, Bisignano D, Bressan A, Bellarosa D, Carrisi C, Paoli A, Bigioni M, Tunici P, Irrissuto C, Salerno M, Arribas J, de Stanchina E, Scaltriti M, Binaschi M. Antitumor activity of the PI3K δ-sparing inhibitor MEN1611 in PIK3CA mutated, trastuzumab-resistant HER2 + breast cancer. Breast Cancer Res Treat 2023; 199:13-23. [PMID: 36913051 PMCID: PMC10147754 DOI: 10.1007/s10549-023-06895-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 02/14/2023] [Indexed: 03/14/2023]
Abstract
PURPOSE Dysregulation of the PI3K pathway is one of the most common events in breast cancer. Here we investigate the activity of the PI3K inhibitor MEN1611 at both molecular and phenotypic levels by dissecting and comparing its profile and efficacy in HER2 + breast cancer models with other PI3K inhibitors. METHODS Models with different genetic backgrounds were used to investigate the pharmacological profile of MEN1611 against other PI3K inhibitors. In vitro studies evaluated cell viability, PI3K signaling, and cell death upon treatment with MEN1611. In vivo efficacy of the compound was investigated in cell line- and patient-derived xenografts models. RESULTS Consistent with its biochemical selectivity, MEN1611 demonstrated lower cytotoxic activity in a p110δ-driven cellular model when compared to taselisib, and higher cytotoxic activity in the p110β-driven cellular model when compared to alpelisib. Moreover, MEN1611 selectively decreased the p110α protein levels in PIK3CA mutated breast cancer cells in a concentration- and proteasome-dependent manner. In vivo, MEN1611 monotherapy showed significant and durable antitumor activity in several trastuzumab-resistant PIK3CA-mutant HER2 + PDX models. The combination of trastuzumab and MEN1611 significantly improved the efficacy compared to single agent treatment. CONCLUSIONS The profile of MEN1611 and its antitumoral activity suggest an improved profile as compared to pan-inhibitors, which are limited by a less than ideal safety profile, and isoform selective molecules, which may potentially promote development of resistance mechanisms. The compelling antitumor activity in combination with trastuzumab in HER2 + trastuzumab-resistant, PIK3CA mutated breast cancer models is at the basis of the ongoing B-Precise clinical trial (NCT03767335).
Collapse
Affiliation(s)
- Alessio Fiascarelli
- Menarini Group, Preclinical and Translational Sciences, Menarini Ricerche SpA, Via Tito Speri 10, 00071, Pomezia, Rome, Italy.
| | - Giuseppe Merlino
- Menarini Group, Preclinical and Translational Sciences, Menarini Ricerche SpA, Via Tito Speri 10, 00071, Pomezia, Rome, Italy
| | - Stefania Capano
- Menarini Group, Preclinical and Translational Sciences, Menarini Ricerche SpA, Via Tito Speri 10, 00071, Pomezia, Rome, Italy
| | - Simone Talucci
- Menarini Group, Preclinical and Translational Sciences, Menarini Ricerche SpA, Via Tito Speri 10, 00071, Pomezia, Rome, Italy
| | - Diego Bisignano
- Menarini Group, Preclinical and Translational Sciences, Menarini Ricerche SpA, Via Tito Speri 10, 00071, Pomezia, Rome, Italy
| | - Alessandro Bressan
- Menarini Group, Preclinical and Translational Sciences, Menarini Ricerche SpA, Via Tito Speri 10, 00071, Pomezia, Rome, Italy
| | - Daniela Bellarosa
- Menarini Group, Preclinical and Translational Sciences, Menarini Ricerche SpA, Via Tito Speri 10, 00071, Pomezia, Rome, Italy
| | - Corrado Carrisi
- Menarini Group, Preclinical and Translational Sciences, Menarini Ricerche SpA, Via Tito Speri 10, 00071, Pomezia, Rome, Italy
| | - Alessandro Paoli
- Menarini Group, Preclinical and Translational Sciences, Menarini Ricerche SpA, Via Tito Speri 10, 00071, Pomezia, Rome, Italy
| | - Mario Bigioni
- Menarini Group, Preclinical and Translational Sciences, Menarini Ricerche SpA, Via Tito Speri 10, 00071, Pomezia, Rome, Italy
| | - Patrizia Tunici
- Menarini Group, Preclinical and Translational Sciences, Menarini Ricerche SpA, Via Tito Speri 10, 00071, Pomezia, Rome, Italy
| | - Clelia Irrissuto
- Menarini Group, Preclinical and Translational Sciences, Menarini Ricerche SpA, Via Tito Speri 10, 00071, Pomezia, Rome, Italy
| | - Massimiliano Salerno
- Menarini Group, Preclinical and Translational Sciences, Menarini Ricerche SpA, Via Tito Speri 10, 00071, Pomezia, Rome, Italy
| | - Joaquin Arribas
- Cancer Research Program, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.,Preclinical and Translational Research Program Vall d'Hebron Institute of Oncology (VHIO), 08035, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer, 28029, Monforte de Lemos, Madrid, Spain.,Department of Biochemistry and Molecular Biology, Universitat Autónoma de Barcelona, Campus de la UAB, 08193, Barcelona, Bellaterra, Spain.,Institució Catalana de Recerca I Estudis Avançats (ICREA), 08010, Barcelona, Spain
| | - Elisa de Stanchina
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Maurizio Scaltriti
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Monica Binaschi
- Menarini Group, Preclinical and Translational Sciences, Menarini Ricerche SpA, Via Tito Speri 10, 00071, Pomezia, Rome, Italy
| |
Collapse
|
22
|
Yu M, Chen J, Xu Z, Yang B, He Q, Luo P, Yan H, Yang X. Development and safety of PI3K inhibitors in cancer. Arch Toxicol 2023; 97:635-650. [PMID: 36773078 PMCID: PMC9968701 DOI: 10.1007/s00204-023-03440-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 01/09/2023] [Indexed: 02/12/2023]
Abstract
The phosphatidylinositol 3-kinase (PI3K) signalling pathway regulates cell survival, proliferation, migration, metabolism and other vital cellular life processes. In addition, activation of the PI3K signalling pathway is important for cancer development. As a result, a variety of PI3K inhibitors have been clinically developed to treat malignancies. Although several PI3K inhibitors have received approval from the Food and Drug Administration (FDA) for significant antitumour activity, frequent and severe adverse effects have greatly limited their clinical application. These toxicities are mostly on-target and immune-mediated; nevertheless, the underlying mechanisms are still unclear. Current management usually involves intervention through symptomatic treatment, with discontinuation if toxicity persists. Therefore, it is necessary to comprehensively understand these adverse events and ensure the clinical safety application of PI3K inhibitors by establishing the most effective management guidelines, appropriate intermittent dosing regimens and new combination administration. Here, the focus is on the development of PI3K inhibitors in cancer therapy, with particular emphasis on isoform-specific PI3K inhibitors. The most common adverse effects of PI3K inhibitors are also covered, as well as potential mechanisms and management approaches.
Collapse
Affiliation(s)
- Miaomiao Yu
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Zijingang Campus, Hangzhou, 310058, Zhejiang, People's Republic of China
| | - Jiajia Chen
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Zijingang Campus, Hangzhou, 310058, Zhejiang, People's Republic of China
| | - Zhifei Xu
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Zijingang Campus, Hangzhou, 310058, Zhejiang, People's Republic of China
| | - Bo Yang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, People's Republic of China
| | - Qiaojun He
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Zijingang Campus, Hangzhou, 310058, Zhejiang, People's Republic of China
- Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, 310018, Zhejiang, People's Republic of China
| | - Peihua Luo
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Zijingang Campus, Hangzhou, 310058, Zhejiang, People's Republic of China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Hao Yan
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Zijingang Campus, Hangzhou, 310058, Zhejiang, People's Republic of China.
| | - Xiaochun Yang
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Zijingang Campus, Hangzhou, 310058, Zhejiang, People's Republic of China.
| |
Collapse
|
23
|
Asai S, Goto Y, Tanigawa K, Tomioka Y, Kato M, Mizuno K, Sakamoto S, Seki N. MiR-15b-5p inhibits castration-resistant growth of prostate cancer cells by targeting the muscarinic cholinergic receptor CHRM3. FEBS Lett 2023; 597:1164-1175. [PMID: 36754848 DOI: 10.1002/1873-3468.14598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/30/2023] [Accepted: 01/30/2023] [Indexed: 02/10/2023]
Abstract
Cholinergic receptor muscarinic 3 (CHRM3)-mediated focal adhesion kinase/YES-associated protein (YAP) signalling is essential for the growth of castration-resistant prostate cancer (CRPC) cells. Here, we evaluated the molecular mechanisms through which CHRM3 overexpression facilitates castration-resistant growth. Small RNA sequencing combined with in silico analyses revealed that CHRM3 was a putative target of miR-15b-5p. Notably, androgen deprivation suppressed miR-15b-5p expression and increased CHRM3 expression. Moreover, miR-15b-5p bound directly to CHRM3 and inhibited YAP activation induced by CHRM3 stimulation. Furthermore, miR-15b-5p abolished the growth of CRPC cells induced by CHRM3 stimulation. We conclude that the miR-15b-5p/CHRM3/YAP signalling axis promotes the castration-resistant growth of prostate cancer.
Collapse
Affiliation(s)
- Shunichi Asai
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Japan
| | - Yusuke Goto
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Japan.,Department of Urology, Chiba University Graduate School of Medicine, Japan
| | - Kengo Tanigawa
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Japan
| | - Yuya Tomioka
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Japan
| | - Mayuko Kato
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Japan.,Department of Urology, Chiba University Graduate School of Medicine, Japan
| | - Keiko Mizuno
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Japan
| | - Shinichi Sakamoto
- Department of Urology, Chiba University Graduate School of Medicine, Japan
| | - Naohiko Seki
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Japan
| |
Collapse
|
24
|
Masoud AG, Lin J, Zhu LF, Tao K, Ness NW, Kassiri Z, Moore RB, Vanhaesebroeck B, West L, Anderson CC, Oudit GY, Murray AG. Endothelial phosphoinositide 3-kinase-β inactivation confers protection from immune-mediated vascular injury. Am J Transplant 2023; 23:202-213. [PMID: 36804130 DOI: 10.1016/j.ajt.2022.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 10/03/2022] [Accepted: 11/02/2022] [Indexed: 01/06/2023]
Abstract
Heart transplant and recipient survival are limited by immune cell-mediated injury of the graft vasculature. We examined the role of the phosphoinositide 3-kinase-β (PI3Kβ) isoform in endothelial cells (EC) during coronary vascular immune injury and repair in mice. In minor histocompatibility-antigen mismatched allogeneic heart grafts, a robust immune response was mounted to each wild-type, PI3Kβ inhibitor-treated, or endothelial-selective PI3Kβ knockout (ECβKO) graft transplanted to wild-type recipients. However, microvascular EC loss and progressive occlusive vasculopathy only developed in control, but not PI3Kβ-inactivated hearts. We observed a delay in inflammatory cell infiltration of the ECβKO grafts, particularly in the coronary arteries. Surprisingly, this was accompanied by an impaired display of proinflammatory chemokine and adhesion molecules by the ECβKO ECs. In vitro, tumor necrosis factor α-stimulated endothelial ICAM1 and VCAM1 expression was blocked by PI3Kβ inhibition or RNA interference. Selective PI3Kβ inhibition also blocked tumor necrosis factor α-stimulated degradation of inhibitor of nuclear factor kappa Bα and nuclear translocation of nuclear factor kappa B p65 in EC. These data identify PI3Kβ as a therapeutic target to reduce vascular inflammation and injury.
Collapse
Affiliation(s)
- Andrew G Masoud
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada; Alberta Transplant Institute, Edmonton, Alberta, Canada
| | - Jiaxin Lin
- Alberta Transplant Institute, Edmonton, Alberta, Canada; Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Lin F Zhu
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Kesheng Tao
- Alberta Transplant Institute, Edmonton, Alberta, Canada; Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Nathan W Ness
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada; Alberta Transplant Institute, Edmonton, Alberta, Canada
| | - Zamaneh Kassiri
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
| | - Ronald B Moore
- Alberta Transplant Institute, Edmonton, Alberta, Canada; Department of Surgery, University of Alberta, Edmonton, Alberta, Canada; Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
| | | | - Lori West
- Alberta Transplant Institute, Edmonton, Alberta, Canada; Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Colin C Anderson
- Alberta Transplant Institute, Edmonton, Alberta, Canada; Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Gavin Y Oudit
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada; UCL Cancer Institute, University College London, London, England, UK; Mazankowski Alberta Heart Institute, Edmonton, Alberta, Canada
| | - Allan G Murray
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada; Alberta Transplant Institute, Edmonton, Alberta, Canada.
| |
Collapse
|
25
|
Targeting Class I-II-III PI3Ks in Cancer Therapy: Recent Advances in Tumor Biology and Preclinical Research. Cancers (Basel) 2023; 15:cancers15030784. [PMID: 36765741 PMCID: PMC9913247 DOI: 10.3390/cancers15030784] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 02/01/2023] Open
Abstract
Phosphatidylinositol-3-kinase (PI3K) enzymes, producing signaling phosphoinositides at plasma and intracellular membranes, are key in intracellular signaling and vesicular trafficking pathways. PI3K is a family of eight enzymes divided into three classes with various functions in physiology and largely deregulated in cancer. Here, we will review the recent evidence obtained during the last 5 years on the roles of PI3K class I, II and III isoforms in tumor biology and on the anti-tumoral action of PI3K inhibitors in preclinical cancer models. The dependency of tumors to PI3K isoforms is dictated by both genetics and context (e.g., the microenvironment). The understanding of class II/III isoforms in cancer development and progression remains scarce. Nonetheless, the limited available data are consistent and reveal that there is an interdependency between the pathways controlled by all PI3K class members in their role to promote cancer cell proliferation, survival, growth, migration and metabolism. It is unknown whether this feature contributes to partial treatment failure with isoform-selective PI3K inhibitors. Hence, a better understanding of class II/III functions to efficiently inhibit their positive and negative interactions with class I PI3Ks is needed. This research will provide the proof-of-concept to develop combination treatment strategies targeting several PI3K isoforms simultaneously.
Collapse
|
26
|
Hu H, Cheng R, Wang Y, Wang X, Wu J, Kong Y, Zhan S, Zhou Z, Zhu H, Yu R, Liang G, Wang Q, Zhu X, Zhang CY, Yin R, Yan C, Chen X. Oncogenic KRAS signaling drives evasion of innate immune surveillance in lung adenocarcinoma by activating CD47. J Clin Invest 2023; 133:153470. [PMID: 36413402 PMCID: PMC9843062 DOI: 10.1172/jci153470] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 11/15/2022] [Indexed: 11/23/2022] Open
Abstract
KRAS is one of the most frequently activated oncogenes in human cancers. Although the role of KRAS mutation in tumorigenesis and tumor maintenance has been extensively studied, the relationship between KRAS and the tumor immune microenvironment is not fully understood. Here, we identified a role of KRAS in driving tumor evasion from innate immune surveillance. In samples of lung adenocarcinoma from patients and Kras-driven genetic mouse models of lung cancer, mutant KRAS activated the expression of cluster of differentiation 47 (CD47), an antiphagocytic signal in cancer cells, leading to decreased phagocytosis of cancer cells by macrophages. Mechanistically, mutant KRAS activated PI3K/STAT3 signaling, which restrained miR-34a expression and relieved the posttranscriptional repression of miR-34a on CD47. In 3 independent cohorts of patients with lung cancer, the KRAS mutation status positively correlated with CD47 expression. Therapeutically, disruption of the KRAS/CD47 signaling axis with KRAS siRNA, the KRASG12C inhibitor AMG 510, or a miR-34a mimic suppressed CD47 expression, enhanced the phagocytic capacity of macrophages, and restored innate immune surveillance. Our results reveal a direct mechanistic link between active KRAS and innate immune evasion and identify CD47 as a major effector underlying the KRAS-mediated immunosuppressive tumor microenvironment.
Collapse
Affiliation(s)
- Huanhuan Hu
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, and,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| | - Rongjie Cheng
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, and,Cancer Stem Cell Laboratory, The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Yanbo Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, and,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| | - Xiaojun Wang
- Department of Thoracic Surgery, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Jiangsu Cancer Hospital and Nanjing Medical University Affiliated Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing, China
| | - Jianzhuang Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, and
| | - Yan Kong
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, and
| | - Shoubin Zhan
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, and
| | - Zhen Zhou
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, and
| | - Hongyu Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, and
| | - Ranran Yu
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, and
| | - Gaoli Liang
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, and
| | - Qingyan Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, and
| | - Xiaoju Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, and
| | - Chen-Yu Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, and,Research Unit of Extracellular RNA, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, China.,Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, China
| | - Rong Yin
- Department of Thoracic Surgery, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Jiangsu Cancer Hospital and Nanjing Medical University Affiliated Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing, China.,Biobank of Lung Cancer, Jiangsu Biobank of Clinical Resources, Nanjing, China.,Collaborative Innovation Centre for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Chao Yan
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, and,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China.,Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, China
| | - Xi Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, and,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China.,Research Unit of Extracellular RNA, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, China.,Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, China.,Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| |
Collapse
|
27
|
Xu W, Berning P, Erdmann T, Grau M, Bettazová N, Zapukhlyak M, Frontzek F, Kosnopfel C, Lenz P, Grondine M, Willis B, Lynch JT, Klener P, Hailfinger S, Barry ST, Lenz G. mTOR inhibition amplifies the anti-lymphoma effect of PI3Kβ/δ blockage in diffuse large B-cell lymphoma. Leukemia 2023; 37:178-189. [PMID: 36352190 PMCID: PMC9883168 DOI: 10.1038/s41375-022-01749-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 11/10/2022]
Abstract
Diffuse large B-cell lymphoma (DLBCL) is an aggressive disease that exhibits constitutive activation of phosphoinositide 3-kinase (PI3K) driven by chronic B-cell receptor signaling or PTEN deficiency. Since pan-PI3K inhibitors cause severe side effects, we investigated the anti-lymphoma efficacy of the specific PI3Kβ/δ inhibitor AZD8186. We identified a subset of DLBCL models within activated B-cell-like (ABC) and germinal center B-cell-like (GCB) DLBCL that were sensitive to AZD8186 treatment. On the molecular level, PI3Kβ/δ inhibition decreased the pro-survival NF-κB and AP-1 activity or led to downregulation of the oncogenic transcription factor MYC. In AZD8186-resistant models, we detected a feedback activation of the PI3K/AKT/mTOR pathway following PI3Kβ/δ inhibition, which limited AZD8186 efficacy. The combined treatment with AZD8186 and the mTOR inhibitor AZD2014 overcame resistance to PI3Kβ/δ inhibition and completely prevented outgrowth of lymphoma cells in vivo in cell line- and patient-derived xenograft mouse models. Collectively, our study reveals that subsets of DLBCLs are addicted to PI3Kβ/δ signaling and thus identifies a previously unappreciated role of the PI3Kβ isoform in DLBCL survival. Furthermore, our data demonstrate that combined targeting of PI3Kβ/δ and mTOR is effective in all major DLBCL subtypes supporting the evaluation of this strategy in a clinical trial setting.
Collapse
Affiliation(s)
- Wendan Xu
- Department of Hematology, Oncology and Pneumology, University Hospital Muenster, Muenster, Germany
| | - Philipp Berning
- Department of Hematology, Oncology and Pneumology, University Hospital Muenster, Muenster, Germany
| | - Tabea Erdmann
- Department of Hematology, Oncology and Pneumology, University Hospital Muenster, Muenster, Germany
| | - Michael Grau
- Department of Hematology, Oncology and Pneumology, University Hospital Muenster, Muenster, Germany
| | - Nardjas Bettazová
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
- Department of Medical Genetics, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Myroslav Zapukhlyak
- Department of Hematology, Oncology and Pneumology, University Hospital Muenster, Muenster, Germany
| | - Fabian Frontzek
- Department of Hematology, Oncology and Pneumology, University Hospital Muenster, Muenster, Germany
| | - Corinna Kosnopfel
- Department of Hematology, Oncology and Pneumology, University Hospital Muenster, Muenster, Germany
| | - Peter Lenz
- Department of Physics, University of Marburg, Marburg, Germany
- LOEWE Center for Synthetic Microbiology, Marburg, Germany
| | | | - Brandon Willis
- Bioscience, Early Oncology, AstraZeneca, Boston, MA, USA
| | - James T Lynch
- Bioscience, Early Oncology, AstraZeneca, Cambridge, UK
| | - Pavel Klener
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
- First Department of Internal Medicine - Department of Hematology, University General Hospital and First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Stephan Hailfinger
- Department of Hematology, Oncology and Pneumology, University Hospital Muenster, Muenster, Germany
| | - Simon T Barry
- Bioscience, Early Oncology, AstraZeneca, Cambridge, UK
| | - Georg Lenz
- Department of Hematology, Oncology and Pneumology, University Hospital Muenster, Muenster, Germany.
| |
Collapse
|
28
|
Dunn S, Eberlein C, Yu J, Gris-Oliver A, Ong SH, Yelland U, Cureton N, Staniszewska A, McEwen R, Fox M, Pilling J, Hopcroft P, Coker EA, Jaaks P, Garnett MJ, Isherwood B, Serra V, Davies BR, Barry ST, Lynch JT, Yusa K. AKT-mTORC1 reactivation is the dominant resistance driver for PI3Kβ/AKT inhibitors in PTEN-null breast cancer and can be overcome by combining with Mcl-1 inhibitors. Oncogene 2022; 41:5046-5060. [PMID: 36241868 PMCID: PMC9652152 DOI: 10.1038/s41388-022-02482-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 09/12/2022] [Accepted: 09/21/2022] [Indexed: 11/08/2022]
Abstract
The PI3K pathway is commonly activated in breast cancer, with PI3K-AKT pathway inhibitors used clinically. However, mechanisms that limit or enhance the therapeutic effects of PI3K-AKT inhibitors are poorly understood at a genome-wide level. Parallel CRISPR screens in 3 PTEN-null breast cancer cell lines identified genes mediating resistance to capivasertib (AKT inhibitor) and AZD8186 (PI3Kβ inhibitor). The dominant mechanism causing resistance is reactivated PI3K-AKT-mTOR signalling, but not other canonical signalling pathways. Deletion of TSC1/2 conferred resistance to PI3Kβi and AKTi through mTORC1. However, deletion of PIK3R2 and INPPL1 drove specific PI3Kβi resistance through AKT. Conversely deletion of PIK3CA, ERBB2, ERBB3 increased PI3Kβi sensitivity while modulation of RRAGC, LAMTOR1, LAMTOR4 increased AKTi sensitivity. Significantly, we found that Mcl-1 loss enhanced response through rapid apoptosis induction with AKTi and PI3Kβi in both sensitive and drug resistant TSC1/2 null cells. The combination effect was BAK but not BAX dependent. The Mcl-1i + PI3Kβ/AKTi combination was effective across a panel of breast cancer cell lines with PIK3CA and PTEN mutations, and delivered increased anti-tumor benefit in vivo. This study demonstrates that different resistance drivers to PI3Kβi and AKTi converge to reactivate PI3K-AKT or mTOR signalling and combined inhibition of Mcl-1 and PI3K-AKT has potential as a treatment strategy for PI3Kβi/AKTi sensitive and resistant breast tumours.
Collapse
Affiliation(s)
- Shanade Dunn
- Wellcome Sanger Institute, Cambridge, UK
- Bioscience, Early Oncology, AstraZeneca, Cambridge, UK
| | - Cath Eberlein
- Bioscience, Early Oncology, AstraZeneca, Alderley Park, UK
| | - Jason Yu
- Wellcome Sanger Institute, Cambridge, UK
- Molecular Biology of Metabolism Lab, The Francis Crick Institute, London, UK
| | | | | | - Urs Yelland
- Bioscience, Early Oncology, AstraZeneca, Alderley Park, UK
| | | | | | - Robert McEwen
- Bioscience, Early Oncology, AstraZeneca, Cambridge, UK
| | - Millie Fox
- Bioscience, Early Oncology, AstraZeneca, Cambridge, UK
| | | | | | | | | | | | | | - Violeta Serra
- Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | | | - Simon T Barry
- Bioscience, Early Oncology, AstraZeneca, Cambridge, UK.
| | - James T Lynch
- Bioscience, Early Oncology, AstraZeneca, Cambridge, UK
| | - Kosuke Yusa
- Wellcome Sanger Institute, Cambridge, UK.
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.
| |
Collapse
|
29
|
Choudhury AD. PTEN-PI3K pathway alterations in advanced prostate cancer and clinical implications. Prostate 2022; 82 Suppl 1:S60-S72. [PMID: 35657152 DOI: 10.1002/pros.24372] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/21/2022] [Accepted: 05/03/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Despite significant advances in molecular characterization and therapeutic targeting of advanced prostate cancer, it remains the second most common cause of cancer death in men in the United States. The PI3K (Phosphatidylinositol 3-kinase)/AKT (AKT serine/threonine kinase)/mTOR (mammalian target of rapamycin) signaling pathway is commonly altered in prostate cancer, most frequently through loss of the PTEN (Phosphatase and Tensin Homolog) tumor suppressor, and is critical for cancer cell proliferation, migration, and survival. METHODS This study summarizes signaling through the PTEN/PI3K pathway, alterations in pathway components commonly seen in advanced prostate cancer, and results of clinical trials of pathway inhibitors reported to date with a focus on more recently reported studies. It also reviews rationale for combination approaches currently under study, including with taxanes, immune checkpoint inhibitors and poly (ADP-ribose) polymerase inhibitors, and discusses future directions in biomarker testing and therapeutic targeting of this pathway. RESULTS Clinical trials studying pharmacologic inhibitors of PI3K, AKT or mTOR kinases have demonstrated modest activity of specific agents, with several trials of pathway inhibitors currently in progress. A key challenge is the importance of PI3K/AKT/mTOR signaling in noncancerous tissues, leading to predictable but often severe toxicities at therapeutic doses. RESULTS Further advances in selective pharmacologic inhibition of the PI3K/AKT/mTOR pathway in tumors, development of rational combinations, and appropriate biomarker selection to identify the appropriate tumor- and patient-specific vulnerabilities will be required to optimize clinical benefit from therapeutic targeting of this pathway.
Collapse
Affiliation(s)
- Atish D Choudhury
- Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
30
|
Liu K, Zheng W, Chen Y, Tang M, Li D, Deng D, Yang T, Zhang C, Liu J, Yuan X, Shi M, Li X, Guo Y, Zhou Y, Zhao M, Chen L. Discovery, Optimization, and Evaluation of Potent and Selective PI3Kδ-γ Dual Inhibitors for the Treatment of B-cell Malignancies. J Med Chem 2022; 65:9893-9917. [PMID: 35831917 DOI: 10.1021/acs.jmedchem.2c00568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Nowadays, PI3Kδ-γ dual inhibitors have been approved for the treatment of B-cell malignancies. Dual inhibition of PI3Kδ and PI3Kγ represents a unique therapeutic opportunity and may confer greater benefits than either isoform inhibition alone in the management of hematological malignancies. However, currently available dual inhibitors of PI3Kδ-γ compromise in at least one of several essential properties in terms of potency, selectivity, and pharmacokinetic (PK) profiles. Hence, the main challenge of our optimization campaign was to identify an oral available PI3Kδ-γ dual inhibitor with an optimum balance of potency, selectivity, and PK profiles. The medicinal chemistry efforts culminated in the discovery of compound 58, which exhibited strong potency and high selectivity along with excellent in vivo profiles as demonstrated through PK studies in rats and through pharmacodynamic studies in an SUDHL-6 xenograft model. All the results suggest that compound 58 may be a promising candidate for the treatment of B-cell malignancies.
Collapse
Affiliation(s)
- Kongjun Liu
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Wei Zheng
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yong Chen
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Minghai Tang
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Dan Li
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Dexin Deng
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Tao Yang
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Chufeng Zhang
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Jiang Liu
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Xue Yuan
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Mingsong Shi
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Xiandeng Li
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yong Guo
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yanting Zhou
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Min Zhao
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Lijuan Chen
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China.,Chengdu Zenitar Biomedical Technology Co., Ltd, Chengdu 610041, China
| |
Collapse
|
31
|
Vasan N, Cantley LC. At a crossroads: how to translate the roles of PI3K in oncogenic and metabolic signalling into improvements in cancer therapy. Nat Rev Clin Oncol 2022; 19:471-485. [PMID: 35484287 PMCID: PMC11215755 DOI: 10.1038/s41571-022-00633-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2022] [Indexed: 12/14/2022]
Abstract
Numerous agents targeting various phosphatidylinositol 3-kinase (PI3K) pathway components, including PI3K, AKT and mTOR, have been tested in oncology clinical trials, resulting in regulatory approvals for the treatment of selected patients with breast cancer, certain other solid tumours or particular haematological malignancies. However, given the prominence of PI3K signalling in cancer and the crucial role of this pathway in linking cancer growth with metabolism, these clinical results could arguably be improved upon. In this Review, we discuss past and present efforts to overcome the somewhat limited clinical efficacy of PI3Kα pathway inhibitors, including optimization of inhibitor specificity, patient selection and biomarkers across cancer types, with a focus on breast cancer, as well as identification and abrogation of signalling-related and metabolic mechanisms of resistance, and interventions to improve management of prohibitive adverse events. We highlight the advantages and limitations of laboratory-based model systems used to study the PI3K pathway, and propose technologies and experimental inquiries to guide the future clinical deployment of PI3K pathway inhibitors in the treatment of cancer.
Collapse
Affiliation(s)
- Neil Vasan
- Department of Medicine, Division of Hematology/Oncology, Columbia University Irving Medical Center, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Lewis C Cantley
- Meyer Cancer Center, Department of Medicine, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
32
|
Choudhury AD, Higano CS, de Bono JS, Cook N, Rathkopf DE, Wisinski KB, Martin-Liberal J, Linch M, Heath EI, Baird RD, García-Carbacho J, Quintela-Fandino M, Barry ST, de Bruin EC, Colebrook S, Hawkins G, Klinowska T, Maroj B, Moorthy G, Mortimer PG, Moschetta M, Nikolaou M, Sainsbury L, Shapiro GI, Siu LL, Hansen AR. A Phase I Study Investigating AZD8186, a Potent and Selective Inhibitor of PI3Kβ/δ, in Patients with Advanced Solid Tumors. Clin Cancer Res 2022; 28:2257-2269. [PMID: 35247924 PMCID: PMC9662946 DOI: 10.1158/1078-0432.ccr-21-3087] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/21/2021] [Accepted: 03/01/2022] [Indexed: 01/13/2023]
Abstract
PURPOSE To characterize safety and tolerability of the selective PI3Kβ inhibitor AZD8186, identify a recommended phase II dose (RP2D), and assess preliminary efficacy in combination with abiraterone acetate or vistusertib. PATIENTS AND METHODS This phase I open-label study included patients with advanced solid tumors, particularly prostate cancer, triple-negative breast cancer, and squamous non-small cell lung cancer. The study comprised four arms: (i) AZD8186 monotherapy dose finding; (ii) monotherapy dose expansion; (iii) AZD8186/abiraterone acetate (with prednisone); and (iv) AZD8186/vistusertib. The primary endpoints were safety, tolerability, and identification of the RP2D of AZD8186 monotherapy and in combination. Secondary endpoints included pharmacokinetics (PK), pharmacodynamics, and tumor and prostate-specific antigen (PSA) responses. RESULTS In total, 161 patients were enrolled. AZD8186 was well tolerated across all study arms, the most common adverse events being gastrointestinal symptoms. In the monotherapy dose-finding arm, four patients experienced dose-limiting toxicities (mainly rash). AZD8186 doses of 60-mg twice daily [BID; 5 days on, 2 days off (5:2)] and 120-mg BID (continuous and 5:2 dosing) were taken into subsequent arms. The PKs of AZD8186 were dose proportional, without interactions with abiraterone acetate or vistusertib, and target inhibition was observed in plasma and tumor tissue. Monotherapy and combination therapy showed preliminary evidence of limited antitumor activity by imaging and, in prostate cancer, PSA reduction. CONCLUSIONS AZD8186 monotherapy had an acceptable safety and tolerability profile, and combination with abiraterone acetate/prednisone or vistusertib was also tolerated. There was preliminary evidence of antitumor activity, meriting further exploration of AZD8186 in subsequent studies in PI3Kβ pathway-dependent cancers.
Collapse
Affiliation(s)
- Atish D. Choudhury
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Celestia S. Higano
- Department of Medical Oncology, University of Washington and Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Johann S. de Bono
- Drug Development Unit, The Institute of Cancer Research and Royal Marsden, London, United Kingdom
| | - Natalie Cook
- The Christie NHS Foundation Trust and The University of Manchester, Manchester, United Kingdom
| | - Dana E. Rathkopf
- Memorial Sloan Kettering Cancer Center and Weill Cornell Medicine, New York, New York
| | - Kari B. Wisinski
- Carbone Cancer Center, University of Wisconsin–Madison, Madison, Wisconsin
| | - Juan Martin-Liberal
- Medical Oncology Department, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron University Hospital, Barcelona, Spain
| | - Mark Linch
- University College London (UCL) Cancer Institute and UCL Hospital, London, United Kingdom
| | - Elisabeth I. Heath
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan
| | | | - Javier García-Carbacho
- Department of Medical Oncology (Hospital Clinic Barcelona)/Translational Genomics and Targeted Therapies in Solid Tumors (IDIBAPS), Barcelona, Spain
| | | | | | | | | | | | | | - Brijesh Maroj
- Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Ganesh Moorthy
- Clinical Pharmacology & Quantitative Pharmacology (CPQP), Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Boston, Massachusetts
| | | | | | | | - Liz Sainsbury
- Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Geoffrey I. Shapiro
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Lillian L. Siu
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Center, University Health Network, University of Toronto, Toronto, Ontario, Canada.,Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Aaron R. Hansen
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Center, University Health Network, University of Toronto, Toronto, Ontario, Canada.,Department of Medicine, University of Toronto, Toronto, Ontario, Canada.,Corresponding Author: Aaron R. Hansen, Princess Margaret Cancer Center, 700 University Avenue, Suite 7-623, Toronto, ON M5G 1×6, Canada. E-mail:
| |
Collapse
|
33
|
Pedicona F, Casado P, Hijazi M, Gribben JG, Rouault-Pierre K, Cutillas PR. Targeting the lysine-specific demethylase 1 rewires kinase networks and primes leukemia cells for kinase inhibitor treatment. Sci Signal 2022; 15:eabl7989. [PMID: 35439021 DOI: 10.1126/scisignal.abl7989] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Most tumor types either fail to respond or become resistant to kinase inhibitors, often because of compensatory prosurvival pathways in the cancer cell's broader signaling circuitry. Here, we found that intrinsic resistance to kinase inhibitors in cultured primary acute myeloid leukemia (AML) cells may be overcome by reshaping kinase networks into topologies that confer drug sensitivity. We identified several antagonists of chromatin-modifying enzymes that sensitized AML cell lines to kinase inhibitors. Of these, we confirmed that inhibitors of the lysine-specific demethylase (LSD1; also known as KDM1A) rewired kinase signaling in AML cells in a way that increased the activity of the kinase MEK and that broadly suppressed the activity of other kinases and feedback loops. As a result, AML cell lines and about half of primary human AML samples were primed for sensitivity to the MEK inhibitor trametinib. Primary human cells with KRAS mutations and those with high MEK pathway activity were the best responders to sequential treatment with LSD1 inhibitors then trametinib, whereas those with NRAS mutations and high mTOR activity were poor responders. Overall, our study reveals the MEK pathway as a mechanism of resistance to LSD1 inhibitors in AML and shows a way to modulate kinase network circuitry to potentially overcome therapeutic resistance to kinase inhibitors.
Collapse
Affiliation(s)
- Federico Pedicona
- Cell Signaling and Proteomics Group, Centre for Cancer Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Pedro Casado
- Cell Signaling and Proteomics Group, Centre for Cancer Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Maruan Hijazi
- Cell Signaling and Proteomics Group, Centre for Cancer Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - John G Gribben
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Kevin Rouault-Pierre
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Pedro R Cutillas
- Cell Signaling and Proteomics Group, Centre for Cancer Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
- Alan Turing Institute, British Library, 2QR, 96 Euston Road, London NW1 2DB, UK
| |
Collapse
|
34
|
Christenson M, Song CS, Liu YG, Chatterjee B. Precision Targets for Intercepting the Lethal Progression of Prostate Cancer: Potential Avenues for Personalized Therapy. Cancers (Basel) 2022; 14:892. [PMID: 35205640 PMCID: PMC8870390 DOI: 10.3390/cancers14040892] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/02/2022] [Accepted: 02/08/2022] [Indexed: 02/04/2023] Open
Abstract
Organ-confined prostate cancer of low-grade histopathology is managed with radiation, surgery, active surveillance, or watchful waiting and exhibits a 5-year overall survival (OS) of 95%, while metastatic prostate cancer (PCa) is incurable, holding a 5-year OS of 30%. Treatment options for advanced PCa-metastatic and non-metastatic-include hormone therapy that inactivates androgen receptor (AR) signaling, chemotherapy and genome-targeted therapy entailing synthetic lethality of tumor cells exhibiting aberrant DNA damage response, and immune checkpoint inhibition (ICI), which suppresses tumors with genomic microsatellite instability and/or deficient mismatch repair. Cancer genome sequencing uncovered novel somatic and germline mutations, while mechanistic studies are revealing their pathological consequences. A microRNA has shown biomarker potential for stratifying patients who may benefit from angiogenesis inhibition prior to ICI. A 22-gene expression signature may select high-risk localized PCa, which would not additionally benefit from post-radiation hormone therapy. We present an up-to-date review of the molecular and therapeutic aspects of PCa, highlight genomic alterations leading to AR upregulation and discuss AR-degrading molecules as promising anti-AR therapeutics. New biomarkers and druggable targets are shaping innovative intervention strategies against high-risk localized and metastatic PCa, including AR-independent small cell-neuroendocrine carcinoma, while presenting individualized treatment opportunities through improved design and precision targeting.
Collapse
Affiliation(s)
| | | | | | - Bandana Chatterjee
- Department of Molecular Medicine, Long School of Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (M.C.); (C.-S.S.); (Y.-G.L.)
| |
Collapse
|
35
|
Qi Z, Xu Z, Zhang L, Zou Y, Li J, Yan W, Li C, Liu N, Wu H. Overcoming resistance to immune checkpoint therapy in PTEN-null prostate cancer by intermittent anti-PI3Kα/β/δ treatment. Nat Commun 2022; 13:182. [PMID: 35013322 PMCID: PMC8748754 DOI: 10.1038/s41467-021-27833-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 12/13/2021] [Indexed: 12/26/2022] Open
Abstract
Combining immune checkpoint therapy (ICT) and targeted therapy holds great promises for broad and long-lasting anti-cancer therapies. However, combining ICT with anti-PI3K inhibitors have been challenging because the multifaceted effects of PI3K on both cancer cells and immune cells within the tumor microenvironment. Here we find that intermittent but not daily dosing of a PI3Kα/β/δ inhibitor, BAY1082439, on Pten-null prostate cancer models could overcome ICT resistance and unleash CD8+ T cell-dependent anti-tumor immunity in vivo. Mechanistically, BAY1082439 converts cancer cell-intrinsic immune-suppression to immune-stimulation by promoting IFNα/IFNγ pathway activation, β2-microglubin expression and CXCL10/CCL5 secretion. With its preferential regulatory T cell inhibition activity, BAY1082439 promotes clonal expansion of tumor-associated CD8+ T cells, most likely via tertiary lymphoid structures. Once primed, tumors remain T cell-inflamed, become responsive to anti-PD-1 therapy and have durable therapeutic effect. Our data suggest that intermittent PI3K inhibition can alleviate Pten-null cancer cell-intrinsic immunosuppressive activity and turn "cold" tumors into T cell-inflamed ones, paving the way for successful ICT.
Collapse
Affiliation(s)
- Zhi Qi
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China.,School of Life Sciences, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Zihan Xu
- School of Life Sciences, Peking University, Beijing, China
| | - Liuzhen Zhang
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China.,School of Life Sciences, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Yongkang Zou
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China.,School of Life Sciences, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.,Institute for Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518107, China
| | - Jinping Li
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China.,School of Life Sciences, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Wenyu Yan
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China.,School of Life Sciences, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Cheng Li
- School of Life Sciences, Peking University, Beijing, China
| | - Ningshu Liu
- Bayer AG, Drug Discovery TRG Oncology, Muellerstrasse 178, 13353, Berlin, Germany.,Hehlius Biotech, Inc., 1801 Hongmei Rd, Shanghai, 200233, China
| | - Hong Wu
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China. .,School of Life Sciences, Peking University, Beijing, China. .,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China. .,Institute for Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518107, China.
| |
Collapse
|
36
|
Azad AK, Farhan MA, Murray CR, Suzuki K, Eitzen G, Touret N, Moore RB, Murray AG. FGD5 regulates endothelial cell PI3 kinase-β to promote neo-angiogenesis. FASEB J 2021; 36:e22080. [PMID: 34882832 DOI: 10.1096/fj.202100554r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 11/11/2022]
Abstract
Angiogenesis is required in embryonic development and tissue repair in the adult. Vascular endothelial growth factor (VEGF) initiates angiogenesis, and VEGF or its receptor is targeted therapeutically to block pathological angiogenesis. Additional pro-angiogenic cues, such as CXCL12 acting via the CXCR4 receptor, co-operate with VEGF/VEGFR2 to cue vascular patterning. We studied the role of FGD5, an endothelial Rho GTP/GDP exchange factor (RhoGEF), to regulate CXCR4-dependent signals in the endothelial cell (EC). Patient-derived renal cell carcinomas produce a complex milieu of growth factors that stimulated sprouting angiogenesis and endothelial tip cell differentiation ex vivo that was blocked by EC FGD5 loss. In a simplified model, CXCL12 augmented sprouting and tip gene expression under conditions where VEGF was limiting. CXCL12-stimulated tip cell differentiation was dependent on PI3 kinase (PI3K)-β activity. Knockdown of EC FGD5 abolished CXCR4 signaling to PI3K-β and Akt. Further, inhibition of Rac1, a Rho GTPase required for PI3K-β activity, recapitulated the signaling defects of FGD5 deficiency, suggesting that FGD5 may regulate PI3K-β activity through Rac1. Overexpression of a RhoGEF deficient, Dbl domain-deleted FGD5 mutant reduced CXCL12-stimulated Akt phosphorylation and failed to rescue PI3K signaling in native FGD5-deficient EC, indicating that FGD5 RhoGEF activity is required for FDG5 function. Endothelial expression of mutant PI3K-β with an inactivated Rho binding domain confirmed that CXCL12-stimulated PI3K activity in EC requires Rac1-GTP co-regulation. Together, this data identify the role of FGD5 to generate Rac1-GTP to regulate pro-angiogenic CXCR4-dependent PI3K-β signaling in EC. Inhibition of FGD5 activity may complement current angiogenesis inhibitor drugs.
Collapse
Affiliation(s)
- Abul K Azad
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Maikel A Farhan
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Cameron R Murray
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Kunimasa Suzuki
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Gary Eitzen
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
| | - Nicolas Touret
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Ronald B Moore
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
| | - Allan G Murray
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
37
|
Xu J, Yu X, Martin TC, Bansal A, Cheung K, Lubin A, Stratikopoulos E, Cahuzac KM, Wang L, Xie L, Zhou R, Shen Y, Wu X, Yao S, Qiao R, Poulikakos PI, Chen X, Liu J, Jin J, Parsons R. AKT Degradation Selectively Inhibits the Growth of PI3K/PTEN Pathway-Mutant Cancers with Wild-Type KRAS and BRAF by Destabilizing Aurora Kinase B. Cancer Discov 2021; 11:3064-3089. [PMID: 34301793 PMCID: PMC9056008 DOI: 10.1158/2159-8290.cd-20-0815] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 02/18/2021] [Accepted: 07/16/2021] [Indexed: 11/16/2022]
Abstract
Using a panel of cancer cell lines, we characterized a novel degrader of AKT, MS21. In mutant PI3K-PTEN pathway cell lines, AKT degradation was superior to AKT kinase inhibition for reducing cell growth and sustaining lower signaling over many days. AKT degradation, but not kinase inhibition, profoundly lowered Aurora kinase B (AURKB) protein, which is known to be essential for cell division, and induced G2-M arrest and hyperploidy. PI3K activated AKT phosphorylation of AURKB on threonine 73, which protected it from proteasome degradation. A mutant of AURKB (T73E) that mimics phosphorylation and blocks degradation rescued cells from growth inhibition. Degrader-resistant lines were associated with low AKT phosphorylation, wild-type PI3K/PTEN status, and mutation of KRAS/BRAF. Pan-cancer analysis identified that 19% of cases have PI3K-PTEN pathway mutation without RAS pathway mutation, suggesting that these patients with cancer could benefit from AKT degrader therapy that leads to loss of AURKB. SIGNIFICANCE MS21 depletes cells of phosphorylated AKT (pAKT) and a newly identified AKT substrate, AURKB, to inhibit tumor growth in mice. MS21 is superior to prior agents that target PI3K and AKT due to its ability to selectively target active, pAKT and sustain repression of signaling to deplete AURKB. This article is highlighted in the In This Issue feature, p. 2945.
Collapse
Affiliation(s)
- Jia Xu
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Xufen Yu
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Mount Sinai Center for Therapeutics Discovery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Tiphaine C. Martin
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ankita Bansal
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kakit Cheung
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Abigail Lubin
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Elias Stratikopoulos
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kaitlyn M. Cahuzac
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Li Wang
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ling Xie
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Royce Zhou
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yudao Shen
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Mount Sinai Center for Therapeutics Discovery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Xuewei Wu
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Shen Yao
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ruifang Qiao
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Poulikos I. Poulikakos
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Xian Chen
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jing Liu
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Mount Sinai Center for Therapeutics Discovery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jian Jin
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Mount Sinai Center for Therapeutics Discovery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ramon Parsons
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
38
|
Peng X, Zhang S, Jiao W, Zhong Z, Yang Y, Claret FX, Elkabets M, Wang F, Wang R, Zhong Y, Chen ZS, Kong D. Hydroxychloroquine synergizes with the PI3K inhibitor BKM120 to exhibit antitumor efficacy independent of autophagy. J Exp Clin Cancer Res 2021; 40:374. [PMID: 34844627 PMCID: PMC8628289 DOI: 10.1186/s13046-021-02176-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 11/08/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The critical role of phosphoinositide 3-kinase (PI3K) activation in tumor cell biology has prompted massive efforts to develop PI3K inhibitors (PI3Kis) for cancer therapy. However, recent results from clinical trials have shown only a modest therapeutic efficacy of single-agent PI3Kis in solid tumors. Targeting autophagy has controversial context-dependent effects in cancer treatment. As a FDA-approved lysosomotropic agent, hydroxychloroquine (HCQ) has been well tested as an autophagy inhibitor in preclinical models. Here, we elucidated the novel mechanism of HCQ alone or in combination with PI3Ki BKM120 in the treatment of cancer. METHODS The antitumor effects of HCQ and BKM120 on three different types of tumor cells were assessed by in vitro PrestoBlue assay, colony formation assay and in vivo zebrafish and nude mouse xenograft models. The involved molecular mechanisms were investigated by MDC staining, LC3 puncta formation assay, immunofluorescent assay, flow cytometric analysis of apoptosis and ROS, qRT-PCR, Western blot, comet assay, homologous recombination (HR) assay and immunohistochemical staining. RESULTS HCQ significantly sensitized cancer cells to BKM120 in vitro and in vivo. Interestingly, the sensitization mediated by HCQ could not be phenocopied by treatment with other autophagy inhibitors (Spautin-1, 3-MA and bafilomycin A1) or knockdown of the essential autophagy genes Atg5/Atg7, suggesting that the sensitizing effect might be mediated independent of autophagy status. Mechanistically, HCQ induced ROS production and activated the transcription factor NRF2. In contrast, BKM120 prevented the elimination of ROS by inactivation of NRF2, leading to accumulation of DNA damage. In addition, HCQ activated ATM to enhance HR repair, a high-fidelity repair for DNA double-strand breaks (DSBs) in cells, while BKM120 inhibited HR repair by blocking the phosphorylation of ATM and the expression of BRCA1/2 and Rad51. CONCLUSIONS Our study revealed that HCQ and BKM120 synergistically increased DSBs in tumor cells and therefore augmented apoptosis, resulting in enhanced antitumor efficacy. Our findings provide a new insight into how HCQ exhibits antitumor efficacy and synergizes with PI3Ki BKM120, and warn that one should consider the "off target" effects of HCQ when used as autophagy inhibitor in the clinical treatment of cancer.
Collapse
Affiliation(s)
- Xin Peng
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China.,Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education), Tianjin Medical University, Tianjin, 300070, China.,Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Shaolu Zhang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China.,Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education), Tianjin Medical University, Tianjin, 300070, China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Wenhui Jiao
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China.,Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education), Tianjin Medical University, Tianjin, 300070, China
| | - Zhenxing Zhong
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China.,Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education), Tianjin Medical University, Tianjin, 300070, China
| | - Yuqi Yang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Francois X Claret
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Moshe Elkabets
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, 84105, Beer-Sheva, Israel
| | - Feng Wang
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Ran Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China. .,Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education), Tianjin Medical University, Tianjin, 300070, China.
| | - Yuxu Zhong
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China.
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA.
| | - Dexin Kong
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China. .,Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education), Tianjin Medical University, Tianjin, 300070, China. .,School of Medicine, Tianjin Tianshi College, Tianyuan University, Tianjin, 301700, China.
| |
Collapse
|
39
|
Ren AH, Diamandis EP, Kulasingam V. Uncovering the Depths of the Human Proteome: Antibody-based Technologies for Ultrasensitive Multiplexed Protein Detection and Quantification. Mol Cell Proteomics 2021; 20:100155. [PMID: 34597790 PMCID: PMC9357438 DOI: 10.1016/j.mcpro.2021.100155] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 09/01/2021] [Accepted: 09/25/2021] [Indexed: 12/20/2022] Open
Abstract
Probing the human proteome in tissues and biofluids such as plasma is attractive for biomarker and drug target discovery. Recent breakthroughs in multiplex, antibody-based, proteomics technologies now enable the simultaneous quantification of thousands of proteins at as low as sub fg/ml concentrations with remarkable dynamic ranges of up to 10-log. We herein provide a comprehensive guide to the methodologies, performance, technical comparisons, advantages, and disadvantages of established and emerging technologies for the multiplexed ultrasensitive measurement of proteins. Gaining holistic knowledge on these innovations is crucial for choosing the right multiplexed proteomics tool for applications at hand to critically complement traditional proteomics methods. This can bring researchers closer than ever before to elucidating the intricate inner workings and cross talk that spans multitude of proteins in disease mechanisms.
Collapse
Affiliation(s)
- Annie H Ren
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
| | - Eleftherios P Diamandis
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada; Department of Clinical Biochemistry, University Health Network, Toronto, Canada
| | - Vathany Kulasingam
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada; Department of Clinical Biochemistry, University Health Network, Toronto, Canada.
| |
Collapse
|
40
|
Cintas C, Douche T, Dantes Z, Mouton-Barbosa E, Bousquet MP, Cayron C, Therville N, Pont F, Ramos-Delgado F, Guyon C, Garmy-Susini B, Cappello P, Burlet-Schiltz O, Hirsch E, Gomez-Brouchet A, Thibault B, Reichert M, Guillermet-Guibert J. Phosphoproteomics Identifies PI3K Inhibitor-selective Adaptive Responses in Pancreatic Cancer Cell Therapy and Resistance. Mol Cancer Ther 2021; 20:2433-2445. [PMID: 34552006 DOI: 10.1158/1535-7163.mct-20-0981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 05/28/2021] [Accepted: 09/14/2021] [Indexed: 11/16/2022]
Abstract
The PI3K pathway is highly active in human cancers. The four class I isoforms of PI3K are activated by distinct mechanisms leading to a common downstream signaling. Their downstream redundancy is thought to be responsible for treatment failures of PI3K inhibitors. We challenged this concept, by mapping the differential phosphoproteome evolution in response to PI3K inhibitors with different isoform-selectivity patterns in pancreatic cancer, a disease currently without effective therapy. In this cancer, the PI3K signal was shown to control cell proliferation. We compared the effects of LY294002 that inhibit with equal potency all class I isoenzymes and downstream mTOR with the action of inhibitors with higher isoform selectivity toward PI3Kα, PI3Kβ, or PI3Kγ (namely, A66, TGX-221 and AS-252424). A bioinformatics global pathway analysis of phosphoproteomics data allowed us to identify common and specific signals activated by PI3K inhibitors supported by the biological data. AS-252424 was the most effective treatment and induced apoptotic pathway activation as well as the highest changes in global phosphorylation-regulated cell signal. However, AS-252424 treatment induced reactivation of Akt, therefore decreasing the treatment outcome on cell survival. Reversely, AS-252424 and A66 combination treatment prevented p-Akt reactivation and led to synergistic action in cell lines and patient organoids. The combination of clinically approved α-selective BYL-719 with γ-selective IPI-549 was more efficient than single-molecule treatment on xenograft growth. Mapping unique adaptive signaling responses to isoform-selective PI3K inhibition will help to design better combinative treatments that prevent the induction of selective compensatory signals.
Collapse
Affiliation(s)
- Célia Cintas
- INSERM, CNRS, Université Paul Sabatier, U1037, CRCT, Toulouse, France.,Labex TouCAN, Toulouse, France
| | - Thibault Douche
- INSERM, CNRS, Université Paul Sabatier, U1037, CRCT, Toulouse, France.,Labex TouCAN, Toulouse, France
| | - Zahra Dantes
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,Center for Protein Assemblies (CPA), Technische Universität München, Garching, Germany.,German Cancer Consortium (DKTK), partner site Munich, Germany
| | - Emmanuelle Mouton-Barbosa
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS UMR 5089, UPS, Toulouse, France
| | - Marie-Pierre Bousquet
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS UMR 5089, UPS, Toulouse, France
| | - Coralie Cayron
- INSERM, CNRS, Université Paul Sabatier, U1037, CRCT, Toulouse, France.,Labex TouCAN, Toulouse, France
| | - Nicole Therville
- INSERM, CNRS, Université Paul Sabatier, U1037, CRCT, Toulouse, France.,Labex TouCAN, Toulouse, France
| | - Frédéric Pont
- INSERM, CNRS, Université Paul Sabatier, U1037, CRCT, Toulouse, France
| | - Fernanda Ramos-Delgado
- INSERM, CNRS, Université Paul Sabatier, U1037, CRCT, Toulouse, France.,Labex TouCAN, Toulouse, France
| | - Camille Guyon
- INSERM, CNRS, Université Paul Sabatier, U1037, CRCT, Toulouse, France.,Labex TouCAN, Toulouse, France
| | | | - Paola Cappello
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy.,Molecular Biotechnology Center (MBC), Turin, Italy
| | - Odile Burlet-Schiltz
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS UMR 5089, UPS, Toulouse, France
| | - Emilio Hirsch
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy.,Molecular Biotechnology Center (MBC), Turin, Italy
| | - Anne Gomez-Brouchet
- IUCT-O, Institut Claudius Regaud, Hopitaux de Toulouse, Biobank, Toulouse, France
| | - Benoît Thibault
- INSERM, CNRS, Université Paul Sabatier, U1037, CRCT, Toulouse, France.,Labex TouCAN, Toulouse, France
| | - Maximilian Reichert
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,Center for Protein Assemblies (CPA), Technische Universität München, Garching, Germany.,German Cancer Consortium (DKTK), partner site Munich, Germany
| | - Julie Guillermet-Guibert
- INSERM, CNRS, Université Paul Sabatier, U1037, CRCT, Toulouse, France. .,Labex TouCAN, Toulouse, France
| |
Collapse
|
41
|
Teo MYM, Fong JY, Lim WM, In LLA. Current Advances and Trends in KRAS Targeted Therapies for Colorectal Cancer. Mol Cancer Res 2021; 20:30-44. [PMID: 34462329 DOI: 10.1158/1541-7786.mcr-21-0248] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/25/2021] [Accepted: 08/24/2021] [Indexed: 11/16/2022]
Abstract
Kirsten Rat Sarcoma (KRAS) gene somatic point mutations is one of the most prominently mutated proto-oncogenes known to date, and accounts for approximately 60% of all colorectal cancer cases. One of the most exciting drug development areas against colorectal cancer is the targeting of undruggable kinases and kinase-substrate molecules, although whether and how they can be integrated with other therapies remains a question. Current clinical trial data have provided supporting evidence on the use of combination treatment involving MEK inhibitors and either one of the PI3K inhibitors for patients with metastatic colorectal cancer to avoid the development of resistance and provide effective therapeutic outcome rather than using a single agent alone. Many clinical trials are also ongoing to evaluate different combinations of these pathway inhibitors in combination with immunotherapy for patients with colorectal cancer whose current palliative treatment options are limited. Nevertheless, continued assessment of these targeted cancer therapies will eventually allow patients with colorectal cancer to be treated using a personalized medicine approach. In this review, the most recent scientific approaches and clinical trials targeting KRAS mutations directly or indirectly for the management of colorectal cancer are discussed.
Collapse
Affiliation(s)
- Michelle Yee Mun Teo
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Jung Yin Fong
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Wan Ming Lim
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Lionel Lian Aun In
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, Kuala Lumpur, Malaysia.
| |
Collapse
|
42
|
Mao N, Zhang Z, Lee YS, Choi D, Rivera AA, Li D, Lee C, Haywood S, Chen X, Chang Q, Xu G, Chen HA, de Stanchina E, Sawyers C, Rosen N, Hsieh AC, Chen Y, Carver BS. Defining the therapeutic selective dependencies for distinct subtypes of PI3K pathway-altered prostate cancers. Nat Commun 2021; 12:5053. [PMID: 34417459 PMCID: PMC8379232 DOI: 10.1038/s41467-021-25341-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 08/05/2021] [Indexed: 12/30/2022] Open
Abstract
Previous studies have suggested that PTEN loss is associated with p110β signaling dependency, leading to the clinical development of p110β-selective inhibitors. Here we use a panel pre-clinical models to reveal that PI3K isoform dependency is not governed by loss of PTEN and is impacted by feedback inhibition and concurrent PIK3CA/PIK3CB alterations. Furthermore, while pan-PI3K inhibition in PTEN-deficient tumors is efficacious, upregulation of Insulin Like Growth Factor 1 Receptor (IGF1R) promotes resistance. Importantly, we show that this resistance can be overcome through targeting AKT and we find that AKT inhibitors are superior to pan-PI3K inhibition in the context of PTEN loss. However, in the presence of wild-type PTEN and PIK3CA-activating mutations, p110α-dependent signaling is dominant and selectively inhibiting p110α is therapeutically superior to AKT inhibition. These discoveries reveal a more nuanced understanding of PI3K isoform dependency and unveil novel strategies to selectively target PI3K signaling nodes in a context-specific manner. Understanding the mechanisms driving PI3K isoform dependency in prostate cancer can help the design of future clinical trials. Here, the authors show that gain-of-function mutations in PIK3CA or PIK3CB can confer PI3K p110 isoform dependency and that the direct inhibition of AKT may be superior to PI3K inhibition in PTEN-deficient prostate cancers.
Collapse
Affiliation(s)
- Ninghui Mao
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Zeda Zhang
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Young Sun Lee
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Danielle Choi
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Aura Agudelo Rivera
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Dan Li
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Cindy Lee
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Samuel Haywood
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Department of Urology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Xiaoping Chen
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Qing Chang
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Guotai Xu
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hsuan-An Chen
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Elisa de Stanchina
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Charles Sawyers
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Neal Rosen
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Andrew C Hsieh
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Yu Chen
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Brett S Carver
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA. .,Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA. .,Department of Urology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
43
|
Sarker D, Dawson NA, Aparicio AM, Dorff TB, Pantuck AJ, Vaishampayan UN, Henson L, Vasist L, Roy-Ghanta S, Gorczyca M, York W, Ganji G, Tolson J, de Bono JS. A Phase I, Open-Label, Dose-Finding Study of GSK2636771, a PI3Kβ inhibitor, Administered with Enzalutamide in Patients with Metastatic Castration-Resistant Prostate Cancer. Clin Cancer Res 2021; 27:5248-5257. [PMID: 34281912 DOI: 10.1158/1078-0432.ccr-21-1115] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/04/2021] [Accepted: 07/14/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE In patients with metastatic castration-resistant prostate cancer (mCRPC), resistance to androgen receptor (AR) targeted therapies, such as enzalutamide, remains an issue. Inactivation of inhibitory phosphatase and tensin homolog (PTEN) activates phosphoinositide 3-kinase (PI3K)/AKT signaling and contributes to resistance to androgen-deprivation therapy and poor outcomes. Therefore, dual targeting of AR and PI3K/AKT pathways may limit tumor growth and reverse resistance. PATIENTS AND METHODS In this Phase I study (NCT02215096), patients with PTEN-deficient mCRPC, who progressed on prior enzalutamide, received once-daily enzalutamide 160 mg plus PI3Kβ inhibitor GSK2636771 at 300 mg initial dose, with escalation or de-escalation in 100 mg increments, followed by dose expansion. Primary objectives were to evaluate safety/tolerability, determine the recommended Phase II dose (RP2D), and assess the 12-week non-progressive disease (PD) rate. RESULTS Overall, 37 patients were enrolled; 36 received {greater than or equal to}1 dose of GSK2636771 (200 mg: n=22, 300 mg: n=12; 400 mg: n=2) plus 160 mg enzalutamide. Dose-limiting toxicities occurred in 5 patients (200 mg: n=1; 300 mg: n=2, 400 mg: n=2). No new or unexpected adverse events nor evidence of drug-drug interaction were observed. At the recommended dose of GSK2636771 (200 mg) plus enzalutamide, the 12-week non-PD rate was 50% (95% CI: 28.2-71.8%, n=22); 1 (3%) patient achieved a radiographic partial response lasting 36 weeks. 4/34 (12%) patients had prostate-specific antigen reduction of {greater than or equal to}50%. CONCLUSIONS Although there was acceptable safety and tolerability with GSK2636771 plus enzalutamide in patients with PTEN-deficient mCRPC after failing enzalutamide, limited antitumor activity was observed.
Collapse
Affiliation(s)
| | | | - Ana M Aparicio
- Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center
| | - Tanya B Dorff
- Department of Medical Oncology and Therapeutics research, City Of Hope National Medical Center
| | | | | | | | | | | | | | | | | | - Jerry Tolson
- Clinical Operations Program Leadership, Biogen (United States)
| | | |
Collapse
|
44
|
Gómez Tejeda Zañudo J, Mao P, Alcon C, Kowalski K, Johnson GN, Xu G, Baselga J, Scaltriti M, Letai A, Montero J, Albert R, Wagle N. Cell Line-Specific Network Models of ER + Breast Cancer Identify Potential PI3Kα Inhibitor Resistance Mechanisms and Drug Combinations. Cancer Res 2021; 81:4603-4617. [PMID: 34257082 PMCID: PMC8744502 DOI: 10.1158/0008-5472.can-21-1208] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/18/2021] [Accepted: 07/09/2021] [Indexed: 11/16/2022]
Abstract
Durable control of invasive solid tumors necessitates identifying therapeutic resistance mechanisms and effective drug combinations. In this work, we used a network-based mathematical model to identify sensitivity regulators and drug combinations for the PI3Kα inhibitor alpelisib in estrogen receptor positive (ER+) PIK3CA-mutant breast cancer. The model-predicted efficacious combination of alpelisib and BH3 mimetics, for example, MCL1 inhibitors, was experimentally validated in ER+ breast cancer cell lines. Consistent with the model, FOXO3 downregulation reduced sensitivity to alpelisib, revealing a novel potential resistance mechanism. Cell line-specific sensitivity to combinations of alpelisib and BH3 mimetics depended on which BCL2 family members were highly expressed. On the basis of these results, newly developed cell line-specific network models were able to recapitulate the observed differential response to alpelisib and BH3 mimetics. This approach illustrates how network-based mathematical models can contribute to overcoming the challenge of cancer drug resistance. SIGNIFICANCE: Network-based mathematical models of oncogenic signaling and experimental validation of its predictions can identify resistance mechanisms for targeted therapies, as this study demonstrates for PI3Kα-specific inhibitors in breast cancer.
Collapse
Affiliation(s)
- Jorge Gómez Tejeda Zañudo
- Eli and Edythe L. Broad Institute of MIT and Harvard, Cambridge, Massachusetts. .,Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Pingping Mao
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Clara Alcon
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Kailey Kowalski
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Gabriela N Johnson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Guotai Xu
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jose Baselga
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Maurizio Scaltriti
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Anthony Letai
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Joan Montero
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts. .,Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Réka Albert
- Department of Physics, The Pennsylvania State University, Pennsylvania. .,Department of Biology, The Pennsylvania State University, Pennsylvania
| | - Nikhil Wagle
- Eli and Edythe L. Broad Institute of MIT and Harvard, Cambridge, Massachusetts. .,Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
45
|
Jillson LK, Yette GA, Laajala TD, Tilley WD, Costello JC, Cramer SD. Androgen Receptor Signaling in Prostate Cancer Genomic Subtypes. Cancers (Basel) 2021; 13:3272. [PMID: 34208794 PMCID: PMC8269091 DOI: 10.3390/cancers13133272] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 12/20/2022] Open
Abstract
While many prostate cancer (PCa) cases remain indolent and treatable, others are aggressive and progress to the metastatic stage where there are limited curative therapies. Androgen receptor (AR) signaling remains an important pathway for proliferative and survival programs in PCa, making disruption of AR signaling a viable therapy option. However, most patients develop resistance to AR-targeted therapies or inherently never respond. The field has turned to PCa genomics to aid in stratifying high risk patients, and to better understand the mechanisms driving aggressive PCa and therapy resistance. While alterations to the AR gene itself occur at later stages, genomic changes at the primary stage can affect the AR axis and impact response to AR-directed therapies. Here, we review common genomic alterations in primary PCa and their influence on AR function and activity. Through a meta-analysis of multiple independent primary PCa databases, we also identified subtypes of significantly co-occurring alterations and examined their combinatorial effects on the AR axis. Further, we discussed the subsequent implications for response to AR-targeted therapies and other treatments. We identified multiple primary PCa genomic subtypes, and given their differing effects on AR activity, patient tumor genetics may be an important stratifying factor for AR therapy resistance.
Collapse
Affiliation(s)
- Lauren K. Jillson
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (J.K.L.); (G.A.Y.); (T.D.L.); (J.C.C.)
| | - Gabriel A. Yette
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (J.K.L.); (G.A.Y.); (T.D.L.); (J.C.C.)
| | - Teemu D. Laajala
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (J.K.L.); (G.A.Y.); (T.D.L.); (J.C.C.)
- Department of Mathematics and Statistics, University of Turku, 20500 Turku, Finland
| | - Wayne D. Tilley
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia;
- Freemason’s Foundation Centre for Men’s Health, University of Adelaide, Adelaide, SA 5005, Australia
| | - James C. Costello
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (J.K.L.); (G.A.Y.); (T.D.L.); (J.C.C.)
| | - Scott D. Cramer
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (J.K.L.); (G.A.Y.); (T.D.L.); (J.C.C.)
| |
Collapse
|
46
|
Castel P, Toska E, Engelman JA, Scaltriti M. The present and future of PI3K inhibitors for cancer therapy. NATURE CANCER 2021; 2:587-597. [PMID: 35118422 PMCID: PMC8809509 DOI: 10.1038/s43018-021-00218-4] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
Phosphoinositide-3- kinase (PI3K) signaling regulates cellular proliferation, survival and metabolism, and its aberrant activation is one of the most frequent oncogenic events across human cancers. In the last few decades, research focused on the development of PI3K inhibitors, from preclinical tool compounds to the highly specific medicines approved to treat patients with cancer. Herein we discuss current paradigms for PI3K inhibitors in cancer therapy, focusing on clinical data and mechanisms of action. We also discuss current limitations in the use of PI3K inhibitors including toxicities and mechanisms of resistance, with specific emphasis on approaches aimed to improve their efficacy.
Collapse
Affiliation(s)
- Pau Castel
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Eneda Toska
- Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biochemistry and Molecular Biology, Johns Hopkins School of Public Health, Baltimore, MD, USA
| | | | | |
Collapse
|
47
|
Targeting phosphatidylinositol 3 kinase-β and -δ for Bruton tyrosine kinase resistance in diffuse large B-cell lymphoma. Blood Adv 2021; 4:4382-4392. [PMID: 32926124 DOI: 10.1182/bloodadvances.2020001685] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 07/29/2020] [Indexed: 12/27/2022] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common subtype of non-Hodgkin lymphoma; 40% of patients relapse after a complete response or are refractory to therapy. To survive, the activated B-cell (ABC) subtype of DLBCL relies upon B-cell receptor signaling, which can be modulated by the activity of Bruton tyrosine kinase (BTK). Targeting BTK with ibrutinib, an inhibitor, provides a therapeutic approach for this subtype of DLBCL. However, non-Hodgkin lymphoma is often resistant to ibrutinib or acquires resistance soon after exposure. We explored how this resistance develops. We generated 3 isogenic ibrutinib-resistant DLBCL cell lines and investigated the deregulated pathways known to be associated with tumorigenic properties. Reduced levels of BTK and enhanced phosphatidylinositol 3-kinase (PI3K)/AKT signaling were hallmarks of these ibrutinib-resistant cells. Upregulation of PI3K-β expression was demonstrated to drive resistance in ibrutinib-resistant cells, and resistance was reversed by the blocking activity of PI3K-β/δ. Treatment with the selective PI3K-β/δ dual inhibitor KA2237 reduced both tumorigenic properties and survival-based PI3K/AKT/mTOR signaling of these ibrutinib-resistant cells. In addition, combining KA2237 with currently available chemotherapeutic agents synergistically inhibited metabolic growth. This study elucidates the compensatory upregulated PI3K/AKT axis that emerges in ibrutinib-resistant cells.
Collapse
|
48
|
Zhang Z, Richmond A. The Role of PI3K Inhibition in the Treatment of Breast Cancer, Alone or Combined With Immune Checkpoint Inhibitors. Front Mol Biosci 2021; 8:648663. [PMID: 34026830 PMCID: PMC8139556 DOI: 10.3389/fmolb.2021.648663] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 04/06/2021] [Indexed: 12/24/2022] Open
Abstract
Dysregulation of phosphoinositide 3-kinase (PI3K) signaling is highly implicated in tumorigenesis, disease progression, and the development of resistance to the current standard of care treatments in breast cancer patients. This review discusses the role of PI3K pathway in breast cancer and evaluates the clinical development of PI3K inhibitors in both early and metastatic breast cancer settings. Further, this review examines the evidence for the potential synergistic benefit for the combination treatment of PI3K inhibition and immunotherapy in breast cancer treatment.
Collapse
Affiliation(s)
- Zhizhu Zhang
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
| | - Ann Richmond
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States.,Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, United States
| |
Collapse
|
49
|
Degan SE, Gelman IH. Emerging Roles for AKT Isoform Preference in Cancer Progression Pathways. Mol Cancer Res 2021; 19:1251-1257. [PMID: 33931488 DOI: 10.1158/1541-7786.mcr-20-1066] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 04/01/2021] [Accepted: 04/27/2021] [Indexed: 12/16/2022]
Abstract
The phosphoinositol-3 kinase (PI3K)-AKT pathway is one of the most mutated in human cancers, predominantly associated with the loss of the signaling antagonist, PTEN, and to lesser extents, with gain-of-function mutations in PIK3CA (encoding PI3K-p110α) and AKT1. In addition, most oncogenic driver pathways activate PI3K/AKT signaling. Nonetheless, drugs targeting PI3K or AKT have fared poorly against solid tumors in clinical trials as monotherapies, yet some have shown efficacy when combined with inhibitors of other oncogenic drivers, such as receptor tyrosine kinases or nuclear hormone receptors. There is growing evidence that AKT isoforms, AKT1, AKT2, and AKT3, have different, often distinct roles in either promoting or suppressing specific parameters of oncogenic progression, yet few if any isoform-preferred substrates have been characterized. This review will describe recent data showing that the differential activation of AKT isoforms is mediated by complex interplays between PTEN, PI3K isoforms and upstream tyrosine kinases, and that the efficacy of PI3K/AKT inhibitors will likely depend on the successful targeting of specific AKT isoforms and their preferred pathways.
Collapse
Affiliation(s)
- Seamus E Degan
- Department of Cancer Genetics & Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Irwin H Gelman
- Department of Cancer Genetics & Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, New York.
| |
Collapse
|
50
|
Wright SCE, Vasilevski N, Serra V, Rodon J, Eichhorn PJA. Mechanisms of Resistance to PI3K Inhibitors in Cancer: Adaptive Responses, Drug Tolerance and Cellular Plasticity. Cancers (Basel) 2021; 13:cancers13071538. [PMID: 33810522 PMCID: PMC8037590 DOI: 10.3390/cancers13071538] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/11/2021] [Accepted: 03/15/2021] [Indexed: 12/24/2022] Open
Abstract
The phosphatidylinositol-3-kinase (PI3K) pathway plays a central role in the regulation of several signalling cascades which regulate biological processes such as cellular growth, survival, proliferation, motility and angiogenesis. The hyperactivation of this pathway is linked to tumour progression and is one of the most common events in human cancers. Additionally, aberrant activation of the PI3K pathway has been demonstrated to limit the effectiveness of a number of anti-tumour agents paving the way for the development and implementation of PI3K inhibitors in the clinic. However, the overall effectiveness of these compounds has been greatly limited by inadequate target engagement due to reactivation of the pathway by compensatory mechanisms. Herein, we review the common adaptive responses that lead to reactivation of the PI3K pathway, therapy resistance and potential strategies to overcome these mechanisms of resistance. Furthermore, we highlight the potential role in changes in cellular plasticity and PI3K inhibitor resistance.
Collapse
Affiliation(s)
- Sarah Christine Elisabeth Wright
- Faculty of Health Sciences, Curtin Medical School, Curtin University, Bentley 6102, Australia;
- Curtin Health Innovation Research Institute and Faculty of Health Sciences, Curtin University, Bentley 6102, Australia
- Correspondence: (S.C.E.W.); (N.V.)
| | - Natali Vasilevski
- Faculty of Health Sciences, Curtin Medical School, Curtin University, Bentley 6102, Australia;
- Curtin Health Innovation Research Institute and Faculty of Health Sciences, Curtin University, Bentley 6102, Australia
- Correspondence: (S.C.E.W.); (N.V.)
| | - Violeta Serra
- Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron University Hospital, 08035 Barcelona, Spain;
| | - Jordi Rodon
- MD Anderson Cancer Center, Investigational Cancer Therapeutics Department, Houston, TX 77030, USA;
| | - Pieter Johan Adam Eichhorn
- Faculty of Health Sciences, Curtin Medical School, Curtin University, Bentley 6102, Australia;
- Curtin Health Innovation Research Institute and Faculty of Health Sciences, Curtin University, Bentley 6102, Australia
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| |
Collapse
|