1
|
Liu H, Wang P, Li J, Zhao J, Mu Y, Gu W. Role of Cathepsin K in bone invasion of pituitary adenomas: A dual mechanism involving cell proliferation and osteoclastogenesis. Cancer Lett 2025; 611:217443. [PMID: 39755363 DOI: 10.1016/j.canlet.2025.217443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/26/2024] [Accepted: 01/01/2025] [Indexed: 01/06/2025]
Abstract
This study aimed to investigate the regulation and underlying mechanism of Cathepsin K (CTSK) in bone-invasive pituitary adenomas (BIPAs). A total of 1437 patients with pituitary adenomas were included and followed up. RNA sequencing, immunohistochemistry, and qRT-PCR were used to analyze CTSK expression. The effects of CTSK on cellular proliferation, bone matrix degradation, and osteoclast differentiation were determined by gain/loss of function experiments in vitro and in vivo. The exploration of signaling pathways was determined through molecular biology experiments. Here, we reported a significant fraction (∼10 %) of pituitary adenoma patients developed bone invasion, which was correlated with tumor recurrence. Patients with BIPAs had shorter recurrence-free survival. CTSK expression was increased in BIPA patients and was strongly associated with a worse prognosis. Increased CTSK expression enhanced pituitary adenoma cell proliferation through the activation of the mammalian target of rapamycin (mTOR) signaling pathway and promoted bone invasion by increasing osteoclast differentiation both in vitro and in vivo. Treatment with the CTSK inhibitor odanacatib effectively inhibited pituitary adenoma cell proliferation and bone invasion in these models. Additionally, CTSK facilitated osteoclast differentiation by promoting RANKL expression in MC3T3-E1 cells via interaction with TLR4. Based on these findings, we conclude that CTSK has the potential to become a novel predictive biomarker and therapeutic target for BIPAs.
Collapse
Affiliation(s)
- Hongyan Liu
- Department of Endocrinology, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China; Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing, 100191, China
| | - Peng Wang
- Department of Neurosurgery, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Jie Li
- Department of Pathology, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Jian Zhao
- Department of Endocrinology, The 908th Hospital of Chinese PLA Joint Logistic Support Force, Nanchang, China
| | - Yiming Mu
- Department of Endocrinology, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China.
| | - Weijun Gu
- Department of Endocrinology, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
2
|
Saito Y, Xiao Y, Yao J, Li Y, Liu W, Yuzhalin AE, Shyu YM, Li H, Yuan X, Li P, Zhang Q, Li Z, Wei Y, Yin X, Zhao J, Kariminia SM, Wu YC, Wang J, Yang J, Xia W, Sun Y, Jho EH, Chiao PJ, Hwang RF, Ying H, Wang H, Zhao Z, Maitra A, Hung MC, DePinho RA, Yu D. Targeting a chemo-induced adaptive signaling circuit confers therapeutic vulnerabilities in pancreatic cancer. Cell Discov 2024; 10:109. [PMID: 39468013 PMCID: PMC11519973 DOI: 10.1038/s41421-024-00720-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 07/28/2024] [Indexed: 10/30/2024] Open
Abstract
Advanced pancreatic ductal adenocarcinomas (PDACs) respond poorly to all therapies, including the first-line treatment, chemotherapy, the latest immunotherapies, and KRAS-targeting therapies. Despite an enormous effort to improve therapeutic efficacy in late-stage PDAC patients, effective treatment modalities remain an unmet medical challenge. To change the status quo, we explored the key signaling networks underlying the universally poor response of PDAC to therapy. Here, we report a previously unknown chemo-induced symbiotic signaling circuit that adaptively confers chemoresistance in patients and mice with advanced PDAC. By integrating single-cell transcriptomic data from PDAC mouse models and clinical pathological information from PDAC patients, we identified Yap1 in cancer cells and Cox2 in stromal fibroblasts as two key nodes in this signaling circuit. Co-targeting Yap1 in cancer cells and Cox2 in stroma sensitized PDAC to Gemcitabine treatment and dramatically prolonged survival of mice bearing late-stage PDAC, whereas simultaneously inhibiting Yap1 and Cox2 only in cancer cells was ineffective. Mechanistically, chemotherapy triggers non-canonical Yap1 activation by nemo-like kinase in 14-3-3ζ-overexpressing PDAC cells and increases secretion of CXCL2/5, which bind to CXCR2 on fibroblasts to induce Cox2 and PGE2 expression, which reciprocally facilitate PDAC cell survival. Finally, analyses of PDAC patient data revealed that patients who received Statins, which inhibit Yap1 signaling, and Cox2 inhibitors (including Aspirin) while receiving Gemcitabine displayed markedly prolonged survival compared to others. The robust anti-tumor efficacy of Statins and Aspirin, which co-target the chemo-induced adaptive circuit in the tumor cells and stroma, signifies a unique therapeutic strategy for PDAC.
Collapse
Affiliation(s)
- Yohei Saito
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yi Xiao
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jun Yao
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yunhai Li
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wendao Liu
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Arseniy E Yuzhalin
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yueh-Ming Shyu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hongzhong Li
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiangliang Yuan
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ping Li
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Qingling Zhang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ziyi Li
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yongkun Wei
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xuedong Yin
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jun Zhao
- Department of Anatomical Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Seyed M Kariminia
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yao-Chung Wu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jinyang Wang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jun Yang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Weiya Xia
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yutong Sun
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Eek-Hoon Jho
- Department of Life Science, University of Seoul, Seoul, Korea
| | - Paul J Chiao
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Rosa F Hwang
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Haoqiang Ying
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Huamin Wang
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
- Department of Anatomical Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zhongming Zhao
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Anirban Maitra
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ronald A DePinho
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
- Departments of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dihua Yu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.
| |
Collapse
|
3
|
Zhou R, Hu W, Ma PX, Liu CJ. Versatility of 14-3-3 proteins and their roles in bone and joint-related diseases. Bone Res 2024; 12:58. [PMID: 39406741 PMCID: PMC11480210 DOI: 10.1038/s41413-024-00370-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/30/2024] [Accepted: 09/03/2024] [Indexed: 10/19/2024] Open
Abstract
Bone and joint-related diseases, including osteoarthritis (OA), rheumatoid arthritis (RA), and bone tumors, pose significant health challenges due to their debilitating effects on the musculoskeletal system. 14-3-3 proteins, a family of conserved regulatory molecules, play a critical role in the pathology of these diseases. This review discusses the intricate structure and multifunctionality of 14-3-3 proteins, their regulation of signaling pathways, and their interactions with other proteins. We underscore the significance of 14-3-3 proteins in the regulation of osteoblasts, osteoclasts, chondrocytes, and bone remodeling, all key factors in the maintenance and dysfunction of bone and joint systems. Specific focus is directed toward elucidating the contribution of 14-3-3 proteins in the pathology of OA, RA, and bone malignancies, where dysregulated 14-3-3-mediated signaling cascades have been implicated in the disease processes. This review illuminates how the perturbation of 14-3-3 protein interactions can lead to the pathological manifestations observed in these disorders, including joint destruction and osteolytic activity. We highlight cutting-edge research that positions 14-3-3 proteins as potential biomarkers for disease progression and as innovative therapeutic targets, offering new avenues for disease intervention and management.
Collapse
Affiliation(s)
- Renpeng Zhou
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, CT, USA
| | - Weirong Hu
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, CT, USA
| | - Peter X Ma
- Department of Biologic and Materials Sciences and Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Chuan-Ju Liu
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
4
|
Acharya S, Basar R, Daher M, Rafei H, Li P, Uprety N, Ensley E, Shanley M, Kumar B, Banerjee PP, Melo Garcia L, Lin P, Mohanty V, Kim KH, Jiang X, Pan Y, Li Y, Liu B, Nunez Cortes AK, Zhang C, Fathi M, Rezvan A, Montalvo MJ, Cha SL, Reyes-Silva F, Shrestha R, Guo X, Kundu K, Biederstadt A, Muniz-Feliciano L, Deyter GM, Kaplan M, Jiang XR, Liu E, Jain A, Roszik J, Fowlkes NW, Solis Soto LM, Raso MG, Khoury JD, Lin P, Vega F, Varadarajan N, Chen K, Marin D, Shpall EJ, Rezvani K. CD28 Costimulation Augments CAR Signaling in NK Cells via the LCK/CD3ζ/ZAP70 Signaling Axis. Cancer Discov 2024; 14:1879-1900. [PMID: 38900051 PMCID: PMC11452288 DOI: 10.1158/2159-8290.cd-24-0096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/16/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024]
Abstract
Multiple factors in the design of a chimeric antigen receptor (CAR) influence CAR T-cell activity, with costimulatory signals being a key component. Yet, the impact of costimulatory domains on the downstream signaling and subsequent functionality of CAR-engineered natural killer (NK) cells remains largely unexplored. Here, we evaluated the impact of various costimulatory domains on CAR-NK cell activity, using a CD70-targeting CAR. We found that CD28, a costimulatory molecule not inherently present in mature NK cells, significantly enhanced the antitumor efficacy and long-term cytotoxicity of CAR-NK cells both in vitro and in multiple xenograft models of hematologic and solid tumors. Mechanistically, we showed that CD28 linked to CD3ζ creates a platform that recruits critical kinases, such as lymphocyte-specific protein tyrosine kinase (LCK) and zeta-chain-associated protein kinase 70 (ZAP70), initiating a signaling cascade that enhances CAR-NK cell function. Our study provides insights into how CD28 costimulation enhances CAR-NK cell function and supports its incorporation in NK-based CARs for cancer immunotherapy. Significance: We demonstrated that incorporation of the T-cell-centric costimulatory molecule CD28, which is normally absent in mature natural killer (NK) cells, into the chimeric antigen receptor (CAR) construct recruits key kinases including lymphocyte-specific protein tyrosine kinase and zeta-chain-associated protein kinase 70 and results in enhanced CAR-NK cell persistence and sustained antitumor cytotoxicity.
Collapse
Affiliation(s)
- Sunil Acharya
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rafet Basar
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - May Daher
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hind Rafei
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ping Li
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nadima Uprety
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Emily Ensley
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mayra Shanley
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bijender Kumar
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Pinaki P. Banerjee
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Luciana Melo Garcia
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Paul Lin
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vakul Mohanty
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kun Hee Kim
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xianli Jiang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yuchen Pan
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ye Li
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bin Liu
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ana Karen Nunez Cortes
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chenyu Zhang
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mohsen Fathi
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA
- CellChorus, Inc., Houston, TX, USA
| | - Ali Rezvan
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA
| | - Melisa J. Montalvo
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA
| | - Sophia L Cha
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Francia Reyes-Silva
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rejeena Shrestha
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xingliang Guo
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kiran Kundu
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alexander Biederstadt
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Medicine III: Hematology and Oncology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Luis Muniz-Feliciano
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gary M. Deyter
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mecit Kaplan
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xin Ru Jiang
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Enli Liu
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Antrix Jain
- Mass Spectrometry Proteomics Core, Baylor College of Medicine, Houston, TX, USA
| | - Janos Roszik
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Natalie W. Fowlkes
- Department of Veterinary Medicine & Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Luisa M. Solis Soto
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Maria Gabriela Raso
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Joseph D. Khoury
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Pei Lin
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Francisco Vega
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Navin Varadarajan
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA
| | - Ken Chen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David Marin
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Elizabeth J. Shpall
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Katayoun Rezvani
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
5
|
Wofford W, Kim J, Kim D, Janneh AH, Lee HG, Atilgan FC, Oleinik N, Kassir MF, Saatci O, Chakraborty P, Tokat UM, Gencer S, Howley B, Howe P, Mehrotra S, Sahin O, Ogretmen B. Alterations of ceramide synthesis induce PD-L1 internalization and signaling to regulate tumor metastasis and immunotherapy response. Cell Rep 2024; 43:114532. [PMID: 39046874 PMCID: PMC11404065 DOI: 10.1016/j.celrep.2024.114532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/17/2024] [Accepted: 07/09/2024] [Indexed: 07/27/2024] Open
Abstract
Programmed death ligand 1, PD-L1 (CD274), facilitates immune evasion and exerts pro-survival functions in cancer cells. Here, we report a mechanism whereby internalization of PD-L1 in response to alterations of bioactive lipid/ceramide metabolism by ceramide synthase 4 (CerS4) induces sonic hedgehog (Shh) and transforming growth factor β receptor signaling to enhance tumor metastasis in triple-negative breast cancers (TNBCs), exhibiting immunotherapy resistance. Mechanistically, data showed that internalized PD-L1 interacts with an RNA-binding protein, caprin-1, to stabilize Shh/TGFBR1/Wnt mRNAs to induce β-catenin signaling and TNBC growth/metastasis, consistent with increased infiltration of FoxP3+ regulatory T cells and resistance to immunotherapy. While mammary tumors developed in MMTV-PyMT/CerS4-/- were highly metastatic, targeting the Shh/PD-L1 axis using sonidegib and anti-PD-L1 antibody vastly decreased tumor growth and metastasis, consistent with the inhibition of PD-L1 internalization and Shh/Wnt signaling, restoring anti-tumor immune response. These data, validated in clinical samples and databases, provide a mechanism-based therapeutic strategy to improve immunotherapy responses in metastatic TNBCs.
Collapse
Affiliation(s)
- Wyatt Wofford
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Jisun Kim
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Dosung Kim
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Alhaji H Janneh
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Han Gyul Lee
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - F Cansu Atilgan
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Natalia Oleinik
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Mohamed Faisal Kassir
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Ozge Saatci
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Paramita Chakraborty
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA; Department of Surgery, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Unal Metin Tokat
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Salih Gencer
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA; Istanbul Medipol University, Health Science and Technologies Research Institute (SABİTA), Cancer Research Center, Istanbul, Turkey
| | - Breege Howley
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Philip Howe
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Shikhar Mehrotra
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA; Department of Surgery, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Ozgur Sahin
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Besim Ogretmen
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA.
| |
Collapse
|
6
|
Itoh Y, Miyake K, Koinuma D, Omata C, Saitoh M, Miyazawa K. Analysis of the DNA-binding properties of TGF-β-activated Smad complexes unveils a possible molecular basis for cellular context-dependent signaling. FASEB J 2024; 38:e23877. [PMID: 39114961 DOI: 10.1096/fj.202400978r] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/10/2024] [Accepted: 07/30/2024] [Indexed: 09/18/2024]
Abstract
Transforming growth factor-β (TGF-β) is a pleiotropic cytokine that modulates a wide variety of cellular responses by regulating target gene expression. It principally transmits signals via receptor-activated transcription factors Smad2 and Smad3, which form trimeric complexes with Smad4 upon activation and regulate gene expression by binding to genomic DNA. Here, we examined the mechanisms by which TGF-β regulates the transcription of target genes in a cell context-dependent manner by screening a double-stranded DNA oligonucleotide library for DNA sequences bound to endogenous activated Smad complexes. Screening was performed by cyclic amplification of selected targets (CASTing) using an anti-Smad2/3 antibody and nuclear extracts isolated from three cell lines (A549, HepG2, and HaCaT) stimulated with TGF-β. The preference of the activated Smad complexes for conventional Smad-binding motifs such as Smad-binding element (SBE) and CAGA motifs was different in HepG2 than in the other two cell lines, which may indicate the distinct composition of the activated Smad complexes. Several transcription factor-binding motifs other than SBE or CAGA, including the Fos/Jun-binding motifs, were detected in the enriched sequences. Reporter assays using sequences containing these transcription factor-binding motifs together with Smad-binding motifs indicated that some of the motifs may be involved in cell type-dependent transcriptional activation by TGF-β. The results suggest that the CASTing method is useful for elucidating the molecular basis of context-dependent Smad signaling.
Collapse
Affiliation(s)
- Yuka Itoh
- Department of Biochemistry, Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Kunio Miyake
- Department of Epidemiology and Environmental Medicine, Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Daizo Koinuma
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Chiho Omata
- Department of Biochemistry, Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Masao Saitoh
- Department of Biochemistry, Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
- Center for Medical Education and Sciences, Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Keiji Miyazawa
- Department of Biochemistry, Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| |
Collapse
|
7
|
Bennett NE, Parker DV, Mangano RS, Baum JE, Northcutt LA, Miller JS, Beadle EP, Rhoades JA. Pharmacologic Hedgehog inhibition modulates the cytokine profile of osteolytic breast cancer cells. J Bone Oncol 2024; 47:100625. [PMID: 39183755 PMCID: PMC11342115 DOI: 10.1016/j.jbo.2024.100625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/27/2024] Open
Abstract
The establishment and progression of bone metastatic breast cancer is supported by immunosuppressive myeloid populations that enable tumor growth by dampening the innate and adaptive immune response. Much work remains to understand how to target these tumor-myeloid interactions to improve treatment outcomes. Noncanonical Hedgehog signaling is an essential component of bone metastatic tumor progression, and prior literature suggests a potential role for Hedgehog signaling and its downstream effector Gli2 in modulating immune responses. In this work, we sought to identify if inhibition of noncanonical Hedgehog signaling alters the cytokine profile of osteolytic breast cancer cells and the subsequent communication between the tumor cells and myeloid cells. Examination of large patient databases revealed significant relationships between Gli2 expression and expression of markers of myeloid maturation and activation as well as cytokine expression. We found that treatment with HPI-1 reduced tumor cell expression of numerous cytokine genes, including CSF1, CSF2, and CSF3, as well as CCL2 and IL6. Secreted CSF-1 (M-CSF) was also reduced by treatment. Changes in tumor-secreted factors resulted in polarization of THP-1 monocytes toward a proinflammatory phenotype, characterized by increased CD14 and CD40 surface marker expression. We therefore propose M-CSF as a novel target of Hedgehog inhibition with potential future applications in altering the immune microenvironment in addition to its known roles in reducing tumor-induced bone disease.
Collapse
Affiliation(s)
- Natalie E. Bennett
- Program in Cancer Biology, Vanderbilt University, Nashville, TN, United States
- Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, United States
- United States Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, United States
- Medical Scientist Training Program, Vanderbilt University, Nashville, TN, United States
| | - Dominique V. Parker
- Program in Cancer Biology, Vanderbilt University, Nashville, TN, United States
- Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, United States
- United States Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, United States
| | - Rachel S. Mangano
- Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, United States
- United States Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, United States
- Interdisciplinary Graduate Program in Biological and Biomedical Sciences, Vanderbilt University, Nashville, TN, United States
| | - Jennifer E. Baum
- Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, United States
- United States Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, United States
- Master’s Program in Biomedical Sciences, Vanderbilt University, Nashville, TN, United States
| | - Logan A. Northcutt
- Program in Cancer Biology, Vanderbilt University, Nashville, TN, United States
- Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, United States
- United States Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, United States
| | - Jade S. Miller
- Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, United States
- United States Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, United States
- Pharmacology Training Program, Department of Pharmacology, Vanderbilt University, Nashville, TN, United States
| | - Erik P. Beadle
- Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, United States
- United States Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, United States
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Julie A. Rhoades
- Program in Cancer Biology, Vanderbilt University, Nashville, TN, United States
- Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, United States
- United States Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, United States
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
8
|
Bian Z, Benjamin MM, Bialousow L, Tian Y, Hobbs GA, Karan D, Choo YM, Hamann MT, Wang X. Targeting sine oculis homeoprotein 1 (SIX1): A review of oncogenic roles and potential natural product therapeutics. Heliyon 2024; 10:e33204. [PMID: 39022099 PMCID: PMC11252760 DOI: 10.1016/j.heliyon.2024.e33204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 06/16/2024] [Accepted: 06/17/2024] [Indexed: 07/20/2024] Open
Abstract
Sine oculis homeoprotein 1 (SIX1), a prominent representative of the homeodomain transcription factors within the SIX family, has attracted significant interest owing to its role in tumorigenesis, cancer progression, and prognostic assessments. Initially recognized for its pivotal role in embryonic development, SIX1 has emerged as a resurgent factor across a diverse set of mammalian cancers. Over the past two decades, numerous investigations have emphasized SIX1's dual significance as a developmental regulator and central player in oncogenic processes. A mounting body of evidence links SIX1 to the initiation of diverse cancers, encompassing enhanced cellular metabolism and advancement. This review provides an overview of the multifaceted roles of SIX1 in both normal development and oncogenic processes, emphasizing its importance as a possible therapeutic target and prognostic marker. Additionally, this review discusses the natural product agents that inhibit various pro-oncogenic mechanisms associated with SIX1.
Collapse
Affiliation(s)
- Zhiwei Bian
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Menny M. Benjamin
- Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Lucas Bialousow
- Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Yintai Tian
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - G. Aaron Hobbs
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, USA
| | - Dev Karan
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Yeun-Mun Choo
- Chemistry Department, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Mark T. Hamann
- Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Xiaojuan Wang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, Gansu, China
| |
Collapse
|
9
|
Gottumukkala SB, Ganesan TS, Palanisamy A. Comprehensive molecular interaction map of TGFβ induced epithelial to mesenchymal transition in breast cancer. NPJ Syst Biol Appl 2024; 10:53. [PMID: 38760412 PMCID: PMC11101644 DOI: 10.1038/s41540-024-00378-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 04/29/2024] [Indexed: 05/19/2024] Open
Abstract
Breast cancer is one of the prevailing cancers globally, with a high mortality rate. Metastatic breast cancer (MBC) is an advanced stage of cancer, characterised by a highly nonlinear, heterogeneous process involving numerous singling pathways and regulatory interactions. Epithelial-mesenchymal transition (EMT) emerges as a key mechanism exploited by cancer cells. Transforming Growth Factor-β (TGFβ)-dependent signalling is attributed to promote EMT in advanced stages of breast cancer. A comprehensive regulatory map of TGFβ induced EMT was developed through an extensive literature survey. The network assembled comprises of 312 distinct species (proteins, genes, RNAs, complexes), and 426 reactions (state transitions, nuclear translocations, complex associations, and dissociations). The map was developed by following Systems Biology Graphical Notation (SBGN) using Cell Designer and made publicly available using MINERVA ( http://35.174.227.105:8080/minerva/?id=Metastatic_Breast_Cancer_1 ). While the complete molecular mechanism of MBC is still not known, the map captures the elaborate signalling interplay of TGFβ induced EMT-promoting MBC. Subsequently, the disease map assembled was translated into a Boolean model utilising CaSQ and analysed using Cell Collective. Simulations of these have captured the known experimental outcomes of TGFβ induced EMT in MBC. Hub regulators of the assembled map were identified, and their transcriptome-based analysis confirmed their role in cancer metastasis. Elaborate analysis of this map may help in gaining additional insights into the development and progression of metastatic breast cancer.
Collapse
Affiliation(s)
| | - Trivadi Sundaram Ganesan
- Department of Medical Oncology, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Anbumathi Palanisamy
- Department of Biotechnology, National Institute of Technology Warangal, Warangal, India.
| |
Collapse
|
10
|
Miyazawa K, Itoh Y, Fu H, Miyazono K. Receptor-activated transcription factors and beyond: multiple modes of Smad2/3-dependent transmission of TGF-β signaling. J Biol Chem 2024; 300:107256. [PMID: 38569937 PMCID: PMC11063908 DOI: 10.1016/j.jbc.2024.107256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/28/2024] [Accepted: 03/05/2024] [Indexed: 04/05/2024] Open
Abstract
Transforming growth factor β (TGF-β) is a pleiotropic cytokine that is widely distributed throughout the body. Its receptor proteins, TGF-β type I and type II receptors, are also ubiquitously expressed. Therefore, the regulation of various signaling outputs in a context-dependent manner is a critical issue in this field. Smad proteins were originally identified as signal-activated transcription factors similar to signal transducer and activator of transcription proteins. Smads are activated by serine phosphorylation mediated by intrinsic receptor dual specificity kinases of the TGF-β family, indicating that Smads are receptor-restricted effector molecules downstream of ligands of the TGF-β family. Smad proteins have other functions in addition to transcriptional regulation, including post-transcriptional regulation of micro-RNA processing, pre-mRNA splicing, and m6A methylation. Recent technical advances have identified a novel landscape of Smad-dependent signal transduction, including regulation of mitochondrial function without involving regulation of gene expression. Therefore, Smad proteins are receptor-activated transcription factors and also act as intracellular signaling modulators with multiple modes of function. In this review, we discuss the role of Smad proteins as receptor-activated transcription factors and beyond. We also describe the functional differences between Smad2 and Smad3, two receptor-activated Smad proteins downstream of TGF-β, activin, myostatin, growth and differentiation factor (GDF) 11, and Nodal.
Collapse
Affiliation(s)
- Keiji Miyazawa
- Department of Biochemistry, Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan.
| | - Yuka Itoh
- Department of Biochemistry, Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Hao Fu
- Department of Biochemistry, Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Kohei Miyazono
- Department of Applied Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Laboratory for Cancer Invasion and Metastasis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| |
Collapse
|
11
|
Shi L, Wang X, Guo S, Gou H, Shang H, Jiang X, Wei C, Wang J, Li C, Wang L, Zhao Z, Yu W, Yu J. TMEM65 promotes gastric tumorigenesis by targeting YWHAZ to activate PI3K-Akt-mTOR pathway and is a therapeutic target. Oncogene 2024; 43:931-943. [PMID: 38341472 PMCID: PMC10959749 DOI: 10.1038/s41388-024-02959-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 01/07/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024]
Abstract
Copy number alterations are crucial for the development of gastric cancer (GC). Here, we identified Transmembrane Protein 65 (TMEM65) amplification by genomic hybridization microarray to profile copy-number variations in GC. TMEM65 mRNA level was significantly up-regulated in GC compared to adjacent normal tissues, and was positively associated with TMEM65 amplification. High TMEM65 expression or DNA copy number predicts poor prognosis (P < 0.05) in GC. Furtherly, GC patients with TMEM65 amplification (n = 129) or overexpression (n = 78) significantly associated with shortened survival. Ectopic expression of TMEM65 significantly promoted cell proliferation, cell cycle progression and cell migration/invasion ability, but inhibited apoptosis (all P < 0.05). Conversely, silencing of TMEM65 in GC cells showed opposite abilities on cell function in vitro and suppressed tumor growth and lung metastasis in vivo (all P < 0.01). Moreover, TMEM65 depletion by VNP-encapsulated TMEM65-siRNA significantly suppressed tumor growth in subcutaneous xenograft model. Mechanistically, TMEM65 exerted oncogenic effects through activating PI3K-Akt-mTOR signaling pathway, as evidenced of increased expression of key regulators (p-Akt, p-GSK-3β, p-mTOR) by Western blot. YWHAZ (Tyrosine 3-Monooxygenase/Tryptophan 5-Monooxygenase) was identified as a direct downstream effector of TMEM65. Direct binding of TMEM65 with YWHAZ in the cytoplasm inhibited ubiquitin-mediated degradation of YWHAZ. Moreover, oncogenic effect of TMEM65 was partly dependent on YWHAZ. In conclusion, TMEM65 promotes gastric tumorigenesis by activating PI3K-Akt-mTOR signaling via cooperating with YWHAZ. TMEM65 overexpression may serve as an independent new biomarker and is a therapeutic target in GC.
Collapse
Affiliation(s)
- Lingxue Shi
- Departments of Endoscopy Center, The First Hospital of Hebei Medical University, Shijiazhuang, China
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
- The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiaohong Wang
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
- Key Laboratory of Carcinogenesis and Translational Research, Peking University Cancer Hospital and Institute, Beijing, China
| | - Shang Guo
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
- The First Hospital of Hebei Medical University, Shijiazhuang, China
- Gastrointestinal Disease Centre, Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hongyan Gou
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Haiyun Shang
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xiaojia Jiang
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chunxian Wei
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jia Wang
- The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Chao Li
- Departments of Endoscopy Center, The First Hospital of Hebei Medical University, Shijiazhuang, China
- The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Lihong Wang
- The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zengren Zhao
- The First Hospital of Hebei Medical University, Shijiazhuang, China.
- Gastrointestinal Disease Centre, Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, Shijiazhuang, China.
| | - Weifang Yu
- Departments of Endoscopy Center, The First Hospital of Hebei Medical University, Shijiazhuang, China.
- The First Hospital of Hebei Medical University, Shijiazhuang, China.
| | - Jun Yu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
12
|
Wang S, Wu W, Lin X, Zhang KM, Wu Q, Luo M, Zhou J. Predictive and prognostic biomarkers of bone metastasis in breast cancer: current status and future directions. Cell Biosci 2023; 13:224. [PMID: 38041134 PMCID: PMC10693103 DOI: 10.1186/s13578-023-01171-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/10/2023] [Indexed: 12/03/2023] Open
Abstract
The most common site of metastasis in breast cancer is the bone, where the balance between osteoclast-mediated bone resorption and osteoblast-mediated bone formation is disrupted. This imbalance causes osteolytic bone metastasis in breast cancer, which leads to bone pain, pathological fractures, spinal cord compression, and other skeletal-related events (SREs). These complications reduce patients' quality of life significantly and have a profound impact on prognosis. In this review, we begin by providing a brief overview of the epidemiology of bone metastasis in breast cancer, including current diagnostic tools, treatment approaches, and existing challenges. Then, we will introduce the pathophysiology of breast cancer bone metastasis (BCBM) and the animal models involved in the study of BCBM. We then come to the focus of this paper: a discussion of several biomarkers that have the potential to provide predictive and prognostic value in the context of BCBM-some of which may be particularly compatible with more comprehensive liquid biopsies. Beyond that, we briefly explore the potential of new technologies such as single-cell sequencing and organoid models, which will improve our understanding of tumor heterogeneity and aid in the development of improved biomarkers. The emerging biomarkers discussed hold promise for future clinical application, aiding in the prevention of BCBM, improving the prognosis of patients, and guiding the implementation of personalized medicine.
Collapse
Affiliation(s)
- Shenkangle Wang
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang, China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China
| | - Wenxin Wu
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang, China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China
| | - Xixi Lin
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang, China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China
| | | | - QingLiang Wu
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang, China
- Hangzhou Ninth People's Hospital, Hangzhou, 310014, China
| | - Mingpeng Luo
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang, China.
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China.
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310014, China.
| | - Jichun Zhou
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang, China.
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
13
|
Zhao M, Zhang Y, Li L, Liu X, Zhou W, Wang C, Tang Y. KHDRBS3 accelerates glycolysis and promotes malignancy of hepatocellular carcinoma via upregulating 14-3-3ζ. Cancer Cell Int 2023; 23:244. [PMID: 37848941 PMCID: PMC10583372 DOI: 10.1186/s12935-023-03085-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 09/29/2023] [Indexed: 10/19/2023] Open
Abstract
BACKGROUND Primary hepatocellular carcinoma (HCC) is a malignancy with high morbidity and mortality. KH domain-containing, RNA-binding signal transduction-associated protein 3 (KHDRBS3) is an RNA-binding protein that is aberrantly expressed in multiple tumors; however, its expression and biological function in HCC have not been reported. METHODS KHDRBS3 knockdown and overexpression were performed using the lentiviral vector system to investigate the effects of KHDRBS3 on cell proliferation, apoptosis, chemoresistance, and glycolysis. Murine xenograft tumor models were constructed to study the role of KHDRBS3 on tumor growth in vivo. Furthermore, RNA-Pull Down and RNA immunoprecipitation were utilized to explore the interaction between KHDRBS3 and 14-3-3ζ, a phosphopeptide-binding molecule encoded by YWHAZ. RESULTS KHDRBS3 was highly expressed in human HCC tissues and predicted the poor prognosis of patients with HCC. Knockdown of KHDRBS3 exhibited a carcinostatic effect in HCC and impeded proliferation and tumor growth, reduced glycolysis, enhanced cell sensitivity to doxorubicin, and induced apoptosis. On the contrary, forced expression of KHDRBS3 expedited the malignant biological behaviors of HCC cells. The expression of KHDRBS3 was positively correlated with the expression of 14-3-3ζ. RNA immunoprecipitation and RNA pull-down assays demonstrated that KHDRBS3 bound to YWHAZ. We further confirmed that 14-3-3ζ silencing significantly reversed the promotion of proliferation and glycolysis and the inhibition of apoptosis caused by KHDRBS3 overexpression. CONCLUSIONS Our findings suggest that KHDRBS3 promotes glycolysis and malignant progression of HCC through upregulating 14-3-3ζ expression, providing a possible target for HCC therapy.
Collapse
Affiliation(s)
- Mingda Zhao
- Department of Hepatobiliary Surgery, General Hospital of Northern Theater Command, 83#, Wenhua Road, Shenyang, Liaoning, China
- Dalian Medical University, Dalian, Liaoning, China
| | - Yibing Zhang
- Department of Medical Affairs, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| | - Longfei Li
- Department of Hepatobiliary Surgery, General Hospital of Northern Theater Command, 83#, Wenhua Road, Shenyang, Liaoning, China
| | - Xiaobin Liu
- Department of Hepatobiliary Surgery, General Hospital of Northern Theater Command, 83#, Wenhua Road, Shenyang, Liaoning, China
| | - Wenping Zhou
- Department of Hepatobiliary Surgery, General Hospital of Northern Theater Command, 83#, Wenhua Road, Shenyang, Liaoning, China
| | - Chunhui Wang
- Department of Hepatobiliary Surgery, General Hospital of Northern Theater Command, 83#, Wenhua Road, Shenyang, Liaoning, China.
| | - Yufu Tang
- Department of Hepatobiliary Surgery, General Hospital of Northern Theater Command, 83#, Wenhua Road, Shenyang, Liaoning, China.
| |
Collapse
|
14
|
Huang K, Wu Y, Fan W, Zhao Y, Xue M, Liu H, Tang Y, Li J. Identification of BRD7 by whole-exome sequencing as a predictor for intermediate-stage hepatocellular carcinoma in patients undergoing TACE. J Cancer Res Clin Oncol 2023; 149:11247-11261. [PMID: 37365429 DOI: 10.1007/s00432-023-04883-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 05/19/2023] [Indexed: 06/28/2023]
Abstract
OBJECTIVE In the present study, we aimed to identify potential predictors of intermediate-stage hepatocellular carcinoma (HCC) using whole-exome sequencing (WES) in patients undergoing transarterial chemoembolization (TACE). MATERIALS AND METHODS In A total of 51 patients, newly diagnosed with intermediate-stage HCC between January 2013 and December 2020, were enrolled. Prior to treatment, histological samples were collected for western blotting and immunohistochemistry. The predictive roles of clinical indicators and genes in patient prognosis were analyzed using univariate and multivariate analyses. Finally, the correlation between imaging features and gene signatures was examined. RESULTS Using WES, we identified that bromodomain-containing protein 7 (BRD7) was significantly mutated in patients with different TACE responses. No significant difference in BRD7 expression was observed between patients with and without BRD7 mutations. HCC tumors exhibited higher BRD7 than normal liver tissues. Multivariate analysis revealed that alpha-fetoprotein (AFP), BRD7 expression, and BRD7 mutations were independent risk factors for progression-free survival (PFS). In addition, Child-Pugh class, BRD7 expression, and BRD7 mutations were independent risk factors for overall survival (OS). Patients with wild-type BRD7 and high BRD7 expression had worse PFS and OS, whereas those with mutated BRD7 and low BRD7 expression exhibited the best PFS and OS. The Kruskal-Wallis test revealed that wash-in enhancement on computed tomography might be an independent risk factor for high BRD7 expression. CONCLUSION BRD7 expression may be an independent risk factor for prognosis in patients with HCC undergoing TACE. Imaging features such as wash-in enhancement are closely related to BRD7 expression.
Collapse
Affiliation(s)
- Kun Huang
- Department of Interventional Oncology, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan 2 Road, Guangzhou, 510080, Guangdong, People's Republic of China
- Department of Radiology, Guizhou Provincial People's Hospital, No. 83 East Zhongshan Road, Guiyang, 550002, Guizhou, China
| | - Yanqin Wu
- Department of Interventional Oncology, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan 2 Road, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Wenzhe Fan
- Department of Interventional Oncology, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan 2 Road, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Yue Zhao
- Department of Interventional Oncology, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan 2 Road, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Miao Xue
- Department of Interventional Oncology, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan 2 Road, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Haikuan Liu
- Department of Interventional Oncology, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan 2 Road, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Yiyang Tang
- Department of Interventional Oncology, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan 2 Road, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Jiaping Li
- Department of Interventional Oncology, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan 2 Road, Guangzhou, 510080, Guangdong, People's Republic of China.
| |
Collapse
|
15
|
Sunderland A, Williams J, Andreou T, Rippaus N, Fife C, James F, Kartika YD, Speirs V, Carr I, Droop A, Lorger M. Biglycan and reduced glycolysis are associated with breast cancer cell dormancy in the brain. Front Oncol 2023; 13:1191980. [PMID: 37456245 PMCID: PMC10339804 DOI: 10.3389/fonc.2023.1191980] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/13/2023] [Indexed: 07/18/2023] Open
Abstract
Exit of quiescent disseminated cancer cells from dormancy is thought to be responsible for metastatic relapse and a better understanding of dormancy could pave the way for novel therapeutic approaches. We used an in vivo model of triple negative breast cancer brain metastasis to identify differences in transcriptional profiles between dormant and proliferating cancer cells in the brain. BGN gene, encoding a small proteoglycan biglycan, was strongly upregulated in dormant cancer cells in vivo. BGN expression was significantly downregulated in patient brain metastases as compared to the matched primary breast tumors and BGN overexpression in cancer cells inhibited their growth in vitro and in vivo. Dormant cancer cells were further characterized by a reduced expression of glycolysis genes in vivo, and inhibition of glycolysis in vitro resulted in a reversible growth arrest reminiscent of dormancy. Our study identified mechanisms that could be targeted to induce/maintain cancer dormancy and thereby prevent metastatic relapse.
Collapse
Affiliation(s)
| | | | - Tereza Andreou
- School of Medicine, University of Leeds, Leeds, United Kingdom
| | - Nora Rippaus
- School of Medicine, University of Leeds, Leeds, United Kingdom
| | | | - Fiona James
- School of Medicine, University of Leeds, Leeds, United Kingdom
| | | | - Valerie Speirs
- School of Medicine, Medical Science and Nutrition, University of Aberdeen, Aberdeen, United Kingdom
| | - Ian Carr
- School of Medicine, University of Leeds, Leeds, United Kingdom
| | - Alastair Droop
- Experimental Cancer Genetics, Wellcome Sanger Institute, Hinxton, United Kingdom
| | - Mihaela Lorger
- School of Medicine, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
16
|
Ma W, Oliveira-Nunes MC, Xu K, Kossenkov A, Reiner BC, Crist RC, Hayden J, Chen Q. Type I interferon response in astrocytes promotes brain metastasis by enhancing monocytic myeloid cell recruitment. Nat Commun 2023; 14:2632. [PMID: 37149684 PMCID: PMC10163863 DOI: 10.1038/s41467-023-38252-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 04/20/2023] [Indexed: 05/08/2023] Open
Abstract
Cancer metastasis to the brain is a significant clinical problem. Metastasis is the consequence of favorable interactions between invaded cancer cells and the microenvironment. Here, we demonstrate that cancer-activated astrocytes create a sustained low-level activated type I interferon (IFN) microenvironment in brain metastatic lesions. We further confirm that the IFN response in astrocytes facilitates brain metastasis. Mechanistically, IFN signaling in astrocytes activates C-C Motif Chemokine Ligand 2 (CCL2) production, which further increases the recruitment of monocytic myeloid cells. The correlation between CCL2 and monocytic myeloid cells is confirmed in clinical brain metastasis samples. Lastly, genetically or pharmacologically inhibiting C-C Motif Chemokine Receptor 2 (CCR2) reduces brain metastases. Our study clarifies a pro-metastatic effect of type I IFN in the brain even though IFN response has been considered to have anti-tumor effects. Moreover, this work expands our understandings on the interactions between cancer-activated astrocytes and immune cells in brain metastasis.
Collapse
Affiliation(s)
- Weili Ma
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Maria Cecília Oliveira-Nunes
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA, 19104, USA
- Carisma Therapeutics, Philadelphia, PA, 19104, USA
| | - Ke Xu
- MD/PhD Program, Boston University School of Medicine, Boston, MA, 02215, USA
| | - Andrew Kossenkov
- Gene Expression & Regulation Program, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Benjamin C Reiner
- Department of Psychiatry, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Richard C Crist
- Department of Psychiatry, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - James Hayden
- Imaging Shared Resource, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Qing Chen
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA, 19104, USA.
| |
Collapse
|
17
|
Altea-Manzano P, Doglioni G, Liu Y, Cuadros AM, Nolan E, Fernández-García J, Wu Q, Planque M, Laue KJ, Cidre-Aranaz F, Liu XZ, Marin-Bejar O, Van Elsen J, Vermeire I, Broekaert D, Demeyer S, Spotbeen X, Idkowiak J, Montagne A, Demicco M, Alkan HF, Rabas N, Riera-Domingo C, Richard F, Geukens T, De Schepper M, Leduc S, Hatse S, Lambrechts Y, Kay EJ, Lilla S, Alekseenko A, Geldhof V, Boeckx B, de la Calle Arregui C, Floris G, Swinnen JV, Marine JC, Lambrechts D, Pelechano V, Mazzone M, Zanivan S, Cools J, Wildiers H, Baud V, Grünewald TGP, Ben-David U, Desmedt C, Malanchi I, Fendt SM. A palmitate-rich metastatic niche enables metastasis growth via p65 acetylation resulting in pro-metastatic NF-κB signaling. NATURE CANCER 2023; 4:344-364. [PMID: 36732635 PMCID: PMC7615234 DOI: 10.1038/s43018-023-00513-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 01/03/2023] [Indexed: 02/04/2023]
Abstract
Metabolic rewiring is often considered an adaptive pressure limiting metastasis formation; however, some nutrients available at distant organs may inherently promote metastatic growth. We find that the lung and liver are lipid-rich environments. Moreover, we observe that pre-metastatic niche formation increases palmitate availability only in the lung, whereas a high-fat diet increases it in both organs. In line with this, targeting palmitate processing inhibits breast cancer-derived lung metastasis formation. Mechanistically, breast cancer cells use palmitate to synthesize acetyl-CoA in a carnitine palmitoyltransferase 1a-dependent manner. Concomitantly, lysine acetyltransferase 2a expression is promoted by palmitate, linking the available acetyl-CoA to the acetylation of the nuclear factor-kappaB subunit p65. Deletion of lysine acetyltransferase 2a or carnitine palmitoyltransferase 1a reduces metastasis formation in lean and high-fat diet mice, and lung and liver metastases from patients with breast cancer show coexpression of both proteins. In conclusion, palmitate-rich environments foster metastases growth by increasing p65 acetylation, resulting in a pro-metastatic nuclear factor-kappaB signaling.
Collapse
Affiliation(s)
- Patricia Altea-Manzano
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Ginevra Doglioni
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Yawen Liu
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
| | - Alejandro M Cuadros
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | | | - Juan Fernández-García
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Qi Wu
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
- Laboratory of Experimental Oncology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Mélanie Planque
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Kathrin Julia Laue
- Department of Human Molecular Genetics & Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Florencia Cidre-Aranaz
- Hopp-Children's Cancer Center (KiTZ), Heidelberg, Germany
- Division of Translational Pediatric Sarcoma Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Xiao-Zheng Liu
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Oskar Marin-Bejar
- Laboratory for Molecular Cancer Biology, VIB Center for Cancer Biology, Leuven, Belgium
- Department of Oncology, KU Leuven, Leuven, Belgium
| | - Joke Van Elsen
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Ines Vermeire
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Dorien Broekaert
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Sofie Demeyer
- Laboratory for Molecular Biology of Leukemia, VIB-KU Leuven, Leuven, Belgium
| | - Xander Spotbeen
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Jakub Idkowiak
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, KU Leuven, Leuven, Belgium
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Pardubice, Czech Republic
| | - Aurélie Montagne
- Université Paris Cité, NF-kappaB, Différenciation et Cancer, Paris, France
| | - Margherita Demicco
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - H Furkan Alkan
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | | | - Carla Riera-Domingo
- Laboratory of Tumor Inflammation and Angiogenesis, VIB Center for Cancer Biology, Leuven, Belgium
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - François Richard
- Laboratory for Translational Breast Cancer Research, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Tatjana Geukens
- Laboratory for Translational Breast Cancer Research, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Maxim De Schepper
- Laboratory for Translational Breast Cancer Research, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Sophia Leduc
- Laboratory for Translational Breast Cancer Research, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Sigrid Hatse
- Laboratory of Experimental Oncology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Yentl Lambrechts
- Laboratory of Experimental Oncology, Department of Oncology, KU Leuven, Leuven, Belgium
| | | | - Sergio Lilla
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Alisa Alekseenko
- SciLifeLab, Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Solna, Sweden
| | - Vincent Geldhof
- Laboratory for Angiogenesis and Vascular Metabolism, VIB-KU Leuven, Leuven, Belgium
| | - Bram Boeckx
- Laboratory of Translational Genetics, VIB Center for Cancer Biology, Leuven, Belgium
- Laboratory of Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Celia de la Calle Arregui
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Giuseppe Floris
- Department of Imaging and Pathology, Laboratory of Translational Cell & Tissue Research, KU Leuven, Leuven, Belgium
- Department of Pathology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Johannes V Swinnen
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Jean-Christophe Marine
- Laboratory for Molecular Cancer Biology, VIB Center for Cancer Biology, Leuven, Belgium
- Department of Oncology, KU Leuven, Leuven, Belgium
| | - Diether Lambrechts
- Laboratory of Translational Genetics, VIB Center for Cancer Biology, Leuven, Belgium
- Laboratory of Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Vicent Pelechano
- SciLifeLab, Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Solna, Sweden
| | - Massimiliano Mazzone
- Laboratory of Tumor Inflammation and Angiogenesis, VIB Center for Cancer Biology, Leuven, Belgium
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Sara Zanivan
- Cancer Research UK Beatson Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Jan Cools
- Laboratory for Molecular Biology of Leukemia, VIB-KU Leuven, Leuven, Belgium
| | - Hans Wildiers
- Laboratory of Experimental Oncology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Véronique Baud
- Université Paris Cité, NF-kappaB, Différenciation et Cancer, Paris, France
| | - Thomas G P Grünewald
- Hopp-Children's Cancer Center (KiTZ), Heidelberg, Germany
- Division of Translational Pediatric Sarcoma Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Uri Ben-David
- Department of Human Molecular Genetics & Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Christine Desmedt
- Laboratory for Translational Breast Cancer Research, Department of Oncology, KU Leuven, Leuven, Belgium
| | | | - Sarah-Maria Fendt
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium.
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium.
| |
Collapse
|
18
|
Fendl B, Berghoff AS, Preusser M, Maier B. Macrophage and monocyte subsets as new therapeutic targets in cancer immunotherapy. ESMO Open 2023; 8:100776. [PMID: 36731326 PMCID: PMC10024158 DOI: 10.1016/j.esmoop.2022.100776] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/05/2022] [Accepted: 12/11/2022] [Indexed: 02/04/2023] Open
Abstract
The introduction of immune checkpoint inhibitors (ICIs) for the treatment of solid cancers dramatically turned the tables in clinical routine. However, therapy success is still limited with up to 70% of non-responders in patients with ICI treatment. Traditionally, most immunotherapy approaches aim at directly stimulating anti-tumor T cell responses. More recently, tumor-associated macrophages have come into focus due to their predominance in solid tumors. Intensive cross-talk with tumor cells and immune as well as stromal cells within the tumor microenvironment can drive either pro- or anti-tumorigenic macrophage phenotypes. In turn, tumor-associated macrophages strongly shape cytokine and metabolite levels in the tumor microenvironment and thus are central players in anti-tumor immunity. Thus, ambivalent macrophage populations exist which raises therapeutic possibilities to either enhance or diminish their functionality. However, molecular signals controlling tumor-associated macrophage polarization are incompletely understood. Gaining in-depth understanding of monocyte/macrophage properties both in circulation and within distinct tumor microenvironments would (i) allow the development of new therapeutic approaches, and (ii) could additionally aid our understanding of underlying mechanisms limiting current therapy with the option of combinatorial therapies to increase efficacy. In this review, we summarize recent data addressing heterogeneity of tumor-associated macrophage populations and we discuss strategies to target macrophages using known molecular pathways with the potential for straight-forward clinical application.
Collapse
Affiliation(s)
- B Fendl
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria; Christian Doppler Laboratory for Personalized Immunotherapy, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - A S Berghoff
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria; Christian Doppler Laboratory for Personalized Immunotherapy, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - M Preusser
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria; Christian Doppler Laboratory for Personalized Immunotherapy, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - B Maier
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.
| |
Collapse
|
19
|
Mukhi D, Kolligundla LP, Maruvada S, Nishad R, Pasupulati AK. Growth hormone induces transforming growth factor-β1 in podocytes: Implications in podocytopathy and proteinuria. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119391. [PMID: 36400249 DOI: 10.1016/j.bbamcr.2022.119391] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/31/2022] [Accepted: 11/06/2022] [Indexed: 11/17/2022]
Abstract
Pituitary growth hormone (GH) is essential for growth, metabolism, and renal function. Overactive GH signaling is associated with impaired kidney function. Glomerular podocytes, a key kidney cell type, play an indispensable role in the renal filtration and express GH receptors (GHR), suggesting the direct action of GH on these cells. However, the precise mechanism and the downstream signaling events by which GH leads to diabetic nephropathy remain to be elucidated. Here we performed proteome analysis of the condition media from human podocytes and confirmed that GH-induces TGF-β1. Inhibition of GH/GHR stimulated-JAK2 signaling abrogates GH-induced TGF-β1 secretion. Mice administered with GH showed glomerular manifestations concomitant with proteinuria. Pharmacological inhibition of TGF-βR1 in mice prevented GH-induced TGF-β dependent SMAD signaling and proteinuria. Conditional deletion of GHR in podocytes protected mice from streptozotocin-induced diabetic nephropathy. GH and TGF-β1 signaling components expression was elevated in the kidneys of human diabetic nephropathy patients. Our study identifies that GH induces TGF-β1 in podocytes, contributing to diabetic nephropathy.
Collapse
Affiliation(s)
- Dhanunjay Mukhi
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Lakshmi P Kolligundla
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Saikrishna Maruvada
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Rajkishor Nishad
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Anil K Pasupulati
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India.
| |
Collapse
|
20
|
Breedy S, Ratnayake W, Lajmi L, Hill R, Acevedo-Duncan M. 14-3-3 and Smad2/3 are crucial mediators of atypical-PKCs: Implications for neuroblastoma progression. Front Oncol 2023; 13:1051516. [PMID: 36776326 PMCID: PMC9910080 DOI: 10.3389/fonc.2023.1051516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 01/06/2023] [Indexed: 01/28/2023] Open
Abstract
Neuroblastoma (NB) is a cancer that develops in the neuroblasts. It is the most common cancer in children under the age of 1 year, accounting for approximately 6% of all cancers. The prognosis of NB is linked to both age and degree of cell differentiation. This results in a range of survival rates for patients, with outcomes ranging from recurrence and mortality to high survival rates and tumor regression. Our previous work indicated that PKC-ι promotes cell proliferation in NB cells through the PKC-ι/Cdk7/Cdk2 cascade. We report on two atypical protein kinase inhibitors as potential therapeutic candidates against BE(2)-C and BE(2)-M17 cells: a PKC-ι-specific 5-amino-1-2,3-dihydroxy-4-(methylcyclopentyl)-1H-imidazole-4-carboxamide and a PKC-ζ specific 8-hydroxy-1,3,6-naphthalenetrisulfonic acid. Both compounds induced apoptosis and retarded the epithelial-mesenchymal transition (EMT) of NB cells. Proteins 14-3-3 and Smad2/3 acted as central regulators of aPKC-driven progression in BE(2)-C and BE(2)-M17 cells in relation to the Akt1/NF-κB and TGF-β pathways. Data indicates that aPKCs upregulate Akt1/NF-κB and TGF-β pathways in NB cells through an association with 14-3-3 and Smad2/3 that can be diminished by aPKC inhibitors. In summary, both inhibitors appear to be promising potential neuroblastoma therapeutics and merit further research.
Collapse
Affiliation(s)
- S. Breedy
- Department of Chemistry, University of South Florida, Tampa, FL, United States
| | - W.S. Ratnayake
- Department of Chemistry, University of South Florida, Tampa, FL, United States
| | - L. Lajmi
- Department of Chemistry, University of South Florida, Tampa, FL, United States
| | - R. Hill
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, United States
| | - M. Acevedo-Duncan
- Department of Chemistry, University of South Florida, Tampa, FL, United States
| |
Collapse
|
21
|
Hsieh CY, Chang WC, Lin CC, Chen JH, Lin CY, Liu CH, Lin C, Hung MC. Combination treatment of arsenic trioxide and osimertinib in recurrent and metastatic head and neck squamous cell carcinoma. Am J Cancer Res 2022; 12:5049-5061. [PMID: 36504903 PMCID: PMC9729903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 10/30/2022] [Indexed: 12/15/2022] Open
Abstract
Recurrent and/or metastatic (R/M) head and neck squamous cell carcinoma (HNSCC) represents an advanced stage of the disease and frequently shows resistance to these current treatments, including platinum chemotherapy, cetuximab plus chemotherapy, and checkpoint inhibitors. EGFR overexpression and TP53 mutation are the most frequent genetic changes in patients with HNSCC. On the basis of this genetic feature, we proposed a combinatorial treatment using the EGFR tyrosine kinase inhibitor osimertinib (AZD) and arsenic trioxide (ATO) for compassionate use. The patient obtained treatment response and progression-free survival for about six months. In vitro mechanical verifications showed that ATO and AZD combination (ATO/AZD) significantly increased intracellular ROS levels and DNA damage. Additionally, ATO/AZD decreases the expression and activity of breast cancer type 1 susceptibility protein (BRCA1) and polo-like kinase 1 (PLK1), thereby impairing Rad51 recruitment to DNA double-strand lesion for repair and may ultimately cause tumor cell death. In conclusion, this study provides a concrete experience and an alternate strategy of ATO/AZD therapy for patients with R/M HNSCC.
Collapse
Affiliation(s)
- Ching-Yun Hsieh
- Division of Hematology and Oncology, Department of Internal Medicine, China Medical University Hospital, China Medical UniversityTaichung 40402, Taiwan
| | - Wei-Chao Chang
- Center for Molecular Medicine, China Medical University Hospital, China Medical UniversityTaichung 40402, Taiwan
| | - Ching-Chan Lin
- Division of Hematology and Oncology, Department of Internal Medicine, China Medical University Hospital, China Medical UniversityTaichung 40402, Taiwan
| | - Jong-Hang Chen
- Division of Hematology and Oncology, Department of Internal Medicine, China Medical University Hospital, China Medical UniversityTaichung 40402, Taiwan
| | - Chen-Yuan Lin
- Division of Hematology and Oncology, Department of Internal Medicine, China Medical University Hospital, China Medical UniversityTaichung 40402, Taiwan
| | - Chia-Hua Liu
- Division of Hematology and Oncology, Department of Internal Medicine, China Medical University Hospital, China Medical UniversityTaichung 40402, Taiwan
| | - Chen Lin
- Center for Molecular Medicine, China Medical University Hospital, China Medical UniversityTaichung 40402, Taiwan
| | - Mien-Chie Hung
- Center for Molecular Medicine, China Medical University Hospital, China Medical UniversityTaichung 40402, Taiwan,Research Center for Cancer Biology, China Medical UniversityTaichung 40402, Taiwan,College of Medicine, Graduate Institute of Biomedical Sciences, China Medical UniversityTaichung 40402, Taiwan,Department of Biotechnology, Asia UniversityTaichung 40402, Taiwan
| |
Collapse
|
22
|
Hao X, Zhang Y, Shi X, Liu H, Zheng Z, Han G, Rong D, Zhang C, Tang W, Wang X. CircPAK1 promotes the progression of hepatocellular carcinoma via modulation of YAP nucleus localization by interacting with 14-3-3ζ. J Exp Clin Cancer Res 2022; 41:281. [PMID: 36131287 PMCID: PMC9494907 DOI: 10.1186/s13046-022-02494-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/23/2022] [Indexed: 12/24/2022] Open
Abstract
Abstract
Background
Circular RNA (circRNA), a new class of non-coding RNA, has obvious correlations with the occurrence and development of many diseases, including tumors. This study aimed to investigate the potential roles of circPAK1 in hepatocellular carcinoma (HCC).
Methods
High-throughput sequencing was performed on 3 pairs of HCC and matched normal tissues to determine the upregulated circRNAs. The expression level of circPAK1 was detected by qRT-PCR in HCC and paired with normal liver tissue samples. The effects of circPAK1 on proliferation, invasion, metastasis and apoptosis of HCC cells were evaluated by in vitro and in vivo experiments. We also constructed Chitosan/si-circPAK1 (CS/si-circPAK1) nanocomplexes using Chitosan material to evaluate its in vivo therapeutic effect on HCC. High-throughput sequencing, RNA-sequencing, RNA probe pull-down, RNA immunoprecipitation and Co-Immunoprecipitation assays were performed to explore the relationship between circPAK1, 14–3-3ζ, p-LATS1 and YAP. Exosomes isolated from lenvatinib-resistant HCC cell lines were used to evaluate the relationship between exosomal circPAK1 and lenvatinib resistance.
Results
CircPAK1, a novel circRNA, is highly expressed in HCC tumor tissues and cell lines as well as correlated with poor outcomes in HCC patients. Functionally, circPAK1 knockdown inhibited HCC cell proliferation, migration, invasion and angiogenesis while circPAK1 overexpression promoted HCC progression. The tumor-promoting phenotypes of circPAK1 on HCC were also confirmed by animal experiments. Importantly, the application of CS/si-circPAK1 nanocomplexes showed a better therapeutic effect on tumor growth and metastasis. Mechanistically, circPAK1 enhanced HCC progression by inactivating the Hippo signaling pathway, and this kind of inactivation is based on its competitively binding of 14–3-3 ζ with YAP, which weakens the recruitment and cytoplasmic fixation of 14–3-3 ζ to YAP, thus promoting YAP nucleus localization. Additionally, circPAK1 could be transported by exosomes from lenvatinib-resistant cells to sensitive cells and induce lenvatinib resistance of receipt cells.
Conclusion
CircPAK1 exerts its oncogenic function by competitively binding 14–3-3 ζ with YAP, thus promoting YAP nucleus localization, leading to the inactivation of a Hippo signaling pathway. Exosomal circPAK1 may drive resistance to lenvatinib, providing a potential therapeutic target for HCC patients.
Collapse
|
23
|
Obsilova V, Obsil T. Structural insights into the functional roles of 14-3-3 proteins. Front Mol Biosci 2022; 9:1016071. [PMID: 36188227 PMCID: PMC9523730 DOI: 10.3389/fmolb.2022.1016071] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/02/2022] [Indexed: 12/02/2022] Open
Abstract
Signal transduction cascades efficiently transmit chemical and/or physical signals from the extracellular environment to intracellular compartments, thereby eliciting an appropriate cellular response. Most often, these signaling processes are mediated by specific protein-protein interactions involving hundreds of different receptors, enzymes, transcription factors, and signaling, adaptor and scaffolding proteins. Among them, 14-3-3 proteins are a family of highly conserved scaffolding molecules expressed in all eukaryotes, where they modulate the function of other proteins, primarily in a phosphorylation-dependent manner. Through these binding interactions, 14-3-3 proteins participate in key cellular processes, such as cell-cycle control, apoptosis, signal transduction, energy metabolism, and protein trafficking. To date, several hundreds of 14-3-3 binding partners have been identified, including protein kinases, phosphatases, receptors and transcription factors, which have been implicated in the onset of various diseases. As such, 14-3-3 proteins are promising targets for pharmaceutical interventions. However, despite intensive research into their protein-protein interactions, our understanding of the molecular mechanisms whereby 14-3-3 proteins regulate the functions of their binding partners remains insufficient. This review article provides an overview of the current state of the art of the molecular mechanisms whereby 14-3-3 proteins regulate their binding partners, focusing on recent structural studies of 14-3-3 protein complexes.
Collapse
Affiliation(s)
- Veronika Obsilova
- Institute of Physiology of the Czech Academy of Sciences, Laboratory of Structural Biology of Signaling Proteins, Division BIOCEV, Vestec, Czechia
- *Correspondence: Veronika Obsilova, ; Tomas Obsil,
| | - Tomas Obsil
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Prague, Czechia
- *Correspondence: Veronika Obsilova, ; Tomas Obsil,
| |
Collapse
|
24
|
Ou D, Zhang Z, Wu Z, Shen P, Huang Y, She S, She S, Lin ME. Identification of the Putative Tumor Suppressor Characteristics of FAM107A via Pan-Cancer Analysis. Front Oncol 2022; 12:861281. [PMID: 35669436 PMCID: PMC9163664 DOI: 10.3389/fonc.2022.861281] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/14/2022] [Indexed: 02/05/2023] Open
Abstract
Family with sequence similarity 107, member A(FAM107A) was supposed as a tumor suppressor for various types of tumors. However, no pan-cancer analysis of FAM107A is available. Therefore, we conducted a FAM107A-related pan-cancer analysis across thirty-three tumors based on TCGA database to explore the molecular characteristics of FAM107A. The FAM107A expression is reduced in most cancers, and its down-regulated expression was linked to poor overall survival and progression-free survival of tumor patients. Analysis of DNA methylation of the FAM107A gene showed a negative correlation between FAM107A expression and promoter methylation in numerous cancers. Furthermore, FAM107A expression was noted to be involved in myeloid-derived suppressor cell infiltration in multiple cancers. To explore the mechanism of FAM107A in cancers, KEGG, and GO enrichment analysis was performed and the result showed "cell adhesion" and "cAMP signaling pathway" terms as the potential impact of FAM107A on cancers. An experiment in vitro showed FAM107A knockdown promoted the proliferation, migration, and invasion of bladder cancer and renal cancer cells. Our study indicates that FAM107A may be a putative tumor suppressor in bladder cancer and other tumors.
Collapse
Affiliation(s)
- Dehua Ou
- Department of Urology, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
- Clinical Medicine Science, Shantou University Medical College, Shantou, China
| | - Zhiqin Zhang
- Department of Gynecology & Obstertrics, Zhongshan Hospital Xiamen University, Xiamen, China
| | - Zesong Wu
- Department of Urology, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
- Clinical Medicine Science, Shantou University Medical College, Shantou, China
| | - Peilin Shen
- Department of Urology, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Yichuan Huang
- Department of Urology, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Sile She
- Clinical Medicine Science, Guangdong Medical University, Zhanjiang, China
| | - Sifan She
- Clinical Medicine Science, Guangdong Medical University, Zhanjiang, China
| | - Ming-en Lin
- Department of Urology, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| |
Collapse
|
25
|
EZH2 engages TGFβ signaling to promote breast cancer bone metastasis via integrin β1-FAK activation. Nat Commun 2022; 13:2543. [PMID: 35538070 PMCID: PMC9091212 DOI: 10.1038/s41467-022-30105-0] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/19/2022] [Indexed: 02/07/2023] Open
Abstract
Bone metastases occur in 50-70% of patients with late-stage breast cancers and effective therapies are needed. The expression of enhancer of zeste homolog 2 (EZH2) is correlated with breast cancer metastasis, but its function in bone metastasis hasn't been well-explored. Here we report that EZH2 promotes osteolytic metastasis of breast cancer through regulating transforming growth factor beta (TGFβ) signaling. EZH2 induces cancer cell proliferation and osteoclast maturation, whereas EZH2 knockdown decreases bone metastasis incidence and outgrowth in vivo. Mechanistically, EZH2 transcriptionally increases ITGB1, which encodes for integrin β1. Integrin β1 activates focal adhesion kinase (FAK), which phosphorylates TGFβ receptor type I (TGFβRI) at tyrosine 182 to enhance its binding to TGFβ receptor type II (TGFβRII), thereby activating TGFβ signaling. Clinically applicable FAK inhibitors but not EZH2 methyltransferase inhibitors effectively inhibit breast cancer bone metastasis in vivo. Overall, we find that the EZH2-integrin β1-FAK axis cooperates with the TGFβ signaling pathway to promote bone metastasis of breast cancer.
Collapse
|
26
|
Lin HY, Ko CJ, Lo TY, Wu SR, Lan SW, Huang CA, Lin YC, Lin HH, Tu HF, Lee CF, Hsiao PW, Huang HP, Chen MJ, Chang KH, Lee MS. Matriptase-2/NR4A3 axis switches TGF-β action toward suppression of prostate cancer cell invasion, tumor growth, and metastasis. Oncogene 2022; 41:2833-2845. [PMID: 35418692 DOI: 10.1038/s41388-022-02303-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 03/21/2022] [Accepted: 03/29/2022] [Indexed: 11/09/2022]
Abstract
Dysregulation of pericellular proteolysis is strongly implicated in cancer metastasis through alteration of cell invasion and the microenvironment. Matriptase-2 (MT-2) is a membrane-anchored serine protease which can suppress prostate cancer (PCa) cell invasion. In this study, we showed that MT-2 was down-regulated in PCa and could suppress PCa cell motility, tumor growth, and metastasis. Using microarray and biochemical analysis, we found that MT-2 shifted TGF-β action towards its tumor suppressor function by repressing epithelial-to-mesenchymal transition (EMT) and promoting Smad2 phosphorylation and nuclear accumulation to upregulate two TGF-β1 downstream effectors (p21 and PAI-1), culminating in hindrance of PCa cell motility and malignant growth. Mechanistically, MT-2 could dramatically up-regulate the expression of nuclear receptor NR4A3 via iron metabolism in PCa cells. MT-2-induced NR4A3 further coactivated Smad2 to activate p21 and PAI-1 expression. In addition, NR4A3 functioned as a suppressor of PCa and mediated MT-2 signaling to inhibit PCa tumorigenesis and metastasis. These results together indicate that NR4A3 sustains MT-2 signaling to suppress PCa cell invasion, tumor growth, and metastasis, and serves as a contextual factor for the TGF-β/Smad2 signaling pathway in favor of tumor suppression via promoting p21 and PAI-1 expression.
Collapse
Affiliation(s)
- Hsin-Ying Lin
- Department of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan, ROC
| | - Chun-Jung Ko
- Department of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan, ROC
| | - Tzu-Yu Lo
- Department of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan, ROC
| | - Shang-Ru Wu
- Department of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan, ROC
| | - Shao-Wei Lan
- Department of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan, ROC
| | - Chen-An Huang
- Department of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan, ROC
| | - Yi-Chin Lin
- Department of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan, ROC
| | - Hsin-Hsien Lin
- Department of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan, ROC
| | - Hsin-Fang Tu
- Department of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan, ROC
| | - Cheng-Fan Lee
- Department of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan, ROC
| | - Pei-Wen Hsiao
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan, ROC
| | - Hsiang-Po Huang
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan, ROC
| | - Mei-Jou Chen
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei, Taiwan, ROC
| | - Kai-Hsiung Chang
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan, ROC
| | - Ming-Shyue Lee
- Department of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan, ROC.
| |
Collapse
|
27
|
Cosgrove N, Varešlija D, Keelan S, Elangovan A, Atkinson JM, Cocchiglia S, Bane FT, Singh V, Furney S, Hu C, Carter JM, Hart SN, Yadav S, Goetz MP, Hill ADK, Oesterreich S, Lee AV, Couch FJ, Young LS. Mapping molecular subtype specific alterations in breast cancer brain metastases identifies clinically relevant vulnerabilities. Nat Commun 2022; 13:514. [PMID: 35082299 PMCID: PMC8791982 DOI: 10.1038/s41467-022-27987-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 12/20/2021] [Indexed: 02/08/2023] Open
Abstract
The molecular events and transcriptional plasticity driving brain metastasis in clinically relevant breast tumor subtypes has not been determined. Here we comprehensively dissect genomic, transcriptomic and clinical data in patient-matched longitudinal tumor samples, and unravel distinct transcriptional programs enriched in brain metastasis. We report on subtype specific hub genes and functional processes, central to disease-affected networks in brain metastasis. Importantly, in luminal brain metastases we identify homologous recombination deficiency operative in transcriptomic and genomic data with recurrent breast mutational signatures A, F and K, associated with mismatch repair defects, TP53 mutations and homologous recombination deficiency (HRD) respectively. Utilizing PARP inhibition in patient-derived brain metastatic tumor explants we functionally validate HRD as a key vulnerability. Here, we demonstrate a functionally relevant HRD evident at genomic and transcriptomic levels pointing to genomic instability in breast cancer brain metastasis which is of potential translational significance.
Collapse
Affiliation(s)
- Nicola Cosgrove
- grid.4912.e0000 0004 0488 7120Endocrine Oncology Research Group, Department of Surgery, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Damir Varešlija
- grid.4912.e0000 0004 0488 7120Endocrine Oncology Research Group, Department of Surgery, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Stephen Keelan
- grid.4912.e0000 0004 0488 7120Endocrine Oncology Research Group, Department of Surgery, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Ashuvinee Elangovan
- grid.21925.3d0000 0004 1936 9000WCRC, UPMC Hillman Cancer Center, Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA USA
| | - Jennifer M. Atkinson
- grid.21925.3d0000 0004 1936 9000WCRC, UPMC Hillman Cancer Center, Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA USA
| | - Sinéad Cocchiglia
- grid.4912.e0000 0004 0488 7120Endocrine Oncology Research Group, Department of Surgery, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Fiona T. Bane
- grid.4912.e0000 0004 0488 7120Endocrine Oncology Research Group, Department of Surgery, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Vikrant Singh
- grid.4912.e0000 0004 0488 7120Endocrine Oncology Research Group, Department of Surgery, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Simon Furney
- grid.4912.e0000 0004 0488 7120Genomic Oncology Research Group, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Chunling Hu
- grid.66875.3a0000 0004 0459 167XDepartment of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN USA
| | - Jodi M. Carter
- grid.66875.3a0000 0004 0459 167XDepartment of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN USA
| | - Steven N. Hart
- grid.66875.3a0000 0004 0459 167XDepartment of Quantitative Sciences Research, Mayo Clinic, Rochester, MN USA
| | - Siddhartha Yadav
- grid.66875.3a0000 0004 0459 167XDepartment of Oncology, Mayo Clinic, Rochester, MN USA
| | - Matthew P. Goetz
- grid.66875.3a0000 0004 0459 167XDepartment of Oncology, Mayo Clinic, Rochester, MN USA
| | - Arnold D. K. Hill
- grid.4912.e0000 0004 0488 7120Endocrine Oncology Research Group, Department of Surgery, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Steffi Oesterreich
- grid.21925.3d0000 0004 1936 9000WCRC, UPMC Hillman Cancer Center, Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA USA ,grid.21925.3d0000 0004 1936 9000Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA USA
| | - Adrian V. Lee
- grid.21925.3d0000 0004 1936 9000WCRC, UPMC Hillman Cancer Center, Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA USA ,grid.21925.3d0000 0004 1936 9000Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA USA
| | - Fergus J. Couch
- grid.66875.3a0000 0004 0459 167XDepartment of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN USA
| | - Leonie S. Young
- grid.4912.e0000 0004 0488 7120Endocrine Oncology Research Group, Department of Surgery, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| |
Collapse
|
28
|
Huang Y, Chen Z, Lu T, Bi G, Li M, Liang J, Hu Z, Zheng Y, Yin J, Xi J, Lin Z, Zhan C, Jiang W, Wang Q, Tan L. HIF-1α switches the functionality of TGF-β signaling via changing the partners of smads to drive glucose metabolic reprogramming in non-small cell lung cancer. J Exp Clin Cancer Res 2021; 40:398. [PMID: 34930376 PMCID: PMC8690885 DOI: 10.1186/s13046-021-02188-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 11/19/2021] [Indexed: 02/20/2023] Open
Abstract
BACKGROUND Most cancer cells have fundamentally different metabolic characteristics, particularly much higher glycolysis rates than normal tissues, which support the increased demand for biosynthesis and promote tumor progression. We found that transforming growth factor (TGF)-β plays a dual function in regulating glycolysis and cell proliferation in non-small cell lung cancer. METHODS We used the PET/MRI imaging system to observe the glucose metabolism of subcutaneous tumors in nude mice. Energy metabolism of non-small cell lung cancer cell lines detected by the Seahorse XFe96 cell outflow analyzer. Co-immunoprecipitation assays were used to detect the binding of Smads and HIF-1α. Western blotting and qRT-PCR were used to detect the regulatory effects of TGF-β and HIF-1α on c-MYC, PKM1/2, and cell cycle-related genes. RESULTS We discovered that TGF-β could inhibit glycolysis under normoxia while significantly promoting tumor cells' glycolysis under hypoxia in vitro and in vivo. The binding of hypoxia-inducible factor (HIF)-1α to the MH2 domain of phosphorylated Smad3 switched TGF-β function to glycolysis by changing Smad partners under hypoxia. The Smad-p107-E2F4/5 complex that initially inhibited c-Myc expression was transformed into a Smad-HIF-1α complex that promoted the expression of c-Myc. The increased expression of c-Myc promoted alternative splicing of PKM to PKM2, resulting in the metabolic reprogramming of tumor cells. In addition, the TGF-β/Smad signal lost its effect on cell cycle regulatory protein p15/p21. Furthermore, high expression of c-Myc inhibited p15/p21 and promoted the proliferation of tumor cells under hypoxia. CONCLUSIONS Our results indicated that HIF-1α functions as a critical factor in the dual role of TGF-β in tumor cells, and may be used as a biomarker or therapeutic target for TGF-β mediated cancer progression.
Collapse
Affiliation(s)
- Yiwei Huang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, 200032, Shanghai, China
| | - Zhencong Chen
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, 200032, Shanghai, China
| | - Tao Lu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, 200032, Shanghai, China
| | - Guoshu Bi
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, 200032, Shanghai, China
| | - Ming Li
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, 200032, Shanghai, China
| | - Jiaqi Liang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, 200032, Shanghai, China
| | - Zhengyang Hu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, 200032, Shanghai, China
| | - Yuansheng Zheng
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, 200032, Shanghai, China
| | - Jiacheng Yin
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, 200032, Shanghai, China
| | - Junjie Xi
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, 200032, Shanghai, China
| | - Zongwu Lin
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, 200032, Shanghai, China
| | - Cheng Zhan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, 200032, Shanghai, China.
| | - Wei Jiang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, 200032, Shanghai, China.
| | - Qun Wang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, 200032, Shanghai, China
| | - Lijie Tan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, 200032, Shanghai, China
| |
Collapse
|
29
|
Kerkvliet CP, Truong TH, Ostrander JH, Lange CA. Stress sensing within the breast tumor microenvironment: how glucocorticoid receptors live in the moment. Essays Biochem 2021; 65:971-983. [PMID: 34132331 PMCID: PMC8627466 DOI: 10.1042/ebc20200165] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 12/18/2022]
Abstract
The classification and treatment of breast cancer is largely defined by the expression of steroid hormone receptors (HRs), namely estrogen receptor (ER) and progesterone receptor (PR), and gene amplification/overexpression of human epidermal growth factor receptor 2 (HER2). More recently, studies of androgen receptor (AR), glucocorticoid receptor (GR), and mineralocorticoid receptor (MR) have revealed that targeting these related HRs may be a promising strategy for a more personalized approach to the treatment of specific subtypes of HR+ breast cancer. For example, GR expression is associated with a good prognosis in ER+ breast cancer, but predicts poor prognosis in triple-negative breast cancer (TNBC). GR, like ER, PRs, and AR, is a ligand-activated transcription factor, but also has significant ligand-independent signaling activities. GR transcriptional activity is classically regulated by circulating glucocorticoids (GCs; ligand-dependent). Recent studies demonstrate that GR transcriptional activity is also regulated by a variety of cellular stress stimuli that input to GR Ser134 phosphorylation via rapid activation of the p38 mitogen activated protein kinase (MAPK) signaling pathway (ligand-independent). Furthermore, ligand-independent GR activation promotes feedforward signaling loops that mediate sustained activation of stress signaling pathways to drive advanced cancer biology (i.e. migration, invasion, chemoresistance, survival, and cellular growth). In this review, we will focus on the role of GR as a key sensor and mediator of physiologic and tumor microenvironment (TME)-derived cellular stress signaling in TNBC and discuss how targeting GR and/or associated signaling pathways may provide a strategy to inhibit deadly TNBC progression.
Collapse
Affiliation(s)
| | - Thu H. Truong
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, U.S.A
| | - Julie Hanson Ostrander
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, U.S.A
- Department of Medicine (Division of Hematology, Oncology, and Transplantation), University of Minnesota, Minneapolis, MN 55455, U.S.A
| | - Carol A. Lange
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, U.S.A
- Department of Medicine (Division of Hematology, Oncology, and Transplantation), University of Minnesota, Minneapolis, MN 55455, U.S.A
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, U.S.A
| |
Collapse
|
30
|
Labrèche C, Cook DP, Abou-Hamad J, Pascoal J, Pryce BR, Al-Zahrani KN, Sabourin LA. Periostin gene expression in neu-positive breast cancer cells is regulated by a FGFR signaling cross talk with TGFβ/PI3K/AKT pathways. Breast Cancer Res 2021; 23:107. [PMID: 34809697 PMCID: PMC8607680 DOI: 10.1186/s13058-021-01487-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 11/10/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Breast cancer is a highly heterogeneous disease with multiple drivers and complex regulatory networks. Periostin (Postn) is a matricellular protein involved in a plethora of cancer types and other diseases. Postn has been shown to be involved in various processes of tumor development, such as angiogenesis, invasion, cell survival and metastasis. The expression of Postn in breast cancer cells has been correlated with a more aggressive phenotype. Despite extensive research, it remains unclear how epithelial cancer cells regulate Postn expression. METHODS Using murine tumor models and human TMAs, we have assessed the proportion of tumor samples that have acquired Postn expression in tumor cells. Using biochemical approaches and tumor cell lines derived from Neu+ murine primary tumors, we have identified major regulators of Postn gene expression in breast cancer cell lines. RESULTS Here, we show that, while the stromal compartment typically always expresses Postn, about 50% of breast tumors acquire Postn expression in the epithelial tumor cells. Furthermore, using an in vitro model, we show a cross-regulation between FGFR, TGFβ and PI3K/AKT pathways to regulate Postn expression. In HER2-positive murine breast cancer cells, we found that basic FGF can repress Postn expression through a PKC-dependent pathway, while TGFβ can induce Postn expression in a SMAD-independent manner. Postn induction following the removal of the FGF-suppressive signal is dependent on PI3K/AKT signaling. CONCLUSION Overall, these results reveal a novel regulatory mechanism and shed light on how breast tumor cells acquire Postn expression. This complex regulation is likely to be cell type and cancer specific as well as have important therapeutic implications.
Collapse
Affiliation(s)
- Cédrik Labrèche
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, K1H 8L6, ON, UK
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - David P Cook
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, K1H 8L6, ON, UK
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - John Abou-Hamad
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, K1H 8L6, ON, UK
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Julia Pascoal
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, K1H 8L6, ON, UK
| | - Benjamin R Pryce
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, K1H 8L6, ON, UK
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
- Department of Pediatrics, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Khalid N Al-Zahrani
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, K1H 8L6, ON, UK
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
- Lunenfeld-Tanenbaum Research Institute, 600 University Avenue, Toronto, ON, M5G 1X5, Canada
| | - Luc A Sabourin
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, K1H 8L6, ON, UK.
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.
| |
Collapse
|
31
|
Pennington KL, McEwan CM, Woods J, Muir CM, Pramoda Sahankumari AG, Eastmond R, Balasooriya ER, Egbert CM, Kaur S, Heaton T, McCormack KK, Piccolo SR, Kurokawa M, Andersen JL. SGK2, 14-3-3, and HUWE1 Cooperate to Control the Localization, Stability, and Function of the Oncoprotein PTOV1. Mol Cancer Res 2021; 20:231-243. [PMID: 34654719 DOI: 10.1158/1541-7786.mcr-20-1076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 08/20/2021] [Accepted: 10/07/2021] [Indexed: 11/16/2022]
Abstract
PTOV1 is an oncogenic protein, initially identified in prostate cancer, that promotes proliferation, cell motility, and invasiveness. However, the mechanisms that regulate PTOV1 remain unclear. Here, we identify 14-3-3 as a PTOV1 interactor and show that high levels of 14-3-3 expression, like PTOV1, correlate with prostate cancer progression. We discover an SGK2-mediated phosphorylation of PTOV1 at S36, which is required for 14-3-3 binding. Disruption of the PTOV1-14-3-3 interaction results in an accumulation of PTOV1 in the nucleus and a proteasome-dependent reduction in PTOV1 protein levels. We find that loss of 14-3-3 binding leads to an increase in PTOV1 binding to the E3 ubiquitin ligase HUWE1, which promotes proteasomal degradation of PTOV1. Conversely, our data suggest that 14-3-3 stabilizes PTOV1 protein by sequestering PTOV1 in the cytosol and inhibiting its interaction with HUWE1. Finally, our data suggest that stabilization of the 14-3-3-bound form of PTOV1 promotes PTOV1-mediated expression of cJun, which drives cell-cycle progression in cancer. Together, these data provide a mechanism to understand the regulation of the oncoprotein PTOV1. IMPLICATIONS: These findings identify a potentially targetable mechanism that regulates the oncoprotein PTOV1.
Collapse
Affiliation(s)
- Katie L Pennington
- The Fritz B. Burns Cancer Research Laboratory, Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah
| | - Colten M McEwan
- The Fritz B. Burns Cancer Research Laboratory, Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah.
| | - James Woods
- The Fritz B. Burns Cancer Research Laboratory, Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah
| | - Colin M Muir
- The Fritz B. Burns Cancer Research Laboratory, Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah
| | - A G Pramoda Sahankumari
- The Fritz B. Burns Cancer Research Laboratory, Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah
| | - Riley Eastmond
- The Fritz B. Burns Cancer Research Laboratory, Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah
| | - Eranga R Balasooriya
- The Fritz B. Burns Cancer Research Laboratory, Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah
| | - Christina M Egbert
- The Fritz B. Burns Cancer Research Laboratory, Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah
| | - Sandeep Kaur
- Department of Biological Sciences, Kent State University, Kent, Ohio
| | - Tyler Heaton
- Department of Biology, Brigham Young University, Provo, Utah
| | - Katherine K McCormack
- The Fritz B. Burns Cancer Research Laboratory, Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah
| | | | - Manabu Kurokawa
- Department of Biological Sciences, Kent State University, Kent, Ohio
| | - Joshua L Andersen
- The Fritz B. Burns Cancer Research Laboratory, Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah.
| |
Collapse
|
32
|
Immune regulations by 14-3-3: A misty terrain. Immunobiology 2021; 226:152145. [PMID: 34628289 DOI: 10.1016/j.imbio.2021.152145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 09/20/2021] [Accepted: 09/28/2021] [Indexed: 11/22/2022]
Abstract
The 14-3-3 proteins are known for their functions related to the cell cycle and play a prominent role in cancer-related diseases. Recent studies show that 14-3-3 proteins are also regulators of immune responses and are involved in the pathogenesis of autoimmune and infectious diseases. This focused review highlights the significant and recent studies on how 14-3-3 proteins influence innate and adaptive immune responses; specifically, their roles as immunogens and cytokine signaling regulators are discussed. These revelations have added numerous questions to the pre-existing list of challenges, including understanding the 14-3-3 proteins' mechanism of immunogenicity to dissecting the isoform-specific immune regulations.
Collapse
|
33
|
Huang YT, Cheng AC, Tang HC, Huang GC, Cai L, Lin TH, Wu KJ, Tseng PH, Wang GG, Chen WY. USP7 facilitates SMAD3 autoregulation to repress cancer progression in p53-deficient lung cancer. Cell Death Dis 2021; 12:880. [PMID: 34580281 PMCID: PMC8476631 DOI: 10.1038/s41419-021-04176-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/26/2021] [Accepted: 09/15/2021] [Indexed: 12/30/2022]
Abstract
USP7, one of the most abundant ubiquitin-specific proteases (USP), plays multifaceted roles in many cellular events, including oncogenic pathways. Accumulated studies have suggested that USP7, through modulating the MDM2/MDMX-p53 pathway, is a promising target for cancer treatment; however, little is known about the function of USP7 in p53-deficient tumors. Here we report that USP7 regulates the autoregulation of SMAD3, a key regulator of transforming growth factor β (TGFβ) signaling, that represses the cell progression of p53-deficient lung cancer. CRISPR/Cas9-mediated inactivation of USP7 in p53-deficient lung cancer H1299 line resulted in advanced cell proliferation in vitro and in xenograft tumor in vivo. Genome-wide analyses (ChIP-seq and RNA-seq) of USP7 KO H1299 cells reveal a dramatic reduction of SMAD3 autoregulation, including decreased gene expression and blunted function of associated super-enhancer (SE). Furthermore, biochemical assays show that SMAD3 is conjugated by mono-ubiquitin, which negatively regulates the DNA-binding function of SMAD3, in USP7 KO cells. In addition, cell-free and cell-based analyses further demonstrate that the deubiquitinase activity of USP7 mediates the removal of mono-ubiquitin from SMAD3 and facilitates the DNA-binding of SMAD3-SMAD4 dimer at SMAD3 locus, and thus enhance the autoregulation of SMAD3. Collectively, our study identified a novel mechanism by which USP7, through catalyzing the SMAD3 de-monoubiquitination, facilitates the positive autoregulation of SMAD3, and represses the cancer progression of p53-deficient lung cancer.
Collapse
Affiliation(s)
- Yu-Ting Huang
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - An-Chieh Cheng
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Hui-Chi Tang
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Guo-Cheng Huang
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Ling Cai
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Ta-Hsien Lin
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
- Basic Research Division, Medical Research Department, Taipei Veterans General Hospital, Taipei, 112, Taiwan
| | - Kou-Juey Wu
- Cancer Genome Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, 333, Taiwan
| | - Ping-Hui Tseng
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Greg G Wang
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Wei-Yi Chen
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan.
- Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan.
| |
Collapse
|
34
|
Wan D, Zhang Y, Yu Q, Li F, Zhuo J. 14-3-3ζ promoted invasion and lymph node metastasis of breast invasive ductal carcinoma with HER2 overexpression. Pathol Res Pract 2021; 227:153619. [PMID: 34560418 DOI: 10.1016/j.prp.2021.153619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/09/2021] [Accepted: 09/11/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND HER2 was a recognized oncogene that promoted the development and metastasis of breast cancer, but its positive expression rate in invasive ductal carcinoma (IDC) was much lower than that in ductal carcinoma in situ (DCIS). The correlation between the occurrence and development of breast cancer and the amplification and overexpression of HER2 gene alone was still controversial. 14-3-3ζ had a strong protein binding ability and a variety of functions, mainly through the interaction with other proteins to exert its unique biological activities. However, influence and interaction relationship of the two proteins on the development of IDC was not clear. Furthermore, the mutual effect mechanism of synergy effect on lymph node metastasis of IDC was not known well too. METHODS Immunohistochemistry experiment was performed to detect expression status of 14-3-3ζ, HER2, TGF-β, p53 and Gli2 in paraffin-embedded samples respectively, including 30 cases of normal breast tissue, 30 cases of usual ductal hyperplasia (UDH), 30 cases of atypical ductal hyperplasia (ADH), 30 cases of DCIS and 120 cases of IDC. RESULTS The positive expression rates of 14-3-3ζ/HER2 in Normal group, UDH group, ADH group, DCIS group and IDC group were 30%/0.00%, 26.7%/0.00%, 53.3%/33.3%, 46.7%/53.3% and 50%/24.2%, respectively. Compared with Normal group or UDH group, the expression of 14-3-3ζ was significantly increased in ADH, DCIS and IDC groups. 14-3-3ζ was overexpressed in only 4 of the 16 DCIS cases with HER2 overexpression (25.0%, 4/16), but it was overexpressed in 7 of the 9 IDC cases with DCIS (77.8%, 7/9). Among HER2 overexpression cases, 14-3-3ζ overexpression was significantly different between DCIS group and IDC with DCIS group (P = 0.017). In 18 IDC cases with lymph node metastasis and HER2 overexpression, 14-3-3ζ was overexpressed in 15 cases (83.3%, 15/18), while in the 11 IDC cases without lymph node metastasis, 14-3-3ζ and HER2 were overexpressed in only 5 cases (45.5%, 5/11). Co-overexpression of 14-3-3ζ and HER2 was positively correlated with occurrence of lymph node metastasis (P = 0.048). TGF-β was overexpressed in both precancerous lesion group and IDC group compared with normal group. Compared with the IDC group without lymph node metastasis, TGF-β expression was significantly increased in the IDC group with lymph node metastasis (P = 0.015). In IDC cases with 14-3-3ζ and HER2 co-overexpression, the expression of p53 in IDC with lymph node metastasis was significantly decreased (P = 0.010), while the expression of Gli2 was significantly increased compared with IDC cases without lymph node metastasis (P = 0.038). The co-overexpression of 14-3-3ζ and HER2 was positively correlated with ER negative expression (P < 0.001) and PR negative expression (P = 0.038), respectively. CONCLUSION 14-3-3ζ synergistic with HER2 could promote the occurrence and development of breast IDC and induce the lymph node metastasis of IDC, suggesting that combined overexpression of 14-3-3ζ and HER2 would lead to higher invasion and metastasis risk of breast cancer. It was speculated that the combined detection of 14-3-3ζ and HER2 would be one of the key factors affecting the clinical treatment decision and prognosis.
Collapse
Affiliation(s)
- Dan Wan
- Department of Pathology, The First People's Hospital of Zigong, shang yi hao yi zhi lu 42#, Zigong 643099, Sichuan Province, China
| | - Yutao Zhang
- Department of Pathology, The First People's Hospital of Zigong, shang yi hao yi zhi lu 42#, Zigong 643099, Sichuan Province, China.
| | - Qin Yu
- Department of Pathology, The First People's Hospital of Zigong, shang yi hao yi zhi lu 42#, Zigong 643099, Sichuan Province, China
| | - Feng Li
- Department of Pathology, The First People's Hospital of Zigong, shang yi hao yi zhi lu 42#, Zigong 643099, Sichuan Province, China
| | - Junju Zhuo
- Department of Pathology, The First People's Hospital of Zigong, shang yi hao yi zhi lu 42#, Zigong 643099, Sichuan Province, China
| |
Collapse
|
35
|
Sturm G, List M, Zhang JD. Tissue heterogeneity is prevalent in gene expression studies. NAR Genom Bioinform 2021; 3:lqab077. [PMID: 34514392 PMCID: PMC8415427 DOI: 10.1093/nargab/lqab077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 08/01/2021] [Accepted: 08/29/2021] [Indexed: 12/17/2022] Open
Abstract
Lack of reproducibility in gene expression studies is a serious issue being actively addressed by the biomedical research community. Besides established factors such as batch effects and incorrect sample annotations, we recently reported tissue heterogeneity, a consequence of unintended profiling of cells of other origins than the tissue of interest, as a source of variance. Although tissue heterogeneity exacerbates irreproducibility, its prevalence in gene expression data remains unknown. Here, we systematically analyse 2 667 publicly available gene expression datasets covering 76 576 samples. Using two independent data compendia and a reproducible, open-source software pipeline, we find a prevalence of tissue heterogeneity in gene expression data that affects between 1 and 40% of the samples, depending on the tissue type. We discover both cases of severe heterogeneity, which may be caused by mistakes in annotation or sample handling, and cases of moderate heterogeneity, which are likely caused by tissue infiltration or sample contamination. Our analysis establishes tissue heterogeneity as a widespread phenomenon in publicly available gene expression datasets, which constitutes an important source of variance that should not be ignored. Consequently, we advocate the application of quality-control methods such as BioQC to detect tissue heterogeneity prior to mining or analysing gene expression data.
Collapse
Affiliation(s)
- Gregor Sturm
- Biocenter, Institute of Bioinformatics, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Markus List
- Chair of Experimental Bioinformatics, TUM School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| | - Jitao David Zhang
- Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070 Basel, Switzerland
| |
Collapse
|
36
|
Harnessing Carcinoma Cell Plasticity Mediated by TGF-β Signaling. Cancers (Basel) 2021; 13:cancers13143397. [PMID: 34298613 PMCID: PMC8307280 DOI: 10.3390/cancers13143397] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/17/2021] [Accepted: 06/24/2021] [Indexed: 12/22/2022] Open
Abstract
Simple Summary This review describes mechanisms driving epithelial plasticity in carcinoma mediated by transforming growth factor beta (TGF-β) signaling. Plasticity in carcinoma is frequently induced through epithelial–mesenchymal transition (EMT), an evolutionary conserved process in the development of multicellular organisms. The review explores the multifaceted functions of EMT, particularly focusing on the intermediate stages, which provide more adaptive responses of carcinoma cells in their microenvironment. The review critically considers how different intermediate or hybrid EMT stages confer carcinoma cells with stemness, refractoriness to therapies, and ability to execute all steps of the metastatic cascade. Finally, the review provides examples of therapeutic interventions based on the EMT concept. Abstract Epithelial cell plasticity, a hallmark of carcinoma progression, results in local and distant cancer dissemination. Carcinoma cell plasticity can be achieved through epithelial–mesenchymal transition (EMT), with cells positioned seemingly indiscriminately across the spectrum of EMT phenotypes. Different degrees of plasticity are achieved by transcriptional regulation and feedback-loops, which confer carcinoma cells with unique properties of tumor propagation and therapy resistance. Decoding the molecular and cellular basis of EMT in carcinoma should enable the discovery of new therapeutic strategies against cancer. In this review, we discuss the different attributes of plasticity in carcinoma and highlight the role of the canonical TGFβ receptor signaling pathway in the acquisition of plasticity. We emphasize the potential stochasticity of stemness in carcinoma in relation to plasticity and provide data from recent clinical trials that seek to target plasticity.
Collapse
|
37
|
Li S, Huang XT, Wang MY, Chen DP, Li MY, Zhu YY, Yu Y, Zheng L, Qi B, Liu JQ. FSCN1 Promotes Radiation Resistance in Patients With PIK3CA Gene Alteration. Front Oncol 2021; 11:653005. [PMID: 34249689 PMCID: PMC8264437 DOI: 10.3389/fonc.2021.653005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 05/13/2021] [Indexed: 12/15/2022] Open
Abstract
Radiotherapy is one of the standard treatments for cervical cancer and head and neck cancer. However, the clinical efficacy of this treatment is limited by radioresistance. The discovery of effective prognostic biomarkers and the identification of new therapeutic targets have helped to overcome the problem of radioresistance. In this study, we show that in the context of PIK3CA mutation or amplification, high expression of fascin actin-bundling protein 1 (FSCN1) (using the median as the cut-off value) is associated with poor prognosis and radiotherapy response in cancer patients. Silencing FSCN1 enhances radiosensitivity and promotes apoptosis in cancer cells with PIK3CA alterations, and this process may be associated with the downregulation of YWHAZ. These results reveal that FSCN1 may be a key regulator of radioresistance and could be a potential target for improving radiotherapy efficacy in cervical cancer and head and neck cancer patients with PIK3CA alterations.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Bin Qi
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Jin-quan Liu
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
38
|
Zhang L, Yao J, Wei Y, Zhou Z, Li P, Qu J, Badu-Nkansah A, Yuan X, Huang YW, Fukumura K, Mao X, Chang WC, Saunus J, Lakhani S, Huse JT, Hung MC, Yu D. Blocking immunosuppressive neutrophils deters pY696-EZH2-driven brain metastases. Sci Transl Med 2021; 12:12/545/eaaz5387. [PMID: 32461334 DOI: 10.1126/scitranslmed.aaz5387] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 04/15/2020] [Indexed: 12/12/2022]
Abstract
The functions of immune cells in brain metastases are unclear because the brain has traditionally been considered "immune privileged." However, we found that a subgroup of immunosuppressive neutrophils is recruited into the brain, enabling brain metastasis development. In brain metastatic cells, enhancer of zeste homolog 2 (EZH2) is highly expressed and phosphorylated at tyrosine-696 (pY696)-EZH2 by nuclear-localized Src tyrosine kinase. Phosphorylation of EZH2 at Y696 changes its binding preference from histone H3 to RNA polymerase II, which consequently switches EZH2's function from a methyltransferase to a transcription factor that increases c-JUN expression. c-Jun up-regulates protumorigenic inflammatory cytokines, including granulocyte colony-stimulating factor (G-CSF), which recruits Arg1+- and PD-L1+ immunosuppressive neutrophils into the brain to drive metastasis outgrowth. G-CSF-blocking antibodies or immune checkpoint blockade therapies combined with Src inhibitors impeded brain metastasis in multiple mouse models. These findings indicate that pY696-EZH2 can function as a methyltransferase-independent transcription factor to facilitate the brain infiltration of immunosuppressive neutrophils, which could be clinically targeted for brain metastasis treatment.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Jun Yao
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yongkun Wei
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zhifen Zhou
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ping Li
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jingkun Qu
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Akosua Badu-Nkansah
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xiangliang Yuan
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yu-Wen Huang
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.,Center for Molecular Medicine, China Medical University, Taichung 40402, Taiwan
| | - Kazutaka Fukumura
- Department of Pathology and Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xizeng Mao
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Wei-Chao Chang
- Center for Molecular Medicine, China Medical University, Taichung 40402, Taiwan
| | - Jodi Saunus
- Faculty of Medicine, University of Queensland, St Lucia, QLD 4072, Australia
| | - Sunil Lakhani
- Faculty of Medicine, University of Queensland, St Lucia, QLD 4072, Australia.,Pathology Queensland, The Royal Brisbane & Women's Hospital, Herston, QLD 4029, Australia
| | - Jason T Huse
- Department of Pathology and Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mien-Chie Hung
- Center for Molecular Medicine, China Medical University, Taichung 40402, Taiwan
| | - Dihua Yu
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA. .,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA.,Center for Molecular Medicine, China Medical University, Taichung 40402, Taiwan
| |
Collapse
|
39
|
Aloe C, Wang H, Vlahos R, Irving L, Steinfort D, Bozinovski S. Emerging and multifaceted role of neutrophils in lung cancer. Transl Lung Cancer Res 2021; 10:2806-2818. [PMID: 34295679 PMCID: PMC8264329 DOI: 10.21037/tlcr-20-760] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 01/13/2021] [Indexed: 12/20/2022]
Abstract
It has long been recognized that cigarette smoking is a shared risk factor for lung cancer and the debilitating lung disease, chronic obstructive pulmonary disease (COPD). As the severity of COPD increases, so does the risk for developing lung cancer, independently of pack years smoked. Neutrophilic inflammation increases with COPD severity and anti-inflammatories such as non-steroidal anti-inflammatory drugs (NSAIDs) can modulate neutrophil function and cancer risk. This review discusses the biology of tumour associated neutrophils (TANs) in lung cancer, which increase in density with tumour progression, particularly in smokers with non-small cell lung cancer (NSCLC). It is now increasingly recognized that neutrophils are responsive to the tumour microenvironment (TME) and polarize into distinct phenotypes that operate in an anti- (N1) or pro-tumorigenic (N2) manner. Intriguingly, the emergence of the pro-tumorigenic N2 phenotype increases with tumour growth, to suggest that cancer cells and the surrounding stroma can re-educate neutrophils. The neutrophil itself is a potent source of reactive oxygen species (ROS), arginase, proteases and cytokines that paradoxically can exert a potent immunosuppressive effect on lymphocytes including cytotoxic T cells (CTLs). Indeed, the neutrophil to lymphocyte ratio (NLR) is a systemic biomarker that is elevated in lung cancer patients and prognostic for poor survival outcomes. Herein, we review the molecular mechanisms by which neutrophil derived mediators can suppress CTL function. Selective therapeutic strategies designed to suppress pathogenic neutrophils in NSCLC may cooperate with immune checkpoint inhibitors (ICI) to increase CTL killing of cancer cells in the TME.
Collapse
Affiliation(s)
- Christian Aloe
- School of Health & Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Hao Wang
- School of Health & Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Ross Vlahos
- School of Health & Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Louis Irving
- Department of Respiratory Medicine, Royal Melbourne Hospital, Melbourne, Australia
| | - Daniel Steinfort
- Department of Respiratory Medicine, Royal Melbourne Hospital, Melbourne, Australia
| | - Steven Bozinovski
- School of Health & Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| |
Collapse
|
40
|
Zhao R, Liu Y, Wu C, Li M, Wei Y, Niu W, Yang J, Fan S, Xie Y, Li H, Wang W, Zeng Z, Xiong W, Li X, Li G, Zhou M. BRD7 Promotes Cell Proliferation and Tumor Growth Through Stabilization of c-Myc in Colorectal Cancer. Front Cell Dev Biol 2021; 9:659392. [PMID: 34109174 PMCID: PMC8181413 DOI: 10.3389/fcell.2021.659392] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/29/2021] [Indexed: 11/13/2022] Open
Abstract
BRD7 functions as a crucial tumor suppressor in numerous malignancies. However, the effects of BRD7 on colorectal cancer (CRC) progression are still unknown. Here, based on the BRD7 knockout (BRD7-/-) and BRD7 flox/flox (BRD7+/+) mouse models constructed in our previous work, we established an azoxymethane/dextran sodium sulfate (AOM/DSS)-induced mouse model. BRD7+/+ mice were found to be highly susceptible to AOM/DSS-induced colitis-associated CRC, and BRD7 significantly promoted cell proliferation and cell cycle G1/S transition but showed no significant effect on cell apoptosis. Furthermore, BRD7 interacted with c-Myc and stabilized c-Myc by inhibiting its ubiquitin-proteasome-dependent degradation. Moreover, restoring the expression of c-Myc in BRD7-silenced CRC cells restored cell proliferation, cell cycle progression, and tumor growth in vitro and in vivo. In addition, BRD7 and c-Myc were both significantly upregulated in CRC patients, and high expression of these proteins was associated with clinical stage and poor prognosis in CRC patients. Collectively, BRD7 functions as an oncogene and promotes CRC progression by regulating the ubiquitin-proteasome-dependent stabilization of c-Myc protein. Targeting the BRD7/c-Myc axis could be a potential therapeutic strategy for CRC.
Collapse
Affiliation(s)
- Ran Zhao
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, China.,Department of Pathology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Yukun Liu
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, China.,Department of Pathology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Chunchun Wu
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, China
| | - Mengna Li
- Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, China
| | - Yanmei Wei
- Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, China
| | - Weihong Niu
- Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, China
| | - Jing Yang
- Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, China
| | - Songqing Fan
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yong Xie
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Hui Li
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wei Wang
- Department of Pathology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, China
| | - Xiaoling Li
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, China
| | - Guiyuan Li
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, China
| | - Ming Zhou
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, China.,Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| |
Collapse
|
41
|
Wang J, Zhang Y, Xiao Y, Yuan X, Li P, Wang X, Duan Y, Seewaldt VL, Yu D. Boosting immune surveillance by low-dose PI3K inhibitor facilitates early intervention of breast cancer. Am J Cancer Res 2021; 11:2005-2024. [PMID: 34094666 PMCID: PMC8167687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 12/07/2020] [Indexed: 06/12/2023] Open
Abstract
Prevention of estrogen receptor-negative (ER-) breast cancer is an unmet challenge, although tamoxifen and aromatase inhibitors can successfully decrease the incidence of ER-positive (ER+) breast cancer. PI3K pathway activation has been detected in tamoxifen-resistant ER- breast lesions of patients. Here, we further ratified that the PI3K pathway is significantly activated in premalignant ER- breast lesions compared with paired normal tissues of patients, which prompted our assessment of targeting PI3K on inhibition of ER- mammary tumor initiation and progression. Both genetic knockdown of PIK3CA or intervention with low-doses of a PI3K inhibitor (GDC-0941) prevented the dysplasia phenotype of semi-transformed human ER- mammary epithelial cells in 3-dimensional culture in vitro. Importantly, low-dose GDC-0941 treatment significantly delayed mammary tumor initiation in the MMTV-neu mouse model without exhibiting discernable adverse effects. Interestingly, increased CD8+/GZMB+ T-cells were detected in mammary tissue after GDC-0941 treatment, suggesting enhanced immune surveillance. Mechanistically, elevated expression of potent T-cell chemo-attractants, including CCL5 and CXCL10, were detected both in vitro and in vivo after GDC-0941 treatment. Furthermore, inhibition of PI3K significantly increased T-cell recruitment in a CCL5/CXCL10-dependent manner. In human ER- breast cancer, PI3K activation is correlated with significantly reduced CCL5, CXCL10 and CD8A expression, suggesting that the decreased CD8+ T-cell recruitment and escape of immune surveillance may contribute to ER- breast cancer development. In summary, our study indicates that low-dose PI3K inhibitor treatment may intervene early stage ER- breast cancer development by enhancing immune surveillance via CCL5/CXCL10.
Collapse
Affiliation(s)
- Jinyang Wang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer CenterHouston, Texas, USA
- Current address: Department of Pathology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical SciencesGuangzhou, Guangdong, China
| | - Yuan Zhang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer CenterHouston, Texas, USA
| | - Yi Xiao
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer CenterHouston, Texas, USA
| | - Xiangliang Yuan
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer CenterHouston, Texas, USA
| | - Ping Li
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer CenterHouston, Texas, USA
| | - Xiao Wang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer CenterHouston, Texas, USA
| | - Yimin Duan
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer CenterHouston, Texas, USA
| | - Victoria L Seewaldt
- Department of Population Sciences, City of HopeDuarte, California, USA
- Comprehensive Cancer Center, City of HopeDuarte, California, USA
| | - Dihua Yu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer CenterHouston, Texas, USA
- Cancer Biology Program, The University of Texas MD Anderson Cancer Center UT Health Graduate School of Biomedical SciencesHouston, Texas, USA
| |
Collapse
|
42
|
A cytokine in turmoil: Transforming growth factor beta in cancer. Biomed Pharmacother 2021; 139:111657. [PMID: 34243626 DOI: 10.1016/j.biopha.2021.111657] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/09/2021] [Accepted: 04/21/2021] [Indexed: 12/11/2022] Open
Abstract
Cancer remains one of the debilitating health threats to mankind in view of its incurable nature. Many factors are complicit in the initiation, progression and establishment of cancers. Early detection of cancer is the only window of hope that allows for appreciable management and possible limited survival. However, understanding of cancer biology and knowledge of the key factors that interplay at multi-level in the initiation and progression of cancer may hold possible avenues for cancer treatment and management. In particular, dysregulation of growth factor signaling such as that of transforming growth factor beta (TGF-β) and its downstream mediators play key roles in various cancer subtypes. Expanded understanding of the context/cell type-dependent roles of TGF-β and its downstream signaling mediators in cancer may provide leads for cancer pharmacotherapy. Reliable information contained in original articles, reviews, mini-reviews and expert opinions on TGF-β, cancer and the specific roles of TGF-β signaling in various cancer subtypes were retrieved from major scientific data bases including PubMed, Scopus, Medline, Web of Science core collections just to mention but a sample by using the following search terms: TGF-β in cancer, TGF-β and colorectal cancer, TGF-β and brain cancer, TGF-β in cancer initiation, TGF-β and cell proliferation, TGF-β and cell invasion, and TGF-β-based cancer therapy. Retrieved information and reports were carefully examined, contextualized and synchronized into a coherent scientific content to highlight the multiple roles of TGF-β signaling in normal and cancerous cells. From a conceptual standpoint, development of pharmacologically active agents that exert non-specific inhibitory effects on TGF-β signaling on various cell types will undoubtedly lead to a plethora of serious side effects in view of the multi-functionality and pleiotropic nature of TGF-β. Such non-specific targeting of TGF-β could derail any beneficial therapeutic intention associated with TGF-β-based therapy. However, development of pharmacologically active agents designed specifically to target TGF-β signaling in cancer cells may improve cancer pharmacotherapy. Similarly, specific targeting of downstream mediators of TGF-β such as TGF-β type 1 and II receptors (TβRI and TβRII), receptor-mediated Smads, mitogen activated protein kinase (MAPK) and importing proteins in cancer cells may be crucial for cancer pharmacotherapy.
Collapse
|
43
|
Zhou Q, Chen W, Fan Z, Chen Z, Liang J, Zeng G, Liu L, Liu W, Yang T, Cao X, Yu B, Xu M, Chen YG, Chen L. Targeting hyperactive TGFBR2 for treating MYOCD deficient lung cancer. Theranostics 2021; 11:6592-6606. [PMID: 33995678 PMCID: PMC8120205 DOI: 10.7150/thno.59816] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/23/2021] [Indexed: 01/16/2023] Open
Abstract
Purpose: Clinical success of cancer therapy is severely limited by drug resistance, attributed in large part to the loss of function of tumor suppressor genes (TSGs). Developing effective strategies to treat those tumors is challenging, but urgently needed in clinic. Experimental Design: MYOCD is a clinically relevant TSG in lung cancer patients. Our in vitro and in vivo data confirm its tumor suppressive function. Further analysis reveals that MYOCD potently inhibits stemness of lung cancer stem cells. Mechanistically, MYOCD localizes to TGFBR2 promoter region and thereby recruits PRMT5/MEP50 complex to epigenetically silence its transcription. Conclusions: NSCLC cells deficient of MYOCD are particularly sensitive to TGFBR kinase inhibitor (TGFBRi). TGFBRi and stemness inhibitor synergize with existing drugs to treat MYOCD deficient lung cancers. Our current work shows that loss of function of MYOCD creates Achilles' heels in lung cancer cells, which might be exploited in clinic.
Collapse
|
44
|
Kurnit KC, Draisey A, Kazen RC, Chung C, Phan LH, Harvey JB, Feng J, Xie S, Broaddus RR, Bowser JL. Loss of CD73 shifts transforming growth factor-β1 (TGF-β1) from tumor suppressor to promoter in endometrial cancer. Cancer Lett 2021; 505:75-86. [PMID: 33609609 PMCID: PMC9812391 DOI: 10.1016/j.canlet.2021.01.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 01/20/2021] [Accepted: 01/31/2021] [Indexed: 01/07/2023]
Abstract
In many tumors, CD73 (NT5E), a rate-limiting enzyme in adenosine biosynthesis, is upregulated by TGF-β and drives tumor progression. Conversely, CD73 is downregulated in endometrial carcinomas (EC) despite a TGF-β-rich environment. Through gene expression analyses of normal endometrium samples of the uterine cancer TCGA data set and genetic and pharmacological studies, we discovered CD73 loss shifts TGF-β1 from tumor suppressor to promoter in EC. TGF-β1 upregulated CD73 and epithelial integrity in vivo in the normal endometrium and in vitro in early stage EC cells. With loss of CD73, TGF-β1-mediated epithelial integrity was abrogated. EC cells developed TGF-β1-mediated stress fibers and macromolecule permeability, migration, and invasion increased. In human tumors, CD73 is downregulated in deeply invasive stage I EC. Consistent with shifting TGF-β1 activity, CD73 loss increased TGF-β1-mediated canonical signaling and upregulated cyclin D1 (CCND1) and downregulated p21 expression. This shift was clinically relevant, as CD73Low/CCND1High expression associated with poor tumor differentiation, increased myometrial and lymphatic/vascular space invasion, and patient death. Further loss of CD73 in CD73Low expressing advanced stage EC cells increased TGF-β-mediated stress fibers, signaling, and invasiveness, whereby adenosine A1 receptor agonist, CPA, dampened TGF-β-mediated invasion. These data identify CD73 loss as essential for shifting TGF-β activity in EC.
Collapse
Affiliation(s)
- Katherine C Kurnit
- Department of Obstetrics and Gynecology, Section of Gynecologic Oncology, University of Chicago, Chicago, IL, USA
| | - Ashley Draisey
- University of Northern Iowa, Cedar Falls, IA, USA; CPRIT/CURE Summer Research Experience, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rebecca C Kazen
- University of Colorado at Boulder, Boulder, CO, USA; CPRIT/CURE Summer Research Experience, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Christine Chung
- Department of Gynecologic Oncology and Reproductive Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Luan H Phan
- University of Texas McGovern Medical School, Houston, TX, USA
| | | | - Jiping Feng
- Department of Gynecologic Oncology and Reproductive Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - SuSu Xie
- Department of Pathology and Laboratory Medicine, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Russell R Broaddus
- Department of Pathology and Laboratory Medicine, University of North Carolina School of Medicine, Chapel Hill, NC, USA; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Jessica L Bowser
- Department of Pathology and Laboratory Medicine, University of North Carolina School of Medicine, Chapel Hill, NC, USA; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
45
|
Salcedo EC, Winter MB, Khuri N, Knudsen GM, Sali A, Craik CS. Global Protease Activity Profiling Identifies HER2-Driven Proteolysis in Breast Cancer. ACS Chem Biol 2021; 16:712-723. [PMID: 33765766 DOI: 10.1021/acschembio.0c01000] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Differential expression of extracellular proteases and endogenous protease inhibitors has been associated with distinct molecular subtypes of breast cancer. However, due to the tight post-translational regulation of protease activity, protease expression-level data alone are not sufficient to understand the role of proteases in malignant transformation. Therefore, we hypothesized that global profiles of extracellular protease activity could more completely reflect differences observed at the transcriptional level in breast cancer and that subtype-associated protease activity may be leveraged to identify specific proteases that play a functional role in cancer signaling. Here, we used a global peptide library-based approach to profile the activities of proteases within distinct breast cancer subtypes. Analysis of 3651 total peptide cleavages from a panel of well-characterized breast cancer cell lines demonstrated differences in proteolytic signatures between cell lines. Cell line clustering based on protease cleavages within the peptide library expanded upon the expected classification derived from transcriptional profiling. An isogenic cell line model developed to further interrogate proteolysis in the HER2 subtype revealed a proteolytic signature consistent with activation of TGF-β signaling. Specifically, we determined that a metalloprotease involved in TGF-β signaling, BMP1, was upregulated at both the protein (2-fold, P = 0.001) and activity (P = 0.0599) levels. Inhibition of BMP1 and HER2 suppressed invasion of HER2-expressing cells by 35% (P < 0.0001), compared to 15% (P = 0.0086) observed in cells where only HER2 was inhibited. In summary, through global identification of extracellular proteolysis in breast cancer cell lines, we demonstrate subtype-specific differences in protease activity and elucidate proteolysis associated with HER2-mediated signaling.
Collapse
|
46
|
Cui X, Han L, Liu Y, Li Y, Sun W, Song B, Zhou W, Zhang Y, Wang H. siGCD: a web server to explore survival interaction of genes, cells and drugs in human cancers. Brief Bioinform 2021; 22:6210070. [PMID: 33822887 DOI: 10.1093/bib/bbab058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/19/2021] [Accepted: 02/12/2021] [Indexed: 11/13/2022] Open
Abstract
It is pivotal and remains challenge for cancer precision treatment to identify the survival outcome interactions between genes, cells and drugs. Here, we present siGCD, a web-based tool for analysis and visualization of the survival interaction of Genes, Cells and Drugs in human cancers. siGCD utilizes the cancer heterogeneity to simulate the manipulated gene expression, cell infiltration and drug treatment, which overcomes the data and experimental limitations. To illustrate the performance of siGCD, we identified the survival interaction partners of EGFR (gene level), T cells (cell level) and sorafenib (drug level), and our prediction was consistent with previous reports. Moreover, we validate the synergistic effect of regorafenib and glyburide, and found that glyburide could significantly improve the regorafenib response. These results demonstrate that siGCD could benefit cancer precision medicine in a wide range of advantageous application scenarios including gene regulatory network construction, immune cell regulatory gene identification, drug (especially multiple target drugs) response biomarker screening and combination therapeutic design.
Collapse
Affiliation(s)
- XiuLiang Cui
- National Center for Liver Cancer, the Second Military Medical University, Shanghai 200438, China
| | - Lu Han
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing China
| | - Yang Liu
- Institute for Hepatology, The Second Affiliated Hospital, South University of Science and Technology, 29 Bulan Road, Longgang District, Shenzhen 518112, China
| | - Ying Li
- Department of Pharmacy, Eastern Hepatobiliary Surgery Hospital, the Second Military Medical University, Shanghai 200438, China
| | - Wen Sun
- National Center for Liver Cancer, the Second Military Medical University, Shanghai 200438, China
| | - Bin Song
- Department of Pancreatic Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200438, China
| | - Wenxia Zhou
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing China
| | - Yongxiang Zhang
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing China
| | - Hongyang Wang
- National Center for Liver Cancer, the Second Military Medical University, Shanghai 200438, China.,International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital/Institute, the Second Military Medical University, 200438, Shanghai, China
| |
Collapse
|
47
|
Ferraro GB, Ali A, Luengo A, Kodack DP, Deik A, Abbott KL, Bezwada D, Blanc L, Prideaux B, Jin X, Posada JM, Chen J, Chin CR, Amoozgar Z, Ferreira R, Chen IX, Naxerova K, Ng C, Westermark AM, Duquette M, Roberge S, Lindeman NI, Lyssiotis CA, Nielsen J, Housman DE, Duda DG, Brachtel E, Golub TR, Cantley LC, Asara JM, Davidson SM, Fukumura D, Dartois VA, Clish CB, Jain RK, Vander Heiden MG. FATTY ACID SYNTHESIS IS REQUIRED FOR BREAST CANCER BRAIN METASTASIS. NATURE CANCER 2021; 2:414-428. [PMID: 34179825 PMCID: PMC8223728 DOI: 10.1038/s43018-021-00183-y] [Citation(s) in RCA: 181] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 02/08/2021] [Indexed: 02/01/2023]
Abstract
Brain metastases are refractory to therapies that control systemic disease in patients with human epidermal growth factor receptor 2 (HER2+) breast cancer, and the brain microenvironment contributes to this therapy resistance. Nutrient availability can vary across tissues, therefore metabolic adaptations required for brain metastatic breast cancer growth may introduce liabilities that can be exploited for therapy. Here, we assessed how metabolism differs between breast tumors in brain versus extracranial sites and found that fatty acid synthesis is elevated in breast tumors growing in brain. We determine that this phenotype is an adaptation to decreased lipid availability in brain relative to other tissues, resulting in a site-specific dependency on fatty acid synthesis for breast tumors growing at this site. Genetic or pharmacological inhibition of fatty acid synthase (FASN) reduces HER2+ breast tumor growth in the brain, demonstrating that differences in nutrient availability across metastatic sites can result in targetable metabolic dependencies.
Collapse
Affiliation(s)
- Gino B Ferraro
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ahmed Ali
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | - Alba Luengo
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - David P Kodack
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Amy Deik
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | - Keene L Abbott
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Divya Bezwada
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Landry Blanc
- The Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ, USA
- Institut de Chimie & Biologie des Membranes & des Nano-objets, CNRS UMR 5248, Bordeaux, France
| | - Brendan Prideaux
- The Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ, USA
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch, Galveston, TX, USA
| | - Xin Jin
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | - Jessica M Posada
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Jiang Chen
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Christopher R Chin
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Zohreh Amoozgar
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Raphael Ferreira
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Ivy X Chen
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Kamila Naxerova
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Christopher Ng
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Anna M Westermark
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Mark Duquette
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Sylvie Roberge
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Neal I Lindeman
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Costas A Lyssiotis
- Division of Signal Transduction, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- University of Michigan, Ann Arbor, MI, USA
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - David E Housman
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Dan G Duda
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Elena Brachtel
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Todd R Golub
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | - Lewis C Cantley
- Division of Signal Transduction, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Weill Cornell Medicine and New York Presbyterian Hospital, New York, NY, USA
| | - John M Asara
- Division of Signal Transduction, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Shawn M Davidson
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Lewis Sigler Institute, Princeton University, Princeton, NJ, USA
| | - Dai Fukumura
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Véronique A Dartois
- The Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ, USA
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA
| | - Clary B Clish
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | - Rakesh K Jain
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| | - Matthew G Vander Heiden
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Dana-Farber Cancer Institute, Boston, MA, USA.
| |
Collapse
|
48
|
Esposito M, Fang C, Cook KC, Park N, Wei Y, Spadazzi C, Bracha D, Gunaratna RT, Laevsky G, DeCoste CJ, Slabodkin H, Brangwynne CP, Cristea IM, Kang Y. TGF-β-induced DACT1 biomolecular condensates repress Wnt signalling to promote bone metastasis. Nat Cell Biol 2021; 23:257-267. [PMID: 33723425 PMCID: PMC7970447 DOI: 10.1038/s41556-021-00641-w] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 01/26/2021] [Indexed: 02/07/2023]
Abstract
The complexity of intracellular signalling requires both a diversity of molecular players and the sequestration of activity to unique compartments within the cell. Recent findings on the role of liquid-liquid phase separation provide a distinct mechanism for the spatial segregation of proteins to regulate signalling pathway crosstalk. Here, we discover that DACT1 is induced by TGFβ and forms protein condensates in the cytoplasm to repress Wnt signalling. These condensates do not localize to any known organelles but, rather, exist as phase-separated proteinaceous cytoplasmic bodies. The deletion of intrinsically disordered domains within the DACT1 protein eliminates its ability to both form protein condensates and suppress Wnt signalling. Isolation and mass spectrometry analysis of these particles revealed a complex of protein machinery that sequesters casein kinase 2-a Wnt pathway activator. We further demonstrate that DACT1 condensates are maintained in vivo and that DACT1 is critical to breast and prostate cancer bone metastasis.
Collapse
Affiliation(s)
- Mark Esposito
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Cao Fang
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Katelyn C Cook
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Nana Park
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Yong Wei
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Chiara Spadazzi
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Dan Bracha
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | - Ramesh T Gunaratna
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Gary Laevsky
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | | | - Hannah Slabodkin
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Clifford P Brangwynne
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
- Howard Hughes Medical Institute, Princeton University, Princeton, NJ, USA
| | - Ileana M Cristea
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Yibin Kang
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
- Ludwig Institute for Cancer Research, Princeton University, Princeton, NJ, USA.
- Cancer Metabolism and Growth Program, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA.
| |
Collapse
|
49
|
Wei KL, Chou JL, Chen YC, Low JT, Lin GL, Liu JL, Chang TS, Chen WM, Hsieh YY, Yan PS, Chuang YM, Lin JMJ, Wu SF, Chiang MK, Li C, Wu CS, Chan MWY. Epigenetic Silencing of STAT3-Targeted miR-193a, by Constitutive Activation of JAK/STAT Signaling, Leads to Tumor Progression Through Overexpression of YWHAZ in Gastric Cancer. Front Oncol 2021; 11:575667. [PMID: 33718136 PMCID: PMC7951088 DOI: 10.3389/fonc.2021.575667] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 01/18/2021] [Indexed: 12/13/2022] Open
Abstract
Purpose The purpose of this study was to identify genes that were epigenetically silenced by STAT3 in gastric cancer. Methods MBDcap-Seq and expression microarray were performed to identify genes that were epigenetically silenced in AGS gastric cancer cell lines depleted of STAT3. Cell lines and animal experiments were performed to investigate proliferation and metastasis of miR-193a and YWHAZ in gastric cancer cell lines. Bisulfite pyrosequencing and tissue microarray were performed to investigate the promoter methylation of miR-193a and expression of STAT3, YWHAZ in patients with gastritis (n = 8) and gastric cancer (n = 71). Quantitative methylation-specific PCR was performed to examine miR-193a promoter methylation in cell-free DNA of serum samples in gastric cancer patients (n = 19). Results As compared with parental cells, depletion of STAT3 resulted in demethylation of a putative STAT3 target, miR-193a, in AGS gastric cancer cells. Although bisulfite pyrosequencing and epigenetic treatment confirmed that miR-193a was epigenetically silenced in gastric cancer cell lines, ChIP-PCR found that it may be indirectly affected by STAT3. Ectopic expression of miR-193a in AGS cells inhibited proliferation and migration of gastric cancer cells. Further expression microarray and bioinformatics analysis identified YWHAZ as one of the target of miR-193a in AGS gastric cancer cells, such that depletion of YWHAZ reduced migration in AGS cells, while its overexpression increased invasion in MKN45 cells in vitro and in vivo. Clinically, bisulfite pyrosequencing revealed that promoter methylation of miR-193a was significantly higher in human gastric cancer tissues (n = 11) as compared to gastritis (n = 8, p < 0.05). Patients infected with H. pylori showed a significantly higher miR-193a methylation than those without H. pylori infection (p < 0.05). Tissue microarray also showed a positive trend between STAT3 and YWHAZ expression in gastric cancer patients (n = 60). Patients with serum miR-193a methylation was associated with shorter overall survival than those without methylation (p < 0.05). Conclusions Constitutive activation of JAK/STAT signaling may confer epigenetic silencing of the STAT3 indirect target and tumor suppressor microRNA, miR-193a in gastric cancer. Transcriptional suppression of miR-193a may led to overexpression of YWHAZ resulting in tumor progression. Targeted inhibition of STAT3 may be a novel therapeutic strategy against gastric cancer.
Collapse
Affiliation(s)
- Kuo-Liang Wei
- Division of Gastroenterology, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Jian-Liang Chou
- Division of Gastroenterology, Chang Gung Memorial Hospital, Chiayi, Taiwan.,Department of Biomedical Sciences, National Chung Cheng University, Chiayi, Taiwan.,Instrument Center, Department of Research and Development, National Defense Medical Center, Taipei, Taiwan
| | - Yin-Chen Chen
- Division of Gastroenterology, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Jie-Ting Low
- Division of Gastroenterology, Chang Gung Memorial Hospital, Chiayi, Taiwan.,Department of Biomedical Sciences, National Chung Cheng University, Chiayi, Taiwan
| | - Guan-Ling Lin
- Department of Biomedical Sciences, National Chung Cheng University, Chiayi, Taiwan
| | - Jing-Lan Liu
- Department of Anatomical Pathology, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Te-Sheng Chang
- Division of Gastroenterology, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Wei-Ming Chen
- Division of Gastroenterology, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Yung-Yu Hsieh
- Division of Gastroenterology, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Pearlly S Yan
- Division of Hematology, Department of Internal Medicine, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Yu-Ming Chuang
- Department of Biomedical Sciences, National Chung Cheng University, Chiayi, Taiwan
| | - Jora M J Lin
- Department of Biomedical Sciences, National Chung Cheng University, Chiayi, Taiwan
| | - Shu-Fen Wu
- Department of Biomedical Sciences, National Chung Cheng University, Chiayi, Taiwan.,Epigenomics and Human Disease Research Center, National Chung Cheng University, Chiayi, Taiwan
| | - Ming-Ko Chiang
- Department of Biomedical Sciences, National Chung Cheng University, Chiayi, Taiwan
| | - Chin Li
- Department of Biomedical Sciences, National Chung Cheng University, Chiayi, Taiwan.,Epigenomics and Human Disease Research Center, National Chung Cheng University, Chiayi, Taiwan
| | - Cheng-Shyong Wu
- Division of Gastroenterology, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Michael W Y Chan
- Department of Biomedical Sciences, National Chung Cheng University, Chiayi, Taiwan.,Epigenomics and Human Disease Research Center, National Chung Cheng University, Chiayi, Taiwan.,Center for Innovative Research on Aging Society (CIRAS), National Chung Cheng University, Chiayi, Taiwan
| |
Collapse
|
50
|
YWHAE/14-3-3ε expression impacts the protein load, contributing to proteasome inhibitor sensitivity in multiple myeloma. Blood 2021; 136:468-479. [PMID: 32187357 DOI: 10.1182/blood.2019004147] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 03/04/2020] [Indexed: 02/05/2023] Open
Abstract
High protein load is a feature of multiple myeloma (MM), making the disease exquisitely sensitive to proteasome inhibitor (PIs). Despite the success of PIs in improving patient outcome, the majority of patients develop resistance leading to progressive disease; thus, the need to investigate the mechanisms driving the drug sensitivity vs resistance. With the well-recognized chaperone function of 14-3-3 proteins, we evaluated their role in affecting proteasome activity and sensitivity to PIs by correlating expression of individual 14-3-3 gene and their sensitivity to PIs (bortezomib and carfilzomib) across a large panel of MM cell lines. We observed a significant positive correlation between 14-3-3ε expression and PI response in addition to a role for 14-3-3ε in promoting translation initiation and protein synthesis in MM cells through binding and inhibition of the TSC1/TSC2 complex, as well as directly interacting with and promoting phosphorylation of mTORC1. 14-3-3ε depletion caused up to a 50% reduction in protein synthesis, including a decrease in the intracellular abundance and secretion of the light chains in MM cells, whereas 14-3-3ε overexpression or addback in knockout cells resulted in a marked upregulation of protein synthesis and protein load. Importantly, the correlation among 14-3-3ε expression, PI sensitivity, and protein load was observed in primary MM cells from 2 independent data sets, and its lower expression was associated with poor outcome in patients with MM receiving a bortezomib-based therapy. Altogether, these observations suggest that 14-3-3ε is a predictor of clinical outcome and may serve as a potential target to modulate PI sensitivity in MM.
Collapse
|