1
|
Zhou X, Zhang L, Aryal S, Veasey V, Tajik A, Restelli C, Moreira S, Zhang P, Zhang Y, Hope KJ, Zhou Y, Cheng C, Bhatia R, Lu R. Epigenetic regulation of noncanonical menin targets modulates menin inhibitor response in acute myeloid leukemia. Blood 2024; 144:2018-2032. [PMID: 39158067 DOI: 10.1182/blood.2023023644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 07/23/2024] [Accepted: 07/23/2024] [Indexed: 08/20/2024] Open
Abstract
ABSTRACT Menin inhibitors that disrupt the menin-MLL interaction hold promise for treating specific acute myeloid leukemia (AML) subtypes, including those with KMT2A rearrangements (KMT2A-r), yet resistance remains a challenge. Here, through systematic chromatin-focused CRISPR screens, along with genetic, epigenetic, and pharmacologic studies in a variety of human and mouse KMT2A-r AML models, we uncovered a potential resistance mechanism independent of canonical menin-MLL targets. We show that a group of noncanonical menin targets, which are bivalently cooccupied by active menin and repressive H2AK119ub marks, are typically downregulated after menin inhibition. Loss of polycomb repressive complex 1.1 (PRC1.1) subunits, such as polycomb group ring finger 1 (PCGF1) or BCL6 corepressor (BCOR), leads to menin inhibitor resistance by epigenetic reactivation of these noncanonical targets, including MYC. Genetic and pharmacological inhibition of MYC can resensitize PRC1.1-deficient leukemia cells to menin inhibition. Moreover, we demonstrate that leukemia cells with the loss of PRC1.1 subunits exhibit reduced monocytic gene signatures and are susceptible to BCL2 inhibition, and that combinational treatment with venetoclax overcomes the resistance to menin inhibition in PRC1.1-deficient leukemia cells. These findings highlight the important roles of PRC1.1 and its regulated noncanonical menin targets in modulating the menin inhibitor response and provide potential strategies to treat leukemia with compromised PRC1.1 function.
Collapse
MESH Headings
- Humans
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Epigenesis, Genetic/drug effects
- Mice
- Animals
- Gene Expression Regulation, Leukemic/drug effects
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Cell Line, Tumor
- Polycomb Repressive Complex 1/genetics
- Polycomb Repressive Complex 1/metabolism
- Polycomb Repressive Complex 1/antagonists & inhibitors
- Sulfonamides/pharmacology
- Myeloid-Lymphoid Leukemia Protein/genetics
- Myeloid-Lymphoid Leukemia Protein/metabolism
- Bridged Bicyclo Compounds, Heterocyclic/pharmacology
- Histone-Lysine N-Methyltransferase/genetics
- Histone-Lysine N-Methyltransferase/metabolism
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- Antineoplastic Agents/pharmacology
Collapse
Affiliation(s)
- Xinyue Zhou
- Division of Hematology/Oncology, Department of Medicine, The University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL
- O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL
| | - Lixia Zhang
- Division of Hematology/Oncology, Department of Medicine, The University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL
- O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Sajesan Aryal
- Division of Hematology/Oncology, Department of Medicine, The University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL
- O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL
| | - Virginia Veasey
- Division of Hematology/Oncology, Department of Medicine, The University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL
- O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL
| | - Amanda Tajik
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Cecilia Restelli
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Steven Moreira
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Pengcheng Zhang
- Division of Hematology/Oncology, Department of Medicine, The University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL
- O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL
| | - Yanfeng Zhang
- O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL
- Department of Genetics, The University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL
| | - Kristin J Hope
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Yang Zhou
- Department of Biomedical Engineering, School of Medicine and School of Engineering, The University of Alabama at Birmingham, Birmingham, AL
| | - Changde Cheng
- Division of Hematology/Oncology, Department of Medicine, The University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL
- O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL
| | - Ravi Bhatia
- Division of Hematology/Oncology, Department of Medicine, The University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL
- O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL
| | - Rui Lu
- Division of Hematology/Oncology, Department of Medicine, The University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL
- O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL
| |
Collapse
|
2
|
Zhu W, Ding Y, Huang W, Guo N, Ren Q, Wang N, Ma X. Synergistic effects of the KDM4C inhibitor SD70 and the menin inhibitor MI-503 against MLL::AF9-driven acute myeloid leukaemia. Br J Haematol 2024; 205:568-579. [PMID: 38877874 DOI: 10.1111/bjh.19591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 05/30/2024] [Indexed: 08/10/2024]
Abstract
MLL-rearranged (MLL-r) leukaemia is observed in approximately 10% of acute myeloid leukaemia (AML) and is associated with a relatively poor prognosis, highlighting the need for new treatment regimens. MLL fusion proteins produced by MLL rearrangements recruit KDM4C to mediate epigenetic reprogramming, which is required for the maintenance of MLL-r leukaemia. In this study, we used a combinatorial drug screen to selectively identify synergistic treatment partners for the KDM4C inhibitor SD70. The results showed that the drug combination of SD70 and MI-503, a potent menin-MLL inhibitor, induced synergistically enhanced apoptosis in MLL::AF9 leukaemia cells without affecting normal CD34+ cells. In vivo treatment with SD70 and MI-503 significantly prolonged survival in AML xenograft models. Differential gene expression analysis by RNA-seq following combined pharmacological inhibition of SD70 and MI-503 revealed changes in numerous genes, with MYC target genes being the most significantly downregulated. Taken together, these data provide preclinical evidence that the combination of SD70 and MI-503 is a potential dual-targeted therapy for MLL::AF9 AML.
Collapse
Affiliation(s)
- Wenqi Zhu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China
| | - Yiyi Ding
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China
| | - Wanling Huang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China
| | - Nini Guo
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China
| | - Qian Ren
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China
| | - Nan Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China
| | - Xiaotong Ma
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China
| |
Collapse
|
3
|
Najar MA, Beyer JN, Crawford CEW, Burslem GM. The Interplay of Acetylation and Ubiquitination Controls PRMT1 Homeostasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.18.599616. [PMID: 38948822 PMCID: PMC11213003 DOI: 10.1101/2024.06.18.599616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
PRMT1 plays many important roles in both normal and disease biology, thus understanding it's regulation is crucial. Herein, we report the role of p300-mediated acetylation at K228 in triggering PRMT1 degradation through FBXL17-mediated ubiquitination. Utilizing mass-spectrometry, cellular biochemistry, and genetic code-expansion technologies, we elucidate a crucial mechanism independent of PRMT1 transcript levels. These results underscore the significance of acetylation in governing protein stability and expand our understanding of PRMT1 homeostasis. By detailing the molecular interplay between acetylation and ubiquitination involved in PRMT1 degradation, this work contributes to broader efforts in deciphering post-translational mechanisms that influence protein homeostasis.
Collapse
|
4
|
Zhang Y, Xu M, Yuan J, Hu Z, Jiang J, Huang J, Wang B, Shen J, Long M, Fan Y, Montone KT, Tanyi JL, Tavana O, Chan HM, Hu X, Zhang L. Repression of PRMT activities sensitize homologous recombination-proficient ovarian and breast cancer cells to PARP inhibitor treatment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.21.595159. [PMID: 38826355 PMCID: PMC11142138 DOI: 10.1101/2024.05.21.595159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
An "induced PARP inhibitor (PARPi) sensitivity by epigenetic modulation" strategy is being evaluated in the clinic to sensitize homologous recombination (HR)-proficient tumors to PARPi treatments. To expand its clinical applications and identify more efficient combinations, we performed a drug screen by combining PARPi with 74 well-characterized epigenetic modulators that target five major classes of epigenetic enzymes. Both type I PRMT inhibitor and PRMT5 inhibitor exhibit high combination and clinical priority scores in our screen. PRMT inhibition significantly enhances PARPi treatment-induced DNA damage in HR-proficient ovarian and breast cancer cells. Mechanistically, PRMTs maintain the expression of genes associated with DNA damage repair and BRCAness and regulate intrinsic innate immune pathways in cancer cells. Analyzing large-scale genomic and functional profiles from TCGA and DepMap further confirms that PRMT1, PRMT4, and PRMT5 are potential therapeutic targets in oncology. Finally, PRMT1 and PRMT5 inhibition act synergistically to enhance PARPi sensitivity. Our studies provide a strong rationale for the clinical application of a combination of PRMT and PARP inhibitors in patients with HR-proficient ovarian or breast cancer.
Collapse
Affiliation(s)
- Youyou Zhang
- Center for Research on Reproduction & Women's Health, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
- Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - Mu Xu
- Center for Research on Reproduction & Women's Health, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - Jiao Yuan
- Center for Research on Reproduction & Women's Health, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - Zhongyi Hu
- Center for Research on Reproduction & Women's Health, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - Junjie Jiang
- Center for Research on Reproduction & Women's Health, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - Jie Huang
- Center for Research on Reproduction & Women's Health, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - Bingwei Wang
- Center for Research on Reproduction & Women's Health, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - Jianfeng Shen
- Center for Research on Reproduction & Women's Health, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - Meixiao Long
- Division of Hematology, Department of Internal Medicine, Ohio State University, Columbus, Ohio, 43210, USA
| | - Yi Fan
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - Kathleen T Montone
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - Janos L Tanyi
- Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
- Center for Gynecologic Cancer Immunotherapies, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - Omid Tavana
- Bioscience, Research and Early Development, Oncology R&D, AstraZeneca, Waltham, Massachusetts, 02451, USA
| | - Ho Man Chan
- Bioscience, Research and Early Development, Oncology R&D, AstraZeneca, Waltham, Massachusetts, 02451, USA
| | - Xiaowen Hu
- Center for Research on Reproduction & Women's Health, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
- Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - Lin Zhang
- Center for Research on Reproduction & Women's Health, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
- Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
- Center for Gynecologic Cancer Immunotherapies, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| |
Collapse
|
5
|
Gunn K, Losman JA. Isocitrate Dehydrogenase Mutations in Cancer: Mechanisms of Transformation and Metabolic Liability. Cold Spring Harb Perspect Med 2024; 14:a041537. [PMID: 38191174 PMCID: PMC11065172 DOI: 10.1101/cshperspect.a041537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2) are metabolic enzymes that interconvert isocitrate and 2-oxoglutarate (2OG). Gain-of-function mutations in IDH1 and IDH2 occur in a number of cancers, including acute myeloid leukemia, glioma, cholangiocarcinoma, and chondrosarcoma. These mutations cripple the wild-type activity of IDH and cause the enzymes to catalyze a partial reverse reaction in which 2OG is reduced but not carboxylated, resulting in production of the (R)-enantiomer of 2-hydroxyglutarate ((R)-2HG). (R)-2HG accumulation in IDH-mutant tumors results in profound dysregulation of cellular metabolism. The most well-characterized oncogenic effects of (R)-2HG involve the dysregulation of 2OG-dependent epigenetic tumor-suppressor enzymes. However, (R)-2HG has many other effects in IDH-mutant cells, some that promote transformation and others that induce metabolic dependencies. Herein, we review how cancer-associated IDH mutations impact epigenetic regulation and cellular metabolism and discuss how these effects can potentially be leveraged to therapeutically target IDH-mutant tumors.
Collapse
Affiliation(s)
- Kathryn Gunn
- Division of Molecular and Cellular Oncology, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - Julie-Aurore Losman
- Division of Molecular and Cellular Oncology, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| |
Collapse
|
6
|
Segovia D, Tepes PS. p160 nuclear receptor coactivator family members and their role in rare fusion‑driven neoplasms (Review). Oncol Lett 2024; 27:210. [PMID: 38572059 PMCID: PMC10988192 DOI: 10.3892/ol.2024.14343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 02/22/2024] [Indexed: 04/05/2024] Open
Abstract
Gene fusions with translocations involving nuclear receptor coactivators (NCoAs) are relatively common among fusion-driven malignancies. NCoAs are essential mediators of environmental cues and can modulate the transcription of downstream target genes upon binding to activated nuclear receptors. Therefore, fusion proteins containing NCoAs can become strong oncogenic drivers, affecting the cell transcriptional profile. These tumors show a strong dependency on the fusion oncogene; therefore, the direct pharmacological targeting of the fusion protein becomes an attractive strategy for therapy. Currently, different combinations of chemotherapy regimens are used to treat a variety of NCoA-fusion-driven tumors, but given the frequent tumor reoccurrence, more efficient treatment strategies are needed. Specific approaches directed towards inhibition or silencing of the fusion gene need to be developed while minimizing the interference with the original genes. This review highlights the relevant literature describing the normal function and structure of NCoAs and their oncogenic activity in NCoA-gene fusion-driven cancers, and explores potential strategies that could be effective in targeting these fusions.
Collapse
Affiliation(s)
- Danilo Segovia
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
- Stony Brook University, Stony Brook, NY 11794, USA
| | - Polona Safaric Tepes
- Robert S. Boas Center for Genomics and Human Genetics, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA
| |
Collapse
|
7
|
Lynch J, Troadec E, Fung TK, Gladysz K, Virely C, Lau PNI, Cheung N, Zeisig B, Wong JWH, Lopes M, Huang S, So CWE. Hematopoietic stem cell quiescence and DNA replication dynamics maintained by the resilient β-catenin/Hoxa9/Prmt1 axis. Blood 2024; 143:1586-1598. [PMID: 38211335 PMCID: PMC11103100 DOI: 10.1182/blood.2023022082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/04/2023] [Accepted: 12/22/2023] [Indexed: 01/13/2024] Open
Abstract
ABSTRACT Maintenance of quiescence and DNA replication dynamics are 2 paradoxical requirements for the distinct states of dormant and active hematopoietic stem cells (HSCs), which are required to preserve the stem cell reservoir and replenish the blood cell system in response to hematopoietic stress, respectively. Here, we show that key self-renewal factors, β-catenin or Hoxa9, largely dispensable for HSC integrity, in fact, have dual functions in maintaining quiescence and enabling efficient DNA replication fork dynamics to preserve the functionality of hematopoietic stem and progenitor cells (HSPCs). Although β-catenin or Hoxa9 single knockout (KO) exhibited mostly normal hematopoiesis, their coinactivation led to severe hematopoietic defects stemmed from aberrant cell cycle, DNA replication, and damage in HSPCs. Mechanistically, β-catenin and Hoxa9 function in a compensatory manner to sustain key transcriptional programs that converge on the pivotal downstream target and epigenetic modifying enzyme, Prmt1, which protects the quiescent state and ensures an adequate supply of DNA replication and repair factors to maintain robust replication fork dynamics. Inactivation of Prmt1 phenocopied both cellular and molecular phenotypes of β-catenin/Hoxa9 combined KO, which at the same time could also be partially rescued by Prmt1 expression. The discovery of the highly resilient β-catenin/Hoxa9/Prmt1 axis in protecting both quiescence and DNA replication dynamics essential for HSCs at different key states provides not only novel mechanistic insights into their intricate regulation but also a potential tractable target for therapeutic intervention.
Collapse
Affiliation(s)
- Jennifer Lynch
- Leukaemia and Stem Cell Biology Group, School of Cancer and Pharmaceutical Sciences, King's College London, London, United Kingdom
| | - Estelle Troadec
- Leukaemia and Stem Cell Biology Group, School of Cancer and Pharmaceutical Sciences, King's College London, London, United Kingdom
| | - Tsz Kan Fung
- Leukaemia and Stem Cell Biology Group, School of Cancer and Pharmaceutical Sciences, King's College London, London, United Kingdom
- Department of Haematological Medicine, King’s College Hospital, London, United Kingdom
| | - Kornelia Gladysz
- Leukaemia and Stem Cell Biology Group, School of Cancer and Pharmaceutical Sciences, King's College London, London, United Kingdom
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Clemence Virely
- Leukaemia and Stem Cell Biology Group, School of Cancer and Pharmaceutical Sciences, King's College London, London, United Kingdom
| | - Priscilla Nga Ieng Lau
- Leukaemia and Stem Cell Biology Group, School of Cancer and Pharmaceutical Sciences, King's College London, London, United Kingdom
| | - Ngai Cheung
- Leukaemia and Stem Cell Biology Group, School of Cancer and Pharmaceutical Sciences, King's College London, London, United Kingdom
| | - Bernd Zeisig
- Leukaemia and Stem Cell Biology Group, School of Cancer and Pharmaceutical Sciences, King's College London, London, United Kingdom
- Department of Haematological Medicine, King’s College Hospital, London, United Kingdom
| | - Jason W. H. Wong
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Massimo Lopes
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Suming Huang
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA
| | - Chi Wai Eric So
- Leukaemia and Stem Cell Biology Group, School of Cancer and Pharmaceutical Sciences, King's College London, London, United Kingdom
- Department of Haematological Medicine, King’s College Hospital, London, United Kingdom
| |
Collapse
|
8
|
Mapperley C, Kranc KR. HOXA9 and β-catenin safeguard HSC integrity. Blood 2024; 143:1554-1556. [PMID: 38635250 DOI: 10.1182/blood.2023023755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024] Open
|
9
|
Sudhakar SRN, Khan SN, Clark A, Hendrickson-Rebizant T, Patel S, Lakowski TM, Davie JR. Protein arginine methyltransferase 1, a major regulator of biological processes. Biochem Cell Biol 2024; 102:106-126. [PMID: 37922507 DOI: 10.1139/bcb-2023-0212] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2023] Open
Abstract
Protein arginine methyltransferase 1 (PRMT1) is a major type I arginine methyltransferase that catalyzes the formation of monomethyl and asymmetric dimethylarginine in protein substrates. It was first identified to asymmetrically methylate histone H4 at the third arginine residue forming the H4R3me2a active histone mark. However, several protein substrates are now identified as being methylated by PRMT1. As a result of its association with diverse classes of substrates, PRMT1 regulates several biological processes like chromatin dynamics, transcription, RNA processing, and signal transduction. The review provides an overview of PRMT1 structure, biochemical features, specificity, regulation, and role in cellular functions. We discuss the genomic distribution of PRMT1 and its association with tRNA genes. Further, we explore the different substrates of PRMT1 involved in splicing. In the end, we discuss the proteins that interact with PRMT1 and their downstream effects in diseased states.
Collapse
Affiliation(s)
- Sadhana R N Sudhakar
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, MB, Canada
| | - Shahper N Khan
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, MB, Canada
| | - Ariel Clark
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, MB, Canada
| | | | - Shrinal Patel
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, MB, Canada
| | - Ted M Lakowski
- College of Pharmacy Pharmaceutical Analysis Laboratory, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
- Paul Albrechtsen Research Institute, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - James R Davie
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, MB, Canada
- Paul Albrechtsen Research Institute, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada
| |
Collapse
|
10
|
Abu-Zaid A, Fang J, Jin H, Singh S, Pichavaram P, Wu Q, Tillman H, Janke L, Rosikiewicz W, Xu B, Van De Velde LA, Guo Y, Li Y, Shendy NAM, Delahunty IM, Rankovic Z, Chen T, Chen X, Freeman KW, Hatley ME, Durbin AD, Murray PJ, Murphy AJ, Thomas PG, Davidoff AM, Yang J. Histone lysine demethylase 4 family proteins maintain the transcriptional program and adrenergic cellular state of MYCN-amplified neuroblastoma. Cell Rep Med 2024; 5:101468. [PMID: 38508144 PMCID: PMC10983111 DOI: 10.1016/j.xcrm.2024.101468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 12/21/2023] [Accepted: 02/20/2024] [Indexed: 03/22/2024]
Abstract
Neuroblastoma with MYCN amplification (MNA) is a high-risk disease that has a poor survival rate. Neuroblastoma displays cellular heterogeneity, including more differentiated (adrenergic) and more primitive (mesenchymal) cellular states. Here, we demonstrate that MYCN oncoprotein promotes a cellular state switch in mesenchymal cells to an adrenergic state, accompanied by induction of histone lysine demethylase 4 family members (KDM4A-C) that act in concert to control the expression of MYCN and adrenergic core regulatory circulatory (CRC) transcription factors. Pharmacologic inhibition of KDM4 blocks expression of MYCN and the adrenergic CRC transcriptome with genome-wide induction of transcriptionally repressive H3K9me3, resulting in potent anticancer activity against neuroblastomas with MNA by inducing neuroblastic differentiation and apoptosis. Furthermore, a short-term KDM4 inhibition in combination with conventional, cytotoxic chemotherapy results in complete tumor responses of xenografts with MNA. Thus, KDM4 blockade may serve as a transformative strategy to target the adrenergic CRC dependencies in MNA neuroblastomas.
Collapse
Affiliation(s)
- Ahmed Abu-Zaid
- Department of Surgery, St Jude Children's Research Hospital, Memphis, TN 38105, USA; College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Jie Fang
- Department of Surgery, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Hongjian Jin
- Center for Applied Bioinformatics, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Shivendra Singh
- Department of Surgery, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | - Qiong Wu
- Department of Surgery, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Heather Tillman
- Department of Pathology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Laura Janke
- Department of Pathology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Wojciech Rosikiewicz
- Center for Applied Bioinformatics, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Beisi Xu
- Center for Applied Bioinformatics, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Lee-Ann Van De Velde
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Yian Guo
- Department of Biostatistics, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Yimei Li
- Department of Biostatistics, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Noha A M Shendy
- Department of Molecular Oncology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Ian M Delahunty
- Department of Molecular Oncology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Zoran Rankovic
- Department of Chemical Biology and Therapeutics, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Xiang Chen
- Department of Computational Biology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Kevin W Freeman
- Genetics, Genomics & Informatics, The University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Mark E Hatley
- Department of Molecular Oncology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Adam D Durbin
- Department of Molecular Oncology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Peter J Murray
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Andrew J Murphy
- Department of Surgery, St Jude Children's Research Hospital, Memphis, TN 38105, USA; Division of Pediatric Surgery, Department of Surgery, University of Tennessee Health Science Center, Memphis, TN 38105, USA
| | - Paul G Thomas
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Andrew M Davidoff
- Department of Surgery, St Jude Children's Research Hospital, Memphis, TN 38105, USA; Division of Pediatric Surgery, Department of Surgery, University of Tennessee Health Science Center, Memphis, TN 38105, USA; St Jude Graduate School of Biomedical Sciences, St Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Pathology and Laboratory Medicine, College of Medicine, The University of Tennessee Health Science Center, 930 Madison Avenue, Suite 500, Memphis, TN 38163, USA
| | - Jun Yang
- Department of Surgery, St Jude Children's Research Hospital, Memphis, TN 38105, USA; St Jude Graduate School of Biomedical Sciences, St Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Pathology and Laboratory Medicine, College of Medicine, The University of Tennessee Health Science Center, 930 Madison Avenue, Suite 500, Memphis, TN 38163, USA; College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
11
|
Gao Y, Feng C, Ma J, Yan Q. Protein arginine methyltransferases (PRMTs): Orchestrators of cancer pathogenesis, immunotherapy dynamics, and drug resistance. Biochem Pharmacol 2024; 221:116048. [PMID: 38346542 DOI: 10.1016/j.bcp.2024.116048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/15/2024] [Accepted: 02/06/2024] [Indexed: 02/16/2024]
Abstract
Protein Arginine Methyltransferases (PRMTs) are a family of enzymes regulating protein arginine methylation, which is a post-translational modification crucial for various cellular processes. Recent studies have highlighted the mechanistic role of PRMTs in cancer pathogenesis, immunotherapy, and drug resistance. PRMTs are involved in diverse oncogenic processes, including cell proliferation, apoptosis, and metastasis. They exert their effects by methylation of histones, transcription factors, and other regulatory proteins, resulting in altered gene expression patterns. PRMT-mediated histone methylation can lead to aberrant chromatin remodeling and epigenetic changes that drive oncogenesis. Additionally, PRMTs can directly interact with key signaling pathways involved in cancer progression, such as the PI3K/Akt and MAPK pathways, thereby modulating cell survival and proliferation. In the context of cancer immunotherapy, PRMTs have emerged as critical regulators of immune responses. They modulate immune checkpoint molecules, including programmed cell death protein 1 (PD-1), through arginine methylation. Drug resistance is a significant challenge in cancer treatment, and PRMTs have been implicated in this phenomenon. PRMTs can contribute to drug resistance through multiple mechanisms, including the epigenetic regulation of drug efflux pumps, altered DNA damage repair, and modulation of cell survival pathways. In conclusion, PRMTs play critical roles in cancer pathogenesis, immunotherapy, and drug resistance. In this overview, we have endeavored to illuminate the mechanistic intricacies of PRMT-mediated processes. Shedding light on these aspects will offer valuable insights into the fundamental biology of cancer and establish PRMTs as promising therapeutic targets.
Collapse
Affiliation(s)
- Yihang Gao
- Department of Laboratory Medicine, the Second Hospital of Jilin University, Changchun 130000, China
| | - Chongchong Feng
- Department of Laboratory Medicine, the Second Hospital of Jilin University, Changchun 130000, China.
| | - Jingru Ma
- Department of Laboratory Medicine, the Second Hospital of Jilin University, Changchun 130000, China
| | - Qingzhu Yan
- Department of Ultrasound Medicine, the Second Hospital of Jilin University, Changchun 130000, China
| |
Collapse
|
12
|
Yang Z, Li L, Wei J, He H, Ma M, Wen Y. Integration of bulk RNA sequencing to reveal protein arginine methylation regulators have a good prognostic value in immunotherapy to treat lung adenocarcinoma. Heliyon 2024; 10:e24816. [PMID: 38317982 PMCID: PMC10838759 DOI: 10.1016/j.heliyon.2024.e24816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 02/07/2024] Open
Abstract
Background Given the differential expression and biological functions of protein arginine methylation (PAM) regulators in lung adenocarcinoma (LUAD), it may be of great value in the diagnosis, prognosis, and treatment of LUAD. However, the expression and function of PAM regulators in LUAD and its relationship with prognosis are unclear. Methods 8 datasets including 1798 LUAD patients were selected. During the bioinformatic study in LUAD, we performed (i) consensus clustering to identify clusters based on 9 PAM regulators related expression profile data, (ii) to identify hub genes between the 2 clusters, (iii) principal component analysis to construct a PAM.score based on above genes, and (iv) evaluation of the effect of PAM.score on the deconstruction of tumor microenvironment and guidance of immunotherapy. Results We identified two different clusters and a robust and clinically practicable prognostic scoring system. Meanwhile, a higher PAM.score subgroup showed poorer prognosis, and was validated by multiple cohorts. Its prognostic effect was validated by ROC (Receiver operating characteristic curve) curve and found to have a relatively good prediction efficacy. High PAM.score group exhibited lower immune score, which associated with an immunosuppressive microenvironment in LUAD. Finally, patients exhibiting a lower PAM.score presented noteworthy therapeutic benefits and clinical advantages. Conclusion Our PAM.score model can help clinicians to select personalized therapy for LUAD patients, and PAM.score may act a part in the development of LUAD.
Collapse
Affiliation(s)
- Zhiqiang Yang
- Department of Respiratory and Critical Care, Zhoushan Hospital, Wenzhou Medical University, Zhejiang, 316000, China
| | - Lue Li
- Department of Respiratory and Critical Care, Zhoushan Hospital, Wenzhou Medical University, Zhejiang, 316000, China
| | - Jianguo Wei
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Hui He
- Department of Pathology, Zhoushan Hospital, Wenzhou Medical University, Zhejiang, 316000, China
| | - Minghui Ma
- Department of Gastrointestinal Surgery, Maoming People's Hospital, Maoming, Guangdong, 525000, China
| | - Yuanyuan Wen
- Department of Pathology, Zhoushan Hospital, Wenzhou Medical University, Zhejiang, 316000, China
| |
Collapse
|
13
|
Shen S, Zhou H, Xiao Z, Zhan S, Tuo Y, Chen D, Pang X, Wang Y, Wang J. PRMT1 in human neoplasm: cancer biology and potential therapeutic target. Cell Commun Signal 2024; 22:102. [PMID: 38326807 PMCID: PMC10851560 DOI: 10.1186/s12964-024-01506-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/30/2024] [Indexed: 02/09/2024] Open
Abstract
Protein arginine methyltransferase 1 (PRMT1), the predominant type I protein arginine methyltransferase, plays a crucial role in normal biological functions by catalyzing the methylation of arginine side chains, specifically monomethylarginine (MMA) and asymmetric dimethylarginine (ADMA), within proteins. Recent investigations have unveiled an association between dysregulated PRMT1 expression and the initiation and progression of tumors, significantly impacting patient prognosis, attributed to PRMT1's involvement in regulating various facets of tumor cell biology, including DNA damage repair, transcriptional and translational regulation, as well as signal transduction. In this review, we present an overview of recent advancements in PRMT1 research across different tumor types, with a specific focus on its contributions to tumor cell proliferation, metastasis, invasion, and drug resistance. Additionally, we expound on the dynamic functions of PRMT1 during distinct stages of cancer progression, elucidating its unique regulatory mechanisms within the same signaling pathway and distinguishing between its promotive and inhibitory effects. Importantly, we sought to provide a comprehensive summary and analysis of recent research progress on PRMT1 in tumors, contributing to a deeper understanding of its role in tumorigenesis, development, and potential treatment strategies.
Collapse
Affiliation(s)
- Shiquan Shen
- Department of Neurosurgery, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Honglong Zhou
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Zongyu Xiao
- Department of Neurosurgery, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, 215124, China
| | - Shaofen Zhan
- Department of Neurology, Guangdong Second Provincial General Hospital, Southern Medical University, Guangzhou, 510317, China
| | - Yonghua Tuo
- Department of Neurosurgery, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Danmin Chen
- Department of Neurosurgery, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Xiao Pang
- Department of Neurosurgery, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Yezhong Wang
- Department of Neurosurgery, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China.
| | - Ji Wang
- Department of Neurosurgery, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China.
| |
Collapse
|
14
|
Tao H, Jin C, Zhou L, Deng Z, Li X, Dang W, Fan S, Li B, Ye F, Lu J, Kong X, Liu C, Luo C, Zhang Y. PRMT1 Inhibition Activates the Interferon Pathway to Potentiate Antitumor Immunity and Enhance Checkpoint Blockade Efficacy in Melanoma. Cancer Res 2024; 84:419-433. [PMID: 37991725 DOI: 10.1158/0008-5472.can-23-1082] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 09/07/2023] [Accepted: 11/17/2023] [Indexed: 11/23/2023]
Abstract
Despite the immense success of immune checkpoint blockade (ICB) in cancer treatment, many tumors, including melanoma, exhibit innate or adaptive resistance. Tumor-intrinsic T-cell deficiency and T-cell dysfunction have been identified as essential factors in the emergence of ICB resistance. Here, we found that protein arginine methyltransferase 1 (PRMT1) expression was inversely correlated with the number and activity of CD8+ T cells within melanoma specimen. PRMT1 deficiency or inhibition with DCPT1061 significantly restrained refractory melanoma growth and increased intratumoral CD8+ T cells in vivo. Moreover, PRMT1 deletion in melanoma cells facilitated formation of double-stranded RNA derived from endogenous retroviral elements (ERV) and stimulated an intracellular interferon response. Mechanistically, PRMT1 deficiency repressed the expression of DNA methyltransferase 1 (DNMT1) by attenuating modification of H4R3me2a and H3K27ac at enhancer regions of Dnmt1, and DNMT1 downregulation consequently activated ERV transcription and the interferon signaling. Importantly, PRMT1 inhibition with DCPT1061 synergized with PD-1 blockade to suppress tumor progression and increase the proportion of CD8+ T cells as well as IFNγ+CD8+ T cells in vivo. Together, these results reveal an unrecognized role and mechanism of PRMT1 in regulating antitumor T-cell immunity, suggesting PRMT1 inhibition as a potent strategy to increase the efficacy of ICB. SIGNIFICANCE Targeting PRMT1 stimulates interferon signaling by increasing expression of endogenous retroviral elements and double-stranded RNA through repression of DNMT1, which induces antitumor immunity and synergizes with immunotherapy to suppress tumor progression.
Collapse
Affiliation(s)
- Hongru Tao
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Chen Jin
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Liyuan Zhou
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
- Drug Discovery and Design Center, The Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhenzhong Deng
- Department of Oncology, Xinhua Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Xiao Li
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wenzhen Dang
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shijie Fan
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China
| | - Bing Li
- Drug Discovery and Design Center, The Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fei Ye
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Junyan Lu
- Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Xiangqian Kong
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Chuanpeng Liu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Cheng Luo
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
- Drug Discovery and Design Center, The Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China
| | - Yuanyuan Zhang
- Drug Discovery and Design Center, The Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
15
|
Tang X, Niu Y, Jian J, Guo Y, Wang Y, Zhu Y, Liu B. Potential applications of ferroptosis inducers and regulatory molecules in hematological malignancy therapy. Crit Rev Oncol Hematol 2024; 193:104203. [PMID: 37979734 DOI: 10.1016/j.critrevonc.2023.104203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/31/2023] [Accepted: 11/13/2023] [Indexed: 11/20/2023] Open
Abstract
Ferroptosis, a novel form of iron-dependent cell death, has emerged as a potential avenue for promoting tumor cell death by causing cell membrane rupture and the accumulation of lipid peroxides (LPO) in the cell. Since its discovery in 2012, extensive research has been conducted to explore the mechanism of ferroptosis inducers, including erastin, sulfasalazine, and sorafenib. These compounds inhibit system XC-, while Ras-selective lethal small molecule 3 (RSL3) and FION2 specifically target GPX4 to promote ferroptosis. Therefore, targeting ferroptosis presents a promising therapeutic approach for malignant tumors. While the study of ferroptosis in solid tumors has made significant progress, there is limited information available on its role in hematological tumors. This review aims to summarize the molecular mechanisms of ferroptosis inducers and discuss their clinical applications in hematological malignancies. Furthermore, the identification of non-coding RNAs (ncRNAs) and genes that regulate key molecules in the ferroptosis pathway could provide new targets and establish a molecular theoretical foundation for exploring novel ferroptosis inducers in hematological malignancies.
Collapse
Affiliation(s)
- Xiao Tang
- The First Clinical Medical College, Lanzhou University, Lanzhou 730099, China
| | - Yujie Niu
- The First Clinical Medical College, Lanzhou University, Lanzhou 730099, China
| | - Jinli Jian
- The First Clinical Medical College, Lanzhou University, Lanzhou 730099, China
| | - Yuancheng Guo
- The First Clinical Medical College, Lanzhou University, Lanzhou 730099, China
| | - Yin Wang
- The First Clinical Medical College, Lanzhou University, Lanzhou 730099, China
| | - Yu Zhu
- The First Clinical Medical College, Lanzhou University, Lanzhou 730099, China
| | - Bei Liu
- The First Clinical Medical College, Lanzhou University, Lanzhou 730099, China; Department of Hematology, The First Affiliated Hospital, Lanzhou University, Lanzhou 730099, China.
| |
Collapse
|
16
|
Wang N, Yin J, You N, Zhu W, Guo N, Liu X, Zhang P, Huang W, Xie Y, Ren Q, Ma X. Twist family BHLH transcription factor 1 is required for the maintenance of leukemia stem cell in MLL-AF9 + acute myeloid leukemia. Haematologica 2024; 109:84-97. [PMID: 37767575 PMCID: PMC10772510 DOI: 10.3324/haematol.2023.282748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023] Open
Abstract
Leukemia stem cells (LSC) are a rare population capable of limitless self-renewal and are responsible for the initiation, maintenance, and relapse of leukemia. Elucidation of the mechanisms underlying the regulation of LSC function could provide novel treatment strategies. Here, we show that TWIST1 is extremely highly expressed in the LSC of MLL-AF9+ acute myeloid leukemia (AML), and its upregulation is positively regulated by KDM4C in a H3K9me3 demethylation-dependent manner. We further demonstrate that TWIST1 is essential for the viability, dormancy, and self-renewal capacities of LSC, and that it promotes the initiation and maintenance of MLL-AF9-mediated AML. In addition, TWIST1 directly interacts and collaborates with HOXA9 in inducing AML in mice. Mechanistically, TWIST1 exerts its oncogenic function by activating the WNT5a/RAC1 axis. Collectively, our study uncovers a critical role of TWIST1 in LSC function and provides new mechanistic insights into the pathogenesis of MLL-AF9+ AML.
Collapse
Affiliation(s)
- Nan Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China; Tianjin Institutes of Health Science, Tianjin 301600, China; Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin
| | - Jing Yin
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China; Tianjin Institutes of Health Science, Tianjin 301600, China; Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin
| | - Na You
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China; Tianjin Institutes of Health Science, Tianjin 301600, China; Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin
| | - Wenqi Zhu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China; Tianjin Institutes of Health Science, Tianjin 301600, China; Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin
| | - Nini Guo
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China; Tianjin Institutes of Health Science, Tianjin 301600, China; Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin
| | - Xiaoyan Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China; Tianjin Institutes of Health Science, Tianjin 301600, China; Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin
| | - Peiwen Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China; Tianjin Institutes of Health Science, Tianjin 301600, China; Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin
| | - Wanling Huang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China; Tianjin Institutes of Health Science, Tianjin 301600, China; Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin
| | - Yueqiao Xie
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China; Tianjin Institutes of Health Science, Tianjin 301600, China; Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin
| | - Qian Ren
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China; Tianjin Institutes of Health Science, Tianjin 301600, China; Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin
| | - Xiaotong Ma
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China; Tianjin Institutes of Health Science, Tianjin 301600, China; Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin.
| |
Collapse
|
17
|
Rowley MJ, Prout-Holm RA, Liu RW, Hendrickson-Rebizant T, Ige OO, Lakowski TM, Frankel A. Protein arginine N-methyltransferase 2 plays a noncatalytic role in the histone methylation activity of PRMT1. J Biol Chem 2023; 299:105360. [PMID: 37863263 PMCID: PMC10692916 DOI: 10.1016/j.jbc.2023.105360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 10/22/2023] Open
Abstract
Protein arginine N-methyltransferases are a family of epigenetic enzymes responsible for monomethylation or dimethylation of arginine residues on histones. Dysregulation of protein arginine N-methyltransferase activity can lead to aberrant gene expression and cancer. Recent studies have shown that PRMT2 expression and histone H3 methylation at arginine 8 are correlated with disease severity in glioblastoma multiforme, hepatocellular carcinoma, and renal cell carcinoma. In this study, we explore a noncatalytic mechanistic role for PRMT2 in histone methylation by investigating interactions between PRMT2, histone peptides and proteins, and other PRMTs using analytical and enzymatic approaches. We quantify interactions between PRMT2, peptide ligands, and PRMT1 in a cofactor- and domain-dependent manner using differential scanning fluorimetry. We found that PRMT2 modulates the substrate specificity of PRMT1. Using calf thymus histones as substrates, we saw that a 10-fold excess of PRMT2 promotes PRMT1 methylation of both histone H4 and histone H2A. We found equimolar or a 10-fold excess of PRMT2 to PRMT1 can improve the catalytic efficiency of PRMT1 towards individual histone substrates H2A, H3, and H4. We further evaluated the effects of PRMT2 towards PRMT1 on unmodified histone octamers and mononucleosomes and found marginal PRMT1 activity improvements in histone octamers but significantly greater methylation of mononucleosomes in the presence of 10-fold excess of PRMT2. This work reveals the ability of PRMT2 to serve a noncatalytic role through its SH3 domain in driving site-specific histone methylation marks.
Collapse
Affiliation(s)
- Michael J Rowley
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Riley A Prout-Holm
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Rui Wen Liu
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Olufola O Ige
- College of Pharmacy, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ted M Lakowski
- College of Pharmacy, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Adam Frankel
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
18
|
Feliciello I, Ugarković Đ. Alpha Satellite DNA in Targeted Drug Therapy for Prostate Cancer. Int J Mol Sci 2023; 24:15585. [PMID: 37958565 PMCID: PMC10648476 DOI: 10.3390/ijms242115585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Prostate cancer is the most common solid cancer in men and, despite the development of many new therapies, metastatic castration-resistant prostate cancer still remains a deadly disease. Therefore, novel concepts for the treatment of metastatic prostate cancer are needed. In our opinion, the role of the non-coding part of the genome, satellite DNA in particular, has been underestimated in relation to diseases such as cancer. Here, we hypothesise that this part of the genome should be considered as a potential target for the development of new drugs. Specifically, we propose a novel concept directed at the possible treatment of metastatic prostate cancer that is mostly based on epigenetics. Namely, metastatic prostate cancer is characterized by the strongly induced transcription of alpha satellite DNA located in pericentromeric heterochromatin and, according to our hypothesis, the stable controlled transcription of satellite DNA might be important in terms of the control of disease development. This can be primarily achieved through the epigenetic regulation of pericentromeric heterochromatin by using specific enzymes as well as their activators/inhibitors that could act as potential anti-prostate cancer drugs. We believe that our concept is innovative and should be considered in the potential treatment of prostate cancer in combination with other more conventional therapies.
Collapse
Affiliation(s)
- Isidoro Feliciello
- Medical School, Department of Clinical Medicine and Surgery, Universiy of Naples Federico II, 80131 Naples, Italy
| | - Đurđica Ugarković
- Department of Molecular Biology, Ruđer Bošković Institute, Bijenička 54, HR-10000 Zagreb, Croatia
| |
Collapse
|
19
|
Zheng K, Chen S, Ren Z, Wang Y. Protein arginine methylation in viral infection and antiviral immunity. Int J Biol Sci 2023; 19:5292-5318. [PMID: 37928266 PMCID: PMC10620831 DOI: 10.7150/ijbs.89498] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/10/2023] [Indexed: 11/07/2023] Open
Abstract
Protein arginine methyltransferase (PRMT)-mediated arginine methylation is an important post-transcriptional modification that regulates various cellular processes including epigenetic gene regulation, genome stability maintenance, RNA metabolism, and stress-responsive signal transduction. The varying substrates and biological functions of arginine methylation in cancer and neurological diseases have been extensively discussed, providing a rationale for targeting PRMTs in clinical applications. An increasing number of studies have demonstrated an interplay between arginine methylation and viral infections. PRMTs have been found to methylate and regulate several host cell proteins and different functional types of viral proteins, such as viral capsids, mRNA exporters, transcription factors, and latency regulators. This modulation affects their activity, subcellular localization, protein-nucleic acid and protein-protein interactions, ultimately impacting their roles in various virus-associated processes. In this review, we discuss the classification, structure, and regulation of PRMTs and their pleiotropic biological functions through the methylation of histones and non-histones. Additionally, we summarize the broad spectrum of PRMT substrates and explore their intricate effects on various viral infection processes and antiviral innate immunity. Thus, comprehending the regulation of arginine methylation provides a critical foundation for understanding the pathogenesis of viral diseases and uncovering opportunities for antiviral therapy.
Collapse
Affiliation(s)
- Kai Zheng
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China
| | - Siyu Chen
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China
| | - Zhe Ren
- Institute of Biomedicine, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Key Laboratory of Innovative Technology Research on Natural Products and Cosmetics Raw Materials, Jinan University, Guangzhou, 510632, China
| | - Yifei Wang
- Institute of Biomedicine, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Key Laboratory of Innovative Technology Research on Natural Products and Cosmetics Raw Materials, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
20
|
Zhang J, Duan H, Gui R, Wu M, Shen L, Jin Y, Pang A, Yu X, Zeng S, Zhang B, Lin N, Huang W, Wang Y, Yao X, Li J, Dong X, Zhou Y, Che J. Structure-based identification of new orally bioavailable BRD9-PROTACs for treating acute myelocytic leukemia. Eur J Med Chem 2023; 262:115872. [PMID: 39491427 DOI: 10.1016/j.ejmech.2023.115872] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 11/05/2024]
Abstract
BRD9 is essential in regulating gene transcription and chromatin remodeling, and blocking BRD9 profoundly affects the survival of AML cells. However, the inhibitors of BRD9 suffer from various drawbacks, including poor phenotype and selectivity, and BRD9 PROTACs still face the challenge of druggability, which limits the development of blocking BRD9 in AML. This study described an oral activity BRD9 PROTAC C6 by recruiting the highly efficient E3 ligase. C6 demonstrated remarkable efficacy and selectivity in BRD9 degradation with a BRD9 degradation DC50 value of 1.02 ± 0.52 nM and no degradation of BRD4 or BRD7. Moreover, our findings highlighted its therapeutic potential, as evidenced by profound in vitro activity against the AML cell line MV4-11. Furthermore, C6 exhibited superior oral activity, with a Cmax value of 3436.95 ng/mL. These findings demonstrated that C6, as a novel BRD9 PROTAC with remarkable pharmacodynamic and pharmacokinetic properties, had the potential to be developed as a promising therapeutic agent for AML treatment.
Collapse
Affiliation(s)
- Jingyu Zhang
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Haiting Duan
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Renzhao Gui
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan Tsuihang New District, Guangdong, 528400, PR China; School of Pharmacy, Zunyi Medical University, Zunyi, 563000, PR China
| | - Mingfei Wu
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Liteng Shen
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Yuheng Jin
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Ao Pang
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Xiaoli Yu
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Shenxin Zeng
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, 310058, PR China
| | - Bo Zhang
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, PR China
| | - Nengming Lin
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, PR China
| | - Wenhai Huang
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, 310058, PR China
| | - Yuwei Wang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712000, PR China
| | - Xiaojun Yao
- Centre for Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macao, 999078, PR China
| | - Jia Li
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan Tsuihang New District, Guangdong, 528400, PR China; School of Pharmacy, Zunyi Medical University, Zunyi, 563000, PR China; National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, PR China
| | - Xiaowu Dong
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Yubo Zhou
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan Tsuihang New District, Guangdong, 528400, PR China; School of Pharmacy, Zunyi Medical University, Zunyi, 563000, PR China; National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, PR China.
| | - Jinxin Che
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China.
| |
Collapse
|
21
|
Wang K, Gong Z, Chen Y, Zhang M, Wang S, Yao S, Liu Z, Huang Z, Fei B. KDM4C-mediated senescence defense is a targetable vulnerability in gastric cancer harboring TP53 mutations. Clin Epigenetics 2023; 15:163. [PMID: 37848946 PMCID: PMC10583429 DOI: 10.1186/s13148-023-01579-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/05/2023] [Indexed: 10/19/2023] Open
Abstract
BACKGROUND Gastric cancer patients harboring a TP53 mutation exhibit a more aggressive and chemoresistant phenotype. Unfortunately, efforts to identify the vulnerabilities to overcome these aggressive malignancies have made minimal progress in recent years. Therefore, there is an urgent need to explore the novel therapeutic strategies for this subclass. Histone methylation modulators are critical epigenetic targets for cancer therapies that help maintain the malignancies of cancers harboring TP53 mutations and senescence evasion. Triggering senescence is now considered to benefit multiple cancer therapies. Furthermore, senescence-based "one-two punch" therapy was validated in clinical trials. Therefore, we hypothesized that screening epigenetic modulators might help identify a novel vulnerability to trigger senescence in gastric cancer harboring TP53 mutations. RESULTS We developed a novel efficient approach to identify senescence inducers by sequentially treating cells with drug candidates and senolytic agents. Based on this, we demonstrated that QC6352 (a selective KDM4C inhibitor) efficiently triggered cellular senescence in gastric cancer harboring TP53 mutations. More importantly, the "one-two punch' therapy consisting of QC6352 and SSK1 eliminates tumor cells harboring TP53 mutations. This finding highlights a potential therapeutic strategy for the aggressive subgroup of gastric cancer. Besides, the functions of QC6352 were totally unknown. We demonstrated that QC6352 might possess far more powerful anti-tumor capacities compared to the traditional genotoxic drugs, 5-Fu and Oxaliplatin. CONCLUSIONS This initial investigation to identify a senescence inducer revealed that QC6352 triggers senescence in gastric cancer cells harboring TP53 mutations by regulating the SP1/CDK2 axis through suppressing KDM4C. QC6352 and senolytic agent-SSK1 represent a novel 'one-two punch' therapeutic strategy for the more malignant gastric cancer subtypes.
Collapse
Affiliation(s)
- Kaiqing Wang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Jiangnan University, Wuxi, 214062, Jiangsu, China
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, 214062, Jiangsu, China
- Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Zhicheng Gong
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, 214062, Jiangsu, China.
- Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu, China.
| | - Yanyan Chen
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, 214062, Jiangsu, China
- Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Meimei Zhang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi, China
| | - Suzeng Wang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Jiangnan University, Wuxi, 214062, Jiangsu, China
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, 214062, Jiangsu, China
- Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Surui Yao
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, 214062, Jiangsu, China
- Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Zhihui Liu
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, 214062, Jiangsu, China
| | - Zhaohui Huang
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, 214062, Jiangsu, China.
- Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu, China.
| | - Bojian Fei
- Department of Gastrointestinal Surgery, Affiliated Hospital of Jiangnan University, Wuxi, 214062, Jiangsu, China.
| |
Collapse
|
22
|
Antal CE, Oh TG, Aigner S, Luo EC, Yee BA, Campos T, Tiriac H, Rothamel KL, Cheng Z, Jiao H, Wang A, Hah N, Lenkiewicz E, Lumibao JC, Truitt ML, Estepa G, Banayo E, Bashi S, Esparza E, Munoz RM, Diedrich JK, Sodir NM, Mueller JR, Fraser CR, Borazanci E, Propper D, Von Hoff DD, Liddle C, Yu RT, Atkins AR, Han H, Lowy AM, Barrett MT, Engle DD, Evan GI, Yeo GW, Downes M, Evans RM. A super-enhancer-regulated RNA-binding protein cascade drives pancreatic cancer. Nat Commun 2023; 14:5195. [PMID: 37673892 PMCID: PMC10482938 DOI: 10.1038/s41467-023-40798-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 08/10/2023] [Indexed: 09/08/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a lethal malignancy in need of new therapeutic options. Using unbiased analyses of super-enhancers (SEs) as sentinels of core genes involved in cell-specific function, here we uncover a druggable SE-mediated RNA-binding protein (RBP) cascade that supports PDAC growth through enhanced mRNA translation. This cascade is driven by a SE associated with the RBP heterogeneous nuclear ribonucleoprotein F, which stabilizes protein arginine methyltransferase 1 (PRMT1) to, in turn, control the translational mediator ubiquitin-associated protein 2-like. All three of these genes and the regulatory SE are essential for PDAC growth and coordinately regulated by the Myc oncogene. In line with this, modulation of the RBP network by PRMT1 inhibition reveals a unique vulnerability in Myc-high PDAC patient organoids and markedly reduces tumor growth in male mice. Our study highlights a functional link between epigenetic regulation and mRNA translation and identifies components that comprise unexpected therapeutic targets for PDAC.
Collapse
Affiliation(s)
- Corina E Antal
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, 92037, USA
- Department of Pharmacology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Tae Gyu Oh
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
- Department of Oncology Science, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73117, USA
| | - Stefan Aigner
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - En-Ching Luo
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Brian A Yee
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Tania Campos
- The Francis Crick Institute, 1 Midland Rd, London, NW1 1AT, UK
| | - Hervé Tiriac
- Moores Cancer Center, University of California San Diego, La Jolla, CA, 92037, USA
- Department of Surgery, Division of Surgical Oncology, University of California San Diego, La Jolla, CA, 92037, USA
| | - Katherine L Rothamel
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Zhang Cheng
- Center for Epigenomics, University of California San Diego, La Jolla, CA, 92037, USA
| | - Henry Jiao
- Center for Epigenomics, University of California San Diego, La Jolla, CA, 92037, USA
| | - Allen Wang
- Center for Epigenomics, University of California San Diego, La Jolla, CA, 92037, USA
| | - Nasun Hah
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | | | - Jan C Lumibao
- Regulatory Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Morgan L Truitt
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Gabriela Estepa
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Ester Banayo
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Senada Bashi
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Edgar Esparza
- Moores Cancer Center, University of California San Diego, La Jolla, CA, 92037, USA
- Department of Surgery, Division of Surgical Oncology, University of California San Diego, La Jolla, CA, 92037, USA
| | - Ruben M Munoz
- Molecular Medicine Division, Translational Genomics Research Institute, Phoenix, AZ, 85004, USA
| | - Jolene K Diedrich
- Mass Spectrometry Core for Proteomics and Metabolomics, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Nicole M Sodir
- The Francis Crick Institute, 1 Midland Rd, London, NW1 1AT, UK
- Genentech, Department of Translational Oncology, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Jasmine R Mueller
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Cory R Fraser
- HonorHealth Research Institute, Scottsdale, AZ, 85258, USA
- Scottsdale Pathology Associates, Scottsdale, AZ, 85260, USA
| | - Erkut Borazanci
- Molecular Medicine Division, Translational Genomics Research Institute, Phoenix, AZ, 85004, USA
- HonorHealth Research Institute, Scottsdale, AZ, 85258, USA
| | - David Propper
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, USA
| | - Daniel D Von Hoff
- Molecular Medicine Division, Translational Genomics Research Institute, Phoenix, AZ, 85004, USA
- HonorHealth Research Institute, Scottsdale, AZ, 85258, USA
| | - Christopher Liddle
- Storr Liver Centre, Westmead Institute for Medical Research and Sydney Medical School, University of Sydney, Westmead Hospital, Westmead, NSW, 2145, Australia
| | - Ruth T Yu
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Annette R Atkins
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Haiyong Han
- Molecular Medicine Division, Translational Genomics Research Institute, Phoenix, AZ, 85004, USA
| | - Andrew M Lowy
- The Francis Crick Institute, 1 Midland Rd, London, NW1 1AT, UK
- Department of Surgery, Division of Surgical Oncology, University of California San Diego, La Jolla, CA, 92037, USA
| | - Michael T Barrett
- Molecular Medicine Division, Translational Genomics Research Institute, Phoenix, AZ, 85004, USA
| | - Dannielle D Engle
- Regulatory Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Gerard I Evan
- The Francis Crick Institute, 1 Midland Rd, London, NW1 1AT, UK
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, 92093, USA
- Sanford Stem Cell Institute, University of California San Diego, La Jolla, CA, 92037, USA
| | - Michael Downes
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA.
| | - Ronald M Evans
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA.
| |
Collapse
|
23
|
Hou S, Wang X, Guo T, Lan Y, Yuan S, Yang S, Zhao F, Fang A, Liu N, Yang W, Chu Y, Jiang E, Cheng T, Sun X, Yuan W. PHF6 maintains acute myeloid leukemia via regulating NF-κB signaling pathway. Leukemia 2023; 37:1626-1637. [PMID: 37393343 PMCID: PMC10400421 DOI: 10.1038/s41375-023-01953-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 05/29/2023] [Accepted: 06/21/2023] [Indexed: 07/03/2023]
Abstract
Acute myeloid leukemia (AML) is a major hematopoietic malignancy characterized by the accumulation of immature and abnormally differentiated myeloid cells in bone marrow. Here with in vivo and in vitro models, we demonstrate that the Plant homeodomain finger gene 6 (PHF6) plays an important role in apoptosis and proliferation in myeloid leukemia. Phf6 deficiency could delay the progression of RUNX1-ETO9a and MLL-AF9-induced AML in mice. PHF6 depletion inhibited the NF-κB signaling pathways by disrupting the PHF6-p50 complex and partially inhibiting the nuclear translocation of p50 to suppress the expression of BCL2. Treating PHF6 over-expressed myeloid leukemia cells with NF-κB inhibitor (BAY11-7082) significantly increased their apoptosis and decreased their proliferation. Taken together, in contrast to PHF6 as a tumor suppressor in T-ALL as reported, we found that PHF6 also plays a pro-oncogenic role in myeloid leukemia, and thus potentially to be a therapeutic target for treating myeloid leukemia patients.
Collapse
Affiliation(s)
- Shuaibing Hou
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Xiaomin Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of lymphoma, Peking University Cancer Hospital & Institute, Beijing, 100039, China.
- Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
| | - Tengxiao Guo
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Yanjie Lan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Shengnan Yuan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Shuang Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Fei Zhao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Aizhong Fang
- Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Na Liu
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Wanzhu Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Yajing Chu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Erlie Jiang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Xiaojian Sun
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Weiping Yuan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- Tianjin Institutes of Health Science, Tianjin, 301600, China.
| |
Collapse
|
24
|
Sandoval C, Torrens F, Godoy K, Reyes C, Farías J. Application of Quantitative Structure-Activity Relationships in the Prediction of New Compounds with Anti-Leukemic Activity. Int J Mol Sci 2023; 24:12258. [PMID: 37569634 PMCID: PMC10418467 DOI: 10.3390/ijms241512258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Leukemia invades the bone marrow progressively and, through unknown mechanisms, outcompetes healthy hematopoiesis. Protein arginine methyltransferases 1 (PRMT1) are found in prokaryotes and eukaryotes cells. They are necessary for a number of biological processes and have been linked to several human diseases, including cancer. Small compounds that target PRMT1 have a significant impact on both functional research and clinical disease treatment. In fact, numerous PRMT1 inhibitors targeting the S-adenosyl-L-methionine binding region have been studied. Through topographical descriptors, quantitative structure-activity relationships (QSAR) were developed in order to identify the most effective PRMT1 inhibitors among 17 compounds. The model built using linear discriminant analysis allows us to accurately classify over 90% of the investigated active substances. Antileukemic activity is predicted using a multilinear regression analysis, and it can account for more than 56% of the variation. Both analyses are validated using an internal "leave some out" test. The developed model could be utilized in future preclinical experiments with novel drugs.
Collapse
Affiliation(s)
- Cristian Sandoval
- Escuela de Tecnología Médica, Facultad de Salud, Universidad Santo Tomás, Los Carreras 753, Osorno 5310431, Chile
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco 4811230, Chile
- Departamento de Ciencias Preclínicas, Facultad de Medicina, Universidad de La Frontera, Temuco 4811230, Chile
| | - Francisco Torrens
- Institut Universitari de Ciència Molecular, Universitat de València, 46071 València, Spain;
| | - Karina Godoy
- Nucleo Científico y Tecnológico en Biorecursos (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile;
| | - Camila Reyes
- Carrera de Tecnología Médica, Facultad de Medicina, Universidad de La Frontera, Temuco 4811230, Chile;
| | - Jorge Farías
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco 4811230, Chile
| |
Collapse
|
25
|
Sandoval C, Torrens F, Godoy K, Reyes C, Farías J. Application of Quantitative Structure-Activity Relationships in the Prediction of New Compounds with Anti-Leukemic Activity. Int J Mol Sci 2023; 24:12258. [DOI: https:/doi.org/10.3390/ijms241512258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
Abstract
Leukemia invades the bone marrow progressively and, through unknown mechanisms, outcompetes healthy hematopoiesis. Protein arginine methyltransferases 1 (PRMT1) are found in prokaryotes and eukaryotes cells. They are necessary for a number of biological processes and have been linked to several human diseases, including cancer. Small compounds that target PRMT1 have a significant impact on both functional research and clinical disease treatment. In fact, numerous PRMT1 inhibitors targeting the S-adenosyl-L-methionine binding region have been studied. Through topographical descriptors, quantitative structure-activity relationships (QSAR) were developed in order to identify the most effective PRMT1 inhibitors among 17 compounds. The model built using linear discriminant analysis allows us to accurately classify over 90% of the investigated active substances. Antileukemic activity is predicted using a multilinear regression analysis, and it can account for more than 56% of the variation. Both analyses are validated using an internal “leave some out” test. The developed model could be utilized in future preclinical experiments with novel drugs.
Collapse
Affiliation(s)
- Cristian Sandoval
- Escuela de Tecnología Médica, Facultad de Salud, Universidad Santo Tomás, Los Carreras 753, Osorno 5310431, Chile
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco 4811230, Chile
- Departamento de Ciencias Preclínicas, Facultad de Medicina, Universidad de La Frontera, Temuco 4811230, Chile
| | - Francisco Torrens
- Institut Universitari de Ciència Molecular, Universitat de València, 46071 València, Spain
| | - Karina Godoy
- Nucleo Científico y Tecnológico en Biorecursos (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
| | - Camila Reyes
- Carrera de Tecnología Médica, Facultad de Medicina, Universidad de La Frontera, Temuco 4811230, Chile
| | - Jorge Farías
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco 4811230, Chile
| |
Collapse
|
26
|
Gunn K, Myllykoski M, Cao JZ, Ahmed M, Huang B, Rouaisnel B, Diplas BH, Levitt MM, Looper R, Doench JG, Ligon KL, Kornblum HI, McBrayer SK, Yan H, Duy C, Godley LA, Koivunen P, Losman JA. (R)-2-Hydroxyglutarate Inhibits KDM5 Histone Lysine Demethylases to Drive Transformation in IDH-Mutant Cancers. Cancer Discov 2023; 13:1478-1497. [PMID: 36847506 PMCID: PMC10238656 DOI: 10.1158/2159-8290.cd-22-0825] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 12/21/2022] [Accepted: 02/22/2023] [Indexed: 03/01/2023]
Abstract
Oncogenic mutations in isocitrate dehydrogenase 1 (IDH1) and IDH2 occur in a wide range of cancers, including acute myeloid leukemia (AML) and glioma. Mutant IDH enzymes convert 2-oxoglutarate (2OG) to (R)-2-hydroxyglutarate [(R)-2HG], an oncometabolite that is hypothesized to promote cellular transformation by dysregulating 2OG-dependent enzymes. The only (R)-2HG target that has been convincingly shown to contribute to transformation by mutant IDH is the myeloid tumor suppressor TET2. However, there is ample evidence to suggest that (R)-2HG has other functionally relevant targets in IDH-mutant cancers. Here, we show that (R)-2HG inhibits KDM5 histone lysine demethylases and that this inhibition contributes to cellular transformation in IDH-mutant AML and IDH-mutant glioma. These studies provide the first evidence of a functional link between dysregulation of histone lysine methylation and transformation in IDH-mutant cancers. SIGNIFICANCE Mutant IDH is known to induce histone hypermethylation. However, it is not known if this hypermethylation is functionally significant or is a bystander effect of (R)-2HG accumulation in IDH-mutant cells. Here, we provide evidence that KDM5 inhibition by (R)-2HG contributes to mutant IDH-mediated transformation in AML and glioma. This article is highlighted in the In This Issue feature, p. 1275.
Collapse
Affiliation(s)
- Kathryn Gunn
- Division of Molecular and Cellular Oncology, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Matti Myllykoski
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, University of Oulu, FI-90220, Oulu, Finland; Oulu Center for Cell-Matrix Research, University of Oulu, FI-90220, Oulu, Finland
| | - John Z. Cao
- Committee on Cancer Biology, Biological Sciences Division, University of Chicago, Chicago, IL 60637, USA
| | - Manna Ahmed
- Cancer Signaling and Epigenetics Program, Cancer Epigenetic Institute, Fox Chase Cancer Center, Philadelphia, PA 19111
| | - Bofu Huang
- Division of Molecular and Cellular Oncology, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Betty Rouaisnel
- Division of Molecular and Cellular Oncology, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Bill H. Diplas
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| | - Michael M. Levitt
- Children’s Medical Center Research Institute and Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ryan Looper
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, USA
| | - John G. Doench
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Keith L. Ligon
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Pathology, Boston Children’s Hospital and Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Harley I. Kornblum
- Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA
| | - Samuel K. McBrayer
- Children’s Medical Center Research Institute and Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Hai Yan
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| | - Cihangir Duy
- Cancer Signaling and Epigenetics Program, Cancer Epigenetic Institute, Fox Chase Cancer Center, Philadelphia, PA 19111
| | - Lucy A. Godley
- Committee on Cancer Biology, Biological Sciences Division, University of Chicago, Chicago, IL 60637, USA
- Section of Hematology/Oncology, Departments of Medicine and Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Peppi Koivunen
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, University of Oulu, FI-90220, Oulu, Finland; Oulu Center for Cell-Matrix Research, University of Oulu, FI-90220, Oulu, Finland
| | - Julie-Aurore Losman
- Division of Molecular and Cellular Oncology, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Division of Hematology, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
| |
Collapse
|
27
|
Liu R, Wu J, Guo H, Yao W, Li S, Lu Y, Jia Y, Liang X, Tang J, Zhang H. Post-translational modifications of histones: Mechanisms, biological functions, and therapeutic targets. MedComm (Beijing) 2023; 4:e292. [PMID: 37220590 PMCID: PMC10200003 DOI: 10.1002/mco2.292] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/25/2023] Open
Abstract
Histones are DNA-binding basic proteins found in chromosomes. After the histone translation, its amino tail undergoes various modifications, such as methylation, acetylation, phosphorylation, ubiquitination, malonylation, propionylation, butyrylation, crotonylation, and lactylation, which together constitute the "histone code." The relationship between their combination and biological function can be used as an important epigenetic marker. Methylation and demethylation of the same histone residue, acetylation and deacetylation, phosphorylation and dephosphorylation, and even methylation and acetylation between different histone residues cooperate or antagonize with each other, forming a complex network. Histone-modifying enzymes, which cause numerous histone codes, have become a hot topic in the research on cancer therapeutic targets. Therefore, a thorough understanding of the role of histone post-translational modifications (PTMs) in cell life activities is very important for preventing and treating human diseases. In this review, several most thoroughly studied and newly discovered histone PTMs are introduced. Furthermore, we focus on the histone-modifying enzymes with carcinogenic potential, their abnormal modification sites in various tumors, and multiple essential molecular regulation mechanism. Finally, we summarize the missing areas of the current research and point out the direction of future research. We hope to provide a comprehensive understanding and promote further research in this field.
Collapse
Affiliation(s)
- Ruiqi Liu
- Cancer CenterDepartment of Radiation OncologyZhejiang Provincial People's HospitalAffiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
- Graduate DepartmentBengbu Medical College, BengbuAnhuiChina
| | - Jiajun Wu
- Graduate DepartmentBengbu Medical College, BengbuAnhuiChina
- Otolaryngology & Head and Neck CenterCancer CenterDepartment of Head and Neck SurgeryZhejiang Provincial People's HospitalAffiliated People's Hospital, Hangzhou Medical CollegeHangzhouZhejiangChina
| | - Haiwei Guo
- Otolaryngology & Head and Neck CenterCancer CenterDepartment of Head and Neck SurgeryZhejiang Provincial People's HospitalAffiliated People's Hospital, Hangzhou Medical CollegeHangzhouZhejiangChina
| | - Weiping Yao
- Cancer CenterDepartment of Radiation OncologyZhejiang Provincial People's HospitalAffiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
- Graduate DepartmentBengbu Medical College, BengbuAnhuiChina
| | - Shuang Li
- Cancer CenterDepartment of Radiation OncologyZhejiang Provincial People's HospitalAffiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
- Graduate DepartmentJinzhou Medical UniversityJinzhouLiaoningChina
| | - Yanwei Lu
- Cancer CenterDepartment of Radiation OncologyZhejiang Provincial People's HospitalAffiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
| | - Yongshi Jia
- Cancer CenterDepartment of Radiation OncologyZhejiang Provincial People's HospitalAffiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
| | - Xiaodong Liang
- Cancer CenterDepartment of Radiation OncologyZhejiang Provincial People's HospitalAffiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
- Graduate DepartmentBengbu Medical College, BengbuAnhuiChina
| | - Jianming Tang
- Department of Radiation OncologyThe First Hospital of Lanzhou UniversityLanzhou UniversityLanzhouGansuChina
| | - Haibo Zhang
- Cancer CenterDepartment of Radiation OncologyZhejiang Provincial People's HospitalAffiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
| |
Collapse
|
28
|
Zhou L, Jia X, Shang Y, Sun Y, Liu Z, Liu J, Jiang W, Deng S, Yao Q, Chen J, Li H. PRMT1 inhibition promotes ferroptosis sensitivity via ACSL1 upregulation in acute myeloid leukemia. Mol Carcinog 2023. [PMID: 37144835 DOI: 10.1002/mc.23550] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 03/24/2023] [Accepted: 04/13/2023] [Indexed: 05/06/2023]
Abstract
Acute myeloid leukemia (AML) is a hematological malignancy with an alarming mortality rate. The development of novel therapeutic targets or drugs for AML is urgently needed. Ferroptosis is a form of regulated cell death driven by iron-dependent lipid peroxidation. Recently, ferroptosis has emerged as a novel method for targeting cancer, including AML. Epigenetic dysregulation is a hallmark of AML, and a growing body of evidence suggests that ferroptosis is subject to epigenetic regulation. Here, we identified protein arginine methyltransferase 1 (PRMT1) as a ferroptosis regulator in AML. The type I PRMT inhibitor GSK3368715 promoted ferroptosis sensitivity in vitro and in vivo. Moreover, PRMT1-knockout cells exhibited significantly increased sensitivity to ferroptosis, suggesting that PRMT1 is the primary target of GSK3368715 in AML. Mechanistically, both GSK3368715 and PRMT1 knockout upregulated acyl-CoA synthetase long-chain family member 1 (ACSL1), which acts as a ferroptosis promoter by increasing lipid peroxidation. Knockout ACSL1 reduced the ferroptosis sensitivity of AML cells following GSK3368715 treatment. Additionally, the GSK3368715 treatment reduced the abundance of H4R3me2a, the main histone methylation modification mediated by PRMT1, in both genome-wide and ACSL1 promoter regions. Overall, our results demonstrated a previously unknown role of the PRMT1/ACSL1 axis in ferroptosis and suggested the potential value and applications of the combination of PRMT1 inhibitor and ferroptosis inducers in AML treatment.
Collapse
Affiliation(s)
- Lixin Zhou
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Department of Hematology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Xiaoqing Jia
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yingying Shang
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yanni Sun
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Zhilong Liu
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jifeng Liu
- Department of Anus-Intestines, The People's Hospital of Luzhou, Luzhou, China
| | - Wen Jiang
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Siyuan Deng
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Qi Yao
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jieping Chen
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Hui Li
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
29
|
Zeng Z, Li Z, Xue J, Xue H, Liu Z, Zhang W, Liu H, Xu S. KDM4C silencing inhibits cell migration and enhances radiosensitivity by inducing CXCL2 transcription in hepatocellular carcinoma. Cell Death Discov 2023; 9:137. [PMID: 37117173 PMCID: PMC10147924 DOI: 10.1038/s41420-023-01418-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 04/30/2023] Open
Abstract
KDM4C, which is a histone lysine demethylase, has been proposed to participate in the malignant transformation and progression of several types of cancer. However, its roles in hepatocellular carcinoma (HCC) remain poorly understood. Here, we find that KDM4C protein expression is increased in HCC and promotes HCC cell growth, proliferation and migration. Furthermore, we provide evidence that depletion of KDM4C leads to a defective G2/M checkpoint, increases radiation-induced DNA damage, impairs DNA repair and enhances radiosensitivity in HCC cells. Using RNA sequencing, we identify that the chemokine CXCL2 is a downstream effector of KDM4C. KDM4C knockdown increases the binding of H3K36me3 to the promoter of CXCL2, thus upregulating CXCL2 expression and promoting CXCL2 secretion in HCC cells. Importantly, the observed effects of KDM4C depletion in HCC cells can be partially rescued by CXCL2 silencing. Thus, our findings reveal that KDM4C is involved in cell migration and radiosensitivity by modulating CXCL2 transcription, indicating that KDM4C may be a potential therapeutic target in HCC.
Collapse
Affiliation(s)
- Zhen Zeng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Zixuan Li
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Jun Xue
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Huichan Xue
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Zhiwei Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Wenxuan Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Hongli Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China.
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China.
| | - Shuangbing Xu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China.
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China.
| |
Collapse
|
30
|
The histone demethylase JMJD2C constitutes a novel NFE2 target gene that is required for the survival of JAK2 V617F mutated cells. Leukemia 2023; 37:919-923. [PMID: 36709354 PMCID: PMC10079541 DOI: 10.1038/s41375-023-01826-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 01/14/2023] [Accepted: 01/17/2023] [Indexed: 01/29/2023]
Abstract
The transcription factor NFE2 is overexpressed in most patients with myeloproliferative neoplasms (MPN). Moreover, mutations in NFE2, found in a subset of MPN patients, strongly predispose for transformation to acute leukemia. Transgenic mice overexpressing NFE2 as well as mice harboring NFE2 mutations display an MPN phenotype and spontaneously develop leukemia. However, the molecular mechanisms effecting NFE2-driven leukemic transformation remain incompletely understood. Here we show that the pro-leukemic histone demethylase JMJD2C constitutes a novel NFE2 target gene. JMJD2C expression is elevated in MPN patients as well as in NFE2 transgenic mice. Moreover, we show that loss of JMJD2C selectively impairs proliferation of JAK2V617F mutated cells. Our data suggest that JMJD2C represents a promising drug target in MPN and provide a rationale for further investigation in preclinical and clinical settings.
Collapse
|
31
|
Jiang Y, Liu L, Yang ZQ. KDM4 Demethylases: Structure, Function, and Inhibitors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1433:87-111. [PMID: 37751137 DOI: 10.1007/978-3-031-38176-8_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
KDM4 histone demethylases mainly catalyze the removal of methyl marks from H3K9 and H3K36 to epigenetically regulate chromatin structure and gene expression. KDM4 expression is strictly regulated to ensure proper function in a myriad of biological processes, including transcription, cellular proliferation and differentiation, DNA damage repair, immune response, and stem cell self-renewal. Aberrant expression of KDM4 demethylase has been documented in many types of blood and solid tumors, and thus, KDM4s represent promising therapeutic targets. In this chapter, we summarize the current knowledge of the structures and regulatory mechanisms of KDM4 proteins and our understanding of their alterations in human pathological processes with a focus on development and cancer. We also review the reported KDM4 inhibitors and discuss their potential as therapeutic agents.
Collapse
Affiliation(s)
- Yuanyuan Jiang
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, 4100 John R Street, HWCRC 815, Detroit, MI, 48201, USA
| | - Lanxin Liu
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, 4100 John R Street, HWCRC 815, Detroit, MI, 48201, USA
| | - Zeng-Quan Yang
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, 4100 John R Street, HWCRC 815, Detroit, MI, 48201, USA.
| |
Collapse
|
32
|
Kumar A, Emdad L, Fisher PB, Das SK. Targeting epigenetic regulation for cancer therapy using small molecule inhibitors. Adv Cancer Res 2023; 158:73-161. [PMID: 36990539 DOI: 10.1016/bs.acr.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Cancer cells display pervasive changes in DNA methylation, disrupted patterns of histone posttranslational modification, chromatin composition or organization and regulatory element activities that alter normal programs of gene expression. It is becoming increasingly clear that disturbances in the epigenome are hallmarks of cancer, which are targetable and represent attractive starting points for drug creation. Remarkable progress has been made in the past decades in discovering and developing epigenetic-based small molecule inhibitors. Recently, epigenetic-targeted agents in hematologic malignancies and solid tumors have been identified and these agents are either in current clinical trials or approved for treatment. However, epigenetic drug applications face many challenges, including low selectivity, poor bioavailability, instability and acquired drug resistance. New multidisciplinary approaches are being designed to overcome these limitations, e.g., applications of machine learning, drug repurposing, high throughput virtual screening technologies, to identify selective compounds with improved stability and better bioavailability. We provide an overview of the key proteins that mediate epigenetic regulation that encompass histone and DNA modifications and discuss effector proteins that affect the organization of chromatin structure and function as well as presently available inhibitors as potential drugs. Current anticancer small-molecule inhibitors targeting epigenetic modified enzymes that have been approved by therapeutic regulatory authorities across the world are highlighted. Many of these are in different stages of clinical evaluation. We also assess emerging strategies for combinatorial approaches of epigenetic drugs with immunotherapy, standard chemotherapy or other classes of agents and advances in the design of novel epigenetic therapies.
Collapse
|
33
|
Epimutations and Their Effect on Chromatin Organization: Exciting Avenues for Cancer Treatment. Cancers (Basel) 2022; 15:cancers15010215. [PMID: 36612210 PMCID: PMC9818548 DOI: 10.3390/cancers15010215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/14/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022] Open
Abstract
The three-dimensional architecture of genomes is complex. It is organized as fibers, loops, and domains that form high-order structures. By using different chromosome conformation techniques, the complex relationship between transcription and genome organization in the three-dimensional organization of genomes has been deciphered. Epigenetic changes, such as DNA methylation and histone modification, are the hallmark of cancers. Tumor initiation, progression, and metastasis are linked to these epigenetic modifications. Epigenetic inhibitors can reverse these altered modifications. A number of epigenetic inhibitors have been approved by FDA that target DNA methylation and histone modification. This review discusses the techniques involved in studying the three-dimensional organization of genomes, DNA methylation and histone modification, epigenetic deregulation in cancer, and epigenetic therapies targeting the tumor.
Collapse
|
34
|
Yokoyama A. Role of the MOZ/MLL-mediated transcriptional activation system for self-renewal in normal hematopoiesis and leukemogenesis. FEBS J 2022; 289:7987-8002. [PMID: 34482632 PMCID: PMC10078767 DOI: 10.1111/febs.16180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/17/2021] [Accepted: 09/03/2021] [Indexed: 01/14/2023]
Abstract
Homeostasis in the blood system is maintained by the balance between self-renewing stem cells and nonstem cells. To promote self-renewal, transcriptional regulators maintain epigenetic information during multiple rounds of cell division. Mutations in such transcriptional regulators cause aberrant self-renewal, leading to leukemia. MOZ, a histone acetyltransferase, and MLL, a histone methyltransferase, are transcriptional regulators that promote the self-renewal of hematopoietic stem cells. Gene rearrangements of MOZ and MLL generate chimeric genes encoding fusion proteins that function as constitutively active forms. These MOZ and MLL fusion proteins constitutively activate transcription of their target genes and cause aberrant self-renewal in committed hematopoietic progenitors, which normally do not self-renew. Recent progress in the field suggests that MOZ and MLL are part of a transcriptional activation system that activates the transcription of genes with nonmethylated CpG-rich promoters. The nonmethylated state of CpGs is normally maintained during cell divisions from the mother cell to the daughter cells. Thus, the MOZ/MLL-mediated transcriptional activation system replicates the expression profile of mother cells in daughter cells by activating the transcription of genes previously transcribed in the mother cell. This review summarizes the functions of the components of the MOZ/MLL-mediated transcriptional activation system and their roles in the promotion of self-renewal.
Collapse
Affiliation(s)
- Akihiko Yokoyama
- Tsuruoka Metabolomics Laboratory, National Cancer Center, Tsuruoka, Japan.,National Cancer Center Research Institute, Tokyo, Japan
| |
Collapse
|
35
|
Sauter C, Simonet J, Guidez F, Dumétier B, Pernon B, Callanan M, Bastie JN, Aucagne R, Delva L. Protein Arginine Methyltransferases as Therapeutic Targets in Hematological Malignancies. Cancers (Basel) 2022; 14:5443. [PMID: 36358861 PMCID: PMC9657843 DOI: 10.3390/cancers14215443] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 08/02/2023] Open
Abstract
Arginine methylation is a common post-translational modification affecting protein activity and the transcription of target genes when methylation occurs on histone tails. There are nine protein arginine methyltransferases (PRMTs) in mammals, divided into subgroups depending on the methylation they form on a molecule of arginine. During the formation and maturation of the different types of blood cells, PRMTs play a central role by controlling cell differentiation at the transcriptional level. PRMT enzymatic activity is necessary for many cellular processes in hematological malignancies, such as the activation of cell cycle and proliferation, inhibition of apoptosis, DNA repair processes, RNA splicing, and transcription by methylating histone tails' arginine. Chemical tools have been developed to inhibit the activity of PRMTs and have been tested in several models of hematological malignancies, including primary samples from patients, xenografts into immunodeficient mice, mouse models, and human cell lines. They show a significant effect by reducing cell viability and increasing the overall survival of mice. PRMT5 inhibitors have a strong therapeutic potential, as phase I clinical trials in hematological malignancies that use these molecules show promising results, thus, underlining PRMT inhibitors as useful therapeutic tools for cancer treatment in the future.
Collapse
Affiliation(s)
- Camille Sauter
- Inserm U1231, Team Epi2THM, LipSTIC Labex, UFR des Sciences de Santé, Université de Bourgogne, Université Bourgogne Franche-Comté, 21000 Dijon, France
| | - John Simonet
- Inserm U1231, Team Epi2THM, LipSTIC Labex, UFR des Sciences de Santé, Université de Bourgogne, Université Bourgogne Franche-Comté, 21000 Dijon, France
| | - Fabien Guidez
- Inserm U1231, Team Epi2THM, LipSTIC Labex, UFR des Sciences de Santé, Université de Bourgogne, Université Bourgogne Franche-Comté, 21000 Dijon, France
| | - Baptiste Dumétier
- Inserm U1231, Team Epi2THM, LipSTIC Labex, UFR des Sciences de Santé, Université de Bourgogne, Université Bourgogne Franche-Comté, 21000 Dijon, France
| | - Baptiste Pernon
- Inserm U1231, Team Epi2THM, LipSTIC Labex, UFR des Sciences de Santé, Université de Bourgogne, Université Bourgogne Franche-Comté, 21000 Dijon, France
| | - Mary Callanan
- Inserm U1231, Team Epi2THM, LipSTIC Labex, UFR des Sciences de Santé, Université de Bourgogne, Université Bourgogne Franche-Comté, 21000 Dijon, France
- Unit for Innovation in Genetics and Epigenetic in Oncology (IGEO)/CRIGEN Core Facility, University Hospital François Mitterrand, 21000 Dijon, France
| | - Jean-Noël Bastie
- Inserm U1231, Team Epi2THM, LipSTIC Labex, UFR des Sciences de Santé, Université de Bourgogne, Université Bourgogne Franche-Comté, 21000 Dijon, France
- Department of Clinical Hematology, University Hospital François Mitterrand, 21000 Dijon, France
| | - Romain Aucagne
- Inserm U1231, Team Epi2THM, LipSTIC Labex, UFR des Sciences de Santé, Université de Bourgogne, Université Bourgogne Franche-Comté, 21000 Dijon, France
- Unit for Innovation in Genetics and Epigenetic in Oncology (IGEO)/CRIGEN Core Facility, University Hospital François Mitterrand, 21000 Dijon, France
| | - Laurent Delva
- Inserm U1231, Team Epi2THM, LipSTIC Labex, UFR des Sciences de Santé, Université de Bourgogne, Université Bourgogne Franche-Comté, 21000 Dijon, France
| |
Collapse
|
36
|
Sun YN, Ma YN, Jia XQ, Yao Q, Chen JP, Li H. Inducement of ER Stress by PAD Inhibitor BB-Cl-Amidine to Effectively Kill AML Cells. Curr Med Sci 2022; 42:958-965. [PMID: 36245030 DOI: 10.1007/s11596-022-2637-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 08/30/2022] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Acute myeloid leukemia (AML) is a highly heterogeneous and recurrent hematological malignancy. Despite the emergence of novel chemotherapy drugs, AML patients' complete remission (CR) remains unsatisfactory. Consequently, it is imperative to discover new therapeutic targets or medications to treat AML. Such epigenetic changes like DNA methylation and histone modification play vital roles in AML. Peptidylarginine deminase (PAD) is a protein family of histone demethylases, among which the PAD2 and PAD4 expression have been demonstrated to be elevated in AML patients, thus suggesting a potential role of PADs in the development or maintenance of AML and the potential for the identification of novel therapeutic targets. METHODS AML cells were treated in vitro with the pan-PAD inhibitor BB-Cl-Amidine (BB-Cl-A). The AML cell lines were effectively induced into apoptosis by BB-Cl-A. However, the PAD4-specific inhibitor GSK484 did not. RESULTS PAD2 played a significant role in AML. Furthermore, we found that BB-Cl-A could activate the endoplasmic reticulum (ER) stress response, as evidenced by an increase in phosphorylated PERK (p-PERK) and eIF2α (p-eIF2α). As a result of the ER stress activation, the BB-Cl-A effectively induced apoptosis in the AML cells. CONCLUSION Our findings indicated that PAD2 plays a role in ER homeostasis maintenance and apoptosis prevention. Therefore, targeting PAD2 with BB-Cl-A could represent a novel therapeutic strategy for treating AML.
Collapse
Affiliation(s)
- Yan-Ni Sun
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yan-Ni Ma
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Xiao-Qing Jia
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Qi Yao
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Jie-Ping Chen
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| | - Hui Li
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| |
Collapse
|
37
|
Wu Q, Young B, Wang Y, Davidoff AM, Rankovic Z, Yang J. Recent Advances with KDM4 Inhibitors and Potential Applications. J Med Chem 2022; 65:9564-9579. [PMID: 35838529 PMCID: PMC9531573 DOI: 10.1021/acs.jmedchem.2c00680] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The histone lysine demethylase 4 (KDM4) family plays an important role in regulating gene transcription, DNA repair, and metabolism. The dysregulation of KDM4 functions is associated with many human disorders, including cancer, obesity, and cardiovascular diseases. Selective and potent KDM4 inhibitors may help not only to understand the role of KDM4 in these disorders but also to provide potential therapeutic opportunities. Here, we provide an overview of the field and discuss current status, challenges, and opportunities lying ahead in the development of KDM4-based anticancer therapeutics.
Collapse
Affiliation(s)
- Qiong Wu
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Brandon Young
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Yan Wang
- Department of Geriatrics and Occupational Disease, Qingdao Central Hospital, Qingdao 266044, China
| | - Andrew M Davidoff
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Zoran Rankovic
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Jun Yang
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States.,Department of Pathology and Laboratory Medicine, College of Medicine, The University of Tennessee Health Science Center, 930 Madison Avenue, Suite 500, Memphis, Tennessee 38163, United States
| |
Collapse
|
38
|
Singh S, Abu-Zaid A, Jin H, Fang J, Wu Q, Wang T, Feng H, Quarni W, Shao Y, Maxham L, Abdolvahabi A, Yun MK, Vaithiyalingam S, Tan H, Bowling J, Honnell V, Young B, Guo Y, Bajpai R, Pruett-Miller SM, Grosveld GC, Hatley M, Xu B, Fan Y, Wu G, Chen EY, Chen T, Lewis PW, Rankovic Z, Li Y, Murphy AJ, Easton J, Peng J, Chen X, Wang R, White SW, Davidoff AM, Yang J. Targeting KDM4 for treating PAX3-FOXO1-driven alveolar rhabdomyosarcoma. Sci Transl Med 2022; 14:eabq2096. [PMID: 35857643 PMCID: PMC9548378 DOI: 10.1126/scitranslmed.abq2096] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Chimeric transcription factors drive lineage-specific oncogenesis but are notoriously difficult to target. Alveolar rhabdomyosarcoma (RMS) is an aggressive childhood soft tissue sarcoma transformed by the pathognomonic Paired Box 3-Forkhead Box O1 (PAX3-FOXO1) fusion protein, which governs a core regulatory circuitry transcription factor network. Here, we show that the histone lysine demethylase 4B (KDM4B) is a therapeutic vulnerability for PAX3-FOXO1+ RMS. Genetic and pharmacologic inhibition of KDM4B substantially delayed tumor growth. Suppression of KDM4 proteins inhibited the expression of core oncogenic transcription factors and caused epigenetic alterations of PAX3-FOXO1-governed superenhancers. Combining KDM4 inhibition with cytotoxic chemotherapy led to tumor regression in preclinical PAX3-FOXO1+ RMS subcutaneous xenograft models. In summary, we identified a targetable mechanism required for maintenance of the PAX3-FOXO1-related transcription factor network, which may translate to a therapeutic approach for fusion-positive RMS.
Collapse
Affiliation(s)
- Shivendra Singh
- Department of Surgery, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Ahmed Abu-Zaid
- Department of Surgery, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Hongjian Jin
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Jie Fang
- Department of Surgery, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Qiong Wu
- Department of Surgery, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Tingting Wang
- Center for Childhood Cancer and Blood Disease, Abigail Wexner Research Institute, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, USA
| | - Helin Feng
- Department of Orthopedics, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, China
| | - Waise Quarni
- Department of Surgery, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Ying Shao
- Department of Computational Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Lily Maxham
- Department of Computational Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Alireza Abdolvahabi
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Mi-Kyung Yun
- Department of Structural Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Sivaraja Vaithiyalingam
- Department of Structural Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
- Protein Technologies Center, Molecular Interaction Analysis, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Haiyan Tan
- Department of Structural Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - John Bowling
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Victoria Honnell
- Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Brandon Young
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Yian Guo
- Department of Biostatistics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Richa Bajpai
- Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Shondra M Pruett-Miller
- Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Gerard C Grosveld
- Department of Genetics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Mark Hatley
- Department of Oncology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Beisi Xu
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Yiping Fan
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Gang Wu
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Eleanor Y Chen
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Peter W Lewis
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53706, USA
| | - Zoran Rankovic
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Yimei Li
- Department of Biostatistics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Andrew J Murphy
- Department of Surgery, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - John Easton
- Department of Computational Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Junmin Peng
- Department of Structural Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Xiang Chen
- Department of Computational Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Ruoning Wang
- Center for Childhood Cancer and Blood Disease, Abigail Wexner Research Institute, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, USA
| | - Stephen W White
- Department of Structural Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
- Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Andrew M Davidoff
- Department of Surgery, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Jun Yang
- Department of Surgery, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
- Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
- Department of Pathology, College of Medicine, The University of Tennessee Health Science Center, 930 Madison Ave., Suite 500, Memphis, TN 38163, USA
| |
Collapse
|
39
|
Li Y, Wang C, Gao H, Gu J, Zhang Y, Zhang Y, Xie M, Cheng X, Yang M, Zhang W, Li Y, He M, Xu H, Zhang H, Ji Q, Ma T, Ding S, Zhao Y, Gao Y. KDM4 inhibitor SD49-7 attenuates leukemia stem cell via KDM4A/MDM2/p21 CIP1 axis. Theranostics 2022; 12:4922-4934. [PMID: 35836814 PMCID: PMC9274755 DOI: 10.7150/thno.71460] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 06/04/2022] [Indexed: 01/12/2023] Open
Abstract
Rationale: Traditional treatments for leukemia fail to address stem cell drug resistance characterized by epigenetic mediators such as histone lysine-specific demethylase 4 (KDM4). The KDM4 family, which acts as epigenetic regulators inducing histone demethylation during the development and progression of leukemia, lacks specific molecular inhibitors. Methods: The KDM4 inhibitor, SD49-7, was synthesized and purified based on acyl hydrazone Schiff base. The interaction between SD49-7 and KDM4s was monitored in vitro by surface plasma resonance (SPR). In vitro and in vivo biological function experiments were performed to analyze apoptosis, colony-formation, proliferation, differentiation, and cell cycle in cell sub-lines and mice. Molecular mechanisms were demonstrated by RNA-seq, ChIP-seq, RT-qPCR and Western blotting. Results: We found significantly high KDM4A expression levels in several human leukemia subtypes. The knockdown of KDM4s inhibited leukemogenesis in the MLL-AF9 leukemia mouse model but did not affect the survival of normal human hematopoietic cells. We identified SD49-7 as a selective KDM4 inhibitor that impaired the progression of leukemia stem cells (LSCs) in vitro. SD49-7 suppressed leukemia development in the mouse model and patient-derived xenograft model of leukemia. Depletion of KDM4s activated the apoptosis signaling pathway by suppressing MDM2 expression via modulating H3K9me3 levels on the MDM2 promoter region. Conclusion: Our study demonstrates a unique KDM4 inhibitor for LSCs to overcome the resistance to traditional treatment and offers KDM4 inhibition as a promising strategy for resistant leukemia therapy.
Collapse
Affiliation(s)
- Yinghui Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Chaoqun Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Huier Gao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China.,Department of Pharmacy, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin 300192, China
| | - Jiali Gu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Yiran Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Yingyi Zhang
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55901, USA
| | - Min Xie
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
| | - Xuelian Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Ming Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Wenshan Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Yafang Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Mei He
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Hui Xu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Hexiao Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Qing Ji
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Tianhua Ma
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China.,Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Sheng Ding
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China.,Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China.,✉ Corresponding authors: Yingdai Gao, E-mail: , +86-022-23909416; Yu Zhao, E-mail: ; Sheng Ding, E-mail:
| | - Yu Zhao
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.,✉ Corresponding authors: Yingdai Gao, E-mail: , +86-022-23909416; Yu Zhao, E-mail: ; Sheng Ding, E-mail:
| | - Yingdai Gao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China.,✉ Corresponding authors: Yingdai Gao, E-mail: , +86-022-23909416; Yu Zhao, E-mail: ; Sheng Ding, E-mail:
| |
Collapse
|
40
|
Histone demethylase KDM4C is a functional dependency in JAK2-mutated neoplasms. Leukemia 2022; 36:1843-1849. [PMID: 35654819 PMCID: PMC9252905 DOI: 10.1038/s41375-022-01611-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/09/2022] [Accepted: 05/20/2022] [Indexed: 11/08/2022]
Abstract
Mutations of the JAK2 gene are frequent aberrations in the aging hematopoietic system and in myeloid neoplasms. While JAK-inhibitors efficiently reduce hyperinflammation induced by the constitutively active mutated JAK2 kinase, the malignant clone and abundance of mutated cells remains rather unaffected. Here, we sought to assess for genetic vulnerabilities of JAK2-mutated clones. We identified lysine-specific demethylase KDM4C as a selective genetic dependency that persists upon JAK-inhibitor treatment. Genetic inactivation of KDM4C in human and murine JAK2-mutated cells resulted in loss of cell competition and reduced proliferation. These findings led to reduced disease penetrance and improved survival in xenograft models of human JAK2-mutated cells. KDM4C deleted cells showed alterations in target histone residue methylation and target gene expression, resulting in induction of cellular senescence. In summary, these data establish KDM4C as a specific dependency and therapeutic target in JAK2-mutated cells that is essential for oncogenic signaling and prevents induction of senescence.
Collapse
|
41
|
Oksa L, Mäkinen A, Nikkilä A, Hyvärinen N, Laukkanen S, Rokka A, Haapaniemi P, Seki M, Takita J, Kauko O, Heinäniemi M, Lohi O. Arginine Methyltransferase PRMT7 Deregulates Expression of RUNX1 Target Genes in T-Cell Acute Lymphoblastic Leukemia. Cancers (Basel) 2022; 14:2169. [PMID: 35565298 PMCID: PMC9101393 DOI: 10.3390/cancers14092169] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/21/2022] [Accepted: 04/23/2022] [Indexed: 02/05/2023] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological malignancy with no well-established prognostic biomarkers. We examined the expression of protein arginine methyltransferases across hematological malignancies and discovered high levels of PRMT7 mRNA in T-ALL, particularly in the mature subtypes of T-ALL. The genetic deletion of PRMT7 by CRISPR-Cas9 reduced the colony formation of T-ALL cells and changed arginine monomethylation patterns in protein complexes associated with the RNA and DNA processing and the T-ALL pathogenesis. Among them was RUNX1, whose target gene expression was consequently deregulated. These results suggest that PRMT7 plays an active role in the pathogenesis of T-ALL.
Collapse
Affiliation(s)
- Laura Oksa
- Tampere Center for Child, Adolescent, and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere University, FI-33520 Tampere, Finland; (A.M.); (A.N.); (N.H.); (S.L.); (O.L.)
| | - Artturi Mäkinen
- Tampere Center for Child, Adolescent, and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere University, FI-33520 Tampere, Finland; (A.M.); (A.N.); (N.H.); (S.L.); (O.L.)
- Fimlab Laboratories, Department of Pathology, Tampere University Hospital, FI-33520 Tampere, Finland
| | - Atte Nikkilä
- Tampere Center for Child, Adolescent, and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere University, FI-33520 Tampere, Finland; (A.M.); (A.N.); (N.H.); (S.L.); (O.L.)
| | - Noora Hyvärinen
- Tampere Center for Child, Adolescent, and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere University, FI-33520 Tampere, Finland; (A.M.); (A.N.); (N.H.); (S.L.); (O.L.)
| | - Saara Laukkanen
- Tampere Center for Child, Adolescent, and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere University, FI-33520 Tampere, Finland; (A.M.); (A.N.); (N.H.); (S.L.); (O.L.)
| | - Anne Rokka
- Turku Bioscience Center, University of Turku and Åbo Akademi University, FI-20014 Turku, Finland; (A.R.); (P.H.); (O.K.)
| | - Pekka Haapaniemi
- Turku Bioscience Center, University of Turku and Åbo Akademi University, FI-20014 Turku, Finland; (A.R.); (P.H.); (O.K.)
| | - Masafumi Seki
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-17165 Solna, Sweden;
| | - Junko Takita
- Graduate School of Medicine, Kyoto University, Kyoto JP-606-8501, Japan;
| | - Otto Kauko
- Turku Bioscience Center, University of Turku and Åbo Akademi University, FI-20014 Turku, Finland; (A.R.); (P.H.); (O.K.)
| | - Merja Heinäniemi
- The Institute of Biomedicine, University of Eastern Finland, FI-70211 Kuopio, Finland;
| | - Olli Lohi
- Tampere Center for Child, Adolescent, and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere University, FI-33520 Tampere, Finland; (A.M.); (A.N.); (N.H.); (S.L.); (O.L.)
- Tays Cancer Center, Tampere University Hospital, FI-33520 Tampere, Finland
| |
Collapse
|
42
|
Chen Z, Gan J, Wei Z, Zhang M, Du Y, Xu C, Zhao H. The Emerging Role of PRMT6 in Cancer. Front Oncol 2022; 12:841381. [PMID: 35311114 PMCID: PMC8931394 DOI: 10.3389/fonc.2022.841381] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/09/2022] [Indexed: 01/01/2023] Open
Abstract
Protein arginine methyltransferase 6 (PRMT6) is a type I PRMT that is involved in epigenetic regulation of gene expression through methylating histone or non-histone proteins, and other processes such as alternative splicing, DNA repair, cell proliferation and senescence, and cell signaling. In addition, PRMT6 also plays different roles in various cancers via influencing cell growth, migration, invasion, apoptosis, and drug resistant, which make PRMT6 an anti-tumor therapeutic target for a variety of cancers. As a result, many PRMT6 inhibitors are being utilized to explore their efficacy as potential drugs for various cancers. In this review, we summarize the current knowledge on the function and structure of PRMT6. At the same time, we highlight the role of PRMT6 in different cancers, including the differentiation of its promotive or inhibitory effects and the underlying mechanisms. Apart from the above, current research progress and the potential mechanisms of PRMT6 behind them were also summarized.
Collapse
Affiliation(s)
- Zhixian Chen
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, Shanghai, China
| | - Jianfeng Gan
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, Shanghai, China
| | - Zhi Wei
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, Shanghai, China
| | - Mo Zhang
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, Shanghai, China
| | - Yan Du
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, Shanghai, China
| | - Congjian Xu
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, Shanghai, China
- *Correspondence: Hongbo Zhao, ; Congjian Xu,
| | - Hongbo Zhao
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, Shanghai, China
- *Correspondence: Hongbo Zhao, ; Congjian Xu,
| |
Collapse
|
43
|
The Novel Protease Activities of JMJD5–JMJD6–JMJD7 and Arginine Methylation Activities of Arginine Methyltransferases Are Likely Coupled. Biomolecules 2022; 12:biom12030347. [PMID: 35327545 PMCID: PMC8945206 DOI: 10.3390/biom12030347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/03/2022] [Accepted: 02/18/2022] [Indexed: 12/23/2022] Open
Abstract
The surreptitious discoveries of the protease activities on arginine-methylated targets of a subfamily of Jumonji domain-containing family including JMJD5, JMJD6, and JMJD7 pose several questions regarding their authenticity, function, purpose, and relations with others. At the same time, despite several decades of efforts and massive accumulating data regarding the roles of the arginine methyltransferase family (PRMTs), the exact function of this protein family still remains a mystery, though it seems to play critical roles in transcription regulation, including activation and inactivation of a large group of genes, as well as other biological activities. In this review, we aim to elucidate that the function of JMJD5/6/7 and PRMTs are likely coupled. Besides roles in the regulation of the biogenesis of membrane-less organelles in cells, they are major players in regulating stimulating transcription factors to control the activities of RNA Polymerase II in higher eukaryotes, especially in the animal kingdom. Furthermore, we propose that arginine methylation by PRMTs could be a ubiquitous action marked for destruction after missions by a subfamily of the Jumonji protein family.
Collapse
|
44
|
Staehle HF, Pahl HL, Jutzi JS. The Cross Marks the Spot: The Emerging Role of JmjC Domain-Containing Proteins in Myeloid Malignancies. Biomolecules 2021; 11:biom11121911. [PMID: 34944554 PMCID: PMC8699298 DOI: 10.3390/biom11121911] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 12/16/2022] Open
Abstract
Histone methylation tightly regulates chromatin accessibility, transcription, proliferation, and cell differentiation, and its perturbation contributes to oncogenic reprogramming of cells. In particular, many myeloid malignancies show evidence of epigenetic dysregulation. Jumonji C (JmjC) domain-containing proteins comprise a large and diverse group of histone demethylases (KDMs), which remove methyl groups from lysines in histone tails and other proteins. Cumulating evidence suggests an emerging role for these demethylases in myeloid malignancies, rendering them attractive targets for drug interventions. In this review, we summarize the known functions of Jumonji C (JmjC) domain-containing proteins in myeloid malignancies. We highlight challenges in understanding the context-dependent mechanisms of these proteins and explore potential future pharmacological targeting.
Collapse
Affiliation(s)
- Hans Felix Staehle
- Division of Molecular Hematology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, 79098 Freiburg, Germany; (H.F.S.); (H.L.P.)
| | - Heike Luise Pahl
- Division of Molecular Hematology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, 79098 Freiburg, Germany; (H.F.S.); (H.L.P.)
| | - Jonas Samuel Jutzi
- Division of Molecular Hematology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, 79098 Freiburg, Germany; (H.F.S.); (H.L.P.)
- Division of Hematology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston 02115, MA, USA
- Correspondence:
| |
Collapse
|
45
|
Zhou L, Yao Q, Ma L, Li H, Chen J. TAF1 inhibitor Bay-299 induces cell death in acute myeloid leukemia. Transl Cancer Res 2021; 10:5307-5318. [PMID: 35116379 PMCID: PMC8798726 DOI: 10.21037/tcr-21-2295] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/23/2021] [Indexed: 11/08/2022]
Abstract
BACKGROUND Acute myeloid leukemia (AML) is one of the most common hematopoietic malignancies. The cure rate of currently intensive chemotherapy in AML was only 40% or less, and there is an urgent need to develop novel effective therapeutic targets or drugs. The TATA-box binding protein associated factor 1 (TAF1) plays important roles in transcriptional regulation and leukemogenesis. However, the potential of TAF1 as a therapeutic target for AML remains unclear. The present study examined the effects of the TAF1 inhibitor Bay-299 on AML cells and the underlying molecular mechanisms. METHODS The expression of TAF1 in various types of tumors was analyzed using The Cancer Genome Atlas (TCGA) and the UALCAN database. The effects of Bay-299 on cell proliferation were evaluated using the Cell Counting Kit-8 (CCK-8) assay. Cell death, EdU incorporation, and cell differentiation were detected using flow cytometry. Western blot analysis was utilized to confirm the activation of the apoptotic pathway. Expression of cell cycle and cell death-related genes was analyzed by quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS Analysis of the public databases showed that TAF1 expression was elevated in multiple types of tumors. Treatment of AML cells with the TAF1 inhibitor Bay-299 resulted in a remarkable inhibition of cell growth, increased cell death, reduced Edu incorporation, and increased cell differentiation. The apoptosis inhibitor Z-VAD and the receptor-interacting protein kinase 1 (RIPK1) inhibitor Nec-2 could rescue cell death induced by Bay-299. Bay-299 treatment increased the cleavage of key pro-apoptotic proteins, and this effect was ameliorated by administration of Z-VAD and Nec-2. Moreover, Bay-299 treatment was associated with increased expression of cell cycle inhibitor genes and multiple pyroptosis-promoting genes, contributing to the phenotypes observed in AML cell lines. CONCLUSIONS The TAF1 inhibitor Bay-299 induced AML cell death through multiple mechanisms and may be a promising candidate for the treatment of patients with AML.
Collapse
Affiliation(s)
- Lixin Zhou
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Qi Yao
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Le Ma
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Hui Li
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jieping Chen
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
46
|
Xu J, Richard S. Cellular pathways influenced by protein arginine methylation: Implications for cancer. Mol Cell 2021; 81:4357-4368. [PMID: 34619091 PMCID: PMC8571027 DOI: 10.1016/j.molcel.2021.09.011] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/24/2021] [Accepted: 09/08/2021] [Indexed: 02/07/2023]
Abstract
Arginine methylation is an influential post-translational modification occurring on histones, RNA binding proteins, and many other cellular proteins, affecting their function by altering their protein-protein and protein-nucleic acid interactions. Recently, a wealth of information has been gathered, implicating protein arginine methyltransferases (PRMTs), enzymes that deposit arginine methylation, in transcription, pre-mRNA splicing, DNA damage signaling, and immune signaling with major implications for cancer therapy, especially immunotherapy. This review summarizes this recent progress and the current state of PRMT inhibitors, some in clinical trials, as promising drug targets for cancer.
Collapse
Affiliation(s)
- Jian Xu
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA; Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, and Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| | - Stéphane Richard
- Segal Cancer Center, Lady Davis Institute for Medical Research, Gerald Bronfman Department of Oncology, and Departments of Medicine, Human Genetics, and Biochemistry, McGill University, Montréal, QC H3T 1E2, Canada.
| |
Collapse
|
47
|
Tip60 activates Hoxa9 and Meis1 expression through acetylation of H2A.Z, promoting MLL-AF10 and MLL-ENL acute myeloid leukemia. Leukemia 2021; 35:2840-2853. [PMID: 33967269 DOI: 10.1038/s41375-021-01244-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 02/15/2021] [Accepted: 03/26/2021] [Indexed: 02/06/2023]
Abstract
Chromosome translocations involving the MLL gene are common rearrangements in leukemia. Such translocations fuse the MLL 5'-region to partner genes in frame, producing MLL-fusions that cause MLL-related leukemia. MLL-fusions activate transcription of target genes such as HoxA cluster and Meis1, but the underlying mechanisms remain to be fully elucidated. In this study, we discovered that Tip60, a MYST-type histone acetyltransferase, was required for the expression of HoxA cluster and Meis1 genes and the development of MLL-fusion leukemia. Tip60 was recruited by MLL-AF10 and MLL-ENL fusions to the Hoxa9 locus, where it acetylated H2A.Z, thereby promoting Hoxa9 gene expression. Conditional deletion of Tip60 prevented the development of MLL-AF10 and MLL-ENL leukemia, indicating that Tip60 is indispensable for the leukemogenic activity of the MLL-AF10 and MLL-ENL-fusions. Our findings provide novel insight about epigenetic regulation in the development of MLL-AF10 and MLL-ENL-fusion leukemia.
Collapse
|
48
|
Xue L, Li C, Ren J, Wang Y. KDM4C contributes to cytarabine resistance in acute myeloid leukemia via regulating the miR-328-3p/CCND2 axis through MALAT1. Ther Adv Chronic Dis 2021; 12:2040622321997259. [PMID: 34394903 PMCID: PMC8358730 DOI: 10.1177/2040622321997259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 02/03/2021] [Indexed: 11/17/2022] Open
Abstract
Aims Acute myeloid leukemia (AML) is an aggressive hematologic neoplasm, in which relapse due to drug resistance is the main cause for treatment failure and the disease progression. In this study, we aimed to investigate the molecular mechanism of KDM4C-dependent MALAT1/miR-328-3p/CCND2 axis in cytarabine (Ara-C) resistance in the context of AML. Methods Bioinformatics analysis was performed to predict the targeting relationships among KDM4C, MALAT1, miR-328-3p, and CCND2 in AML, which were validated with chromatin immunoprecipitation and dual-luciferase reporter assay. Methylation-specific polymerase chain reaction was conducted to detect the methylation of MALAT1 promoter. After conducting gain- and loss-of-function assays, we investigated the effect of KDM4C on cell Ara-C resistance. A NOD/SCID mouse model was established to further investigate the roles of KDM4C/MALAT1/miR-328-3p/CCND2 in Ara-C resistant AML cells. Results KDM4C expression was upregulated in AML. KDM4C upregulation promoted the demethylation in the promoter region of MALAT1 to increase its expression, MALAT1 targeted and inhibited miR-328-3p expression, enhancing the Ara-C resistance of HL-60/A. miR-328-3p targeted and suppressed the expression of CCND2 in HL-60/A to inhibit the Ara-C resistance. Mechanistically, KDM4C regulated miR-328-3p/CCND2 through MALAT1, resulting in Ara-C resistance in AML. Findings in an in vivo xenograft NOD/SCID mouse model further confirmed the contribution of KDM4C/MALAT1/miR-328-3p/CCND2 in the Ara-C resistant AML. Conclusion Our study demonstrated that KDM4C may up-regulate MALAT1 expression, which decreases the expression of miR-328-3p. The downregulation of miR-328-3p increased the level of CCND2, which induced the Ara-C resistance in AML.
Collapse
Affiliation(s)
- Lu Xue
- Department of Pediatrics Hematology, The First Hospital of Jilin University, Changchun, P.R. China
| | - Chunhuai Li
- Department of Pediatrics Hematology, The First Hospital of Jilin University, Changchun, P.R. China
| | - Jin Ren
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, P.R. China
| | - Yue Wang
- Department of Pediatrics Hematology, The First Hospital of Jilin University, No. 1, Xinmin Street, Chaoyang District, Changchun, Jilin Province 130021, P.R. China
| |
Collapse
|
49
|
Gene Transcription as a Therapeutic Target in Leukemia. Int J Mol Sci 2021; 22:ijms22147340. [PMID: 34298959 PMCID: PMC8304797 DOI: 10.3390/ijms22147340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 12/11/2022] Open
Abstract
Blood malignancies often arise from undifferentiated hematopoietic stem cells or partially differentiated stem-like cells. A tight balance of multipotency and differentiation, cell division, and quiescence underlying normal hematopoiesis requires a special program governed by the transcriptional machinery. Acquisition of drug resistance by tumor cells also involves reprogramming of their transcriptional landscape. Limiting tumor cell plasticity by disabling reprogramming of the gene transcription is a promising strategy for improvement of treatment outcomes. Herein, we review the molecular mechanisms of action of transcription-targeted drugs in hematological malignancies (largely in leukemia) with particular respect to the results of clinical trials.
Collapse
|
50
|
Repenning A, Happel D, Bouchard C, Meixner M, Verel‐Yilmaz Y, Raifer H, Holembowski L, Krause E, Kremmer E, Feederle R, Keber CU, Lohoff M, Slater EP, Bartsch DK, Bauer U. PRMT1 promotes the tumor suppressor function of p14 ARF and is indicative for pancreatic cancer prognosis. EMBO J 2021; 40:e106777. [PMID: 33999432 PMCID: PMC8246066 DOI: 10.15252/embj.2020106777] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 12/04/2022] Open
Abstract
The p14ARF protein is a well-known regulator of p53-dependent and p53-independent tumor-suppressive activities. In unstressed cells, p14ARF is predominantly sequestered in the nucleoli, bound to its nucleolar interaction partner NPM. Upon genotoxic stress, p14ARF undergoes an immediate redistribution to the nucleo- and cytoplasm, where it promotes activation of cell cycle arrest and apoptosis. Here, we identify p14ARF as a novel interaction partner and substrate of PRMT1 (protein arginine methyltransferase 1). PRMT1 methylates several arginine residues in the C-terminal nuclear/nucleolar localization sequence (NLS/NoLS) of p14ARF . In the absence of cellular stress, these arginines are crucial for nucleolar localization of p14ARF . Genotoxic stress causes augmented interaction between PRMT1 and p14ARF , accompanied by arginine methylation of p14ARF . PRMT1-dependent NLS/NoLS methylation promotes the release of p14ARF from NPM and nucleolar sequestration, subsequently leading to p53-independent apoptosis. This PRMT1-p14ARF cooperation is cancer-relevant and indicative for PDAC (pancreatic ductal adenocarcinoma) prognosis and chemotherapy response of pancreatic tumor cells. Our data reveal that PRMT1-mediated arginine methylation is an important trigger for p14ARF 's stress-induced tumor-suppressive function.
Collapse
Affiliation(s)
- Antje Repenning
- Institute for Molecular Biology and Tumor Research (IMT)Philipps‐University MarburgMarburgGermany
| | - Daniela Happel
- Institute for Molecular Biology and Tumor Research (IMT)Philipps‐University MarburgMarburgGermany
| | - Caroline Bouchard
- Institute for Molecular Biology and Tumor Research (IMT)Philipps‐University MarburgMarburgGermany
| | - Marion Meixner
- Institute for Molecular Biology and Tumor Research (IMT)Philipps‐University MarburgMarburgGermany
| | - Yesim Verel‐Yilmaz
- Department of VisceralThoracic and Vascular SurgeryUniversity Hospital MarburgPhilipps‐University MarburgMarburgGermany
| | - Hartmann Raifer
- Core Facility Flow CytometryUniversity Hospital MarburgPhilipps‐University MarburgMarburgGermany
- Institute for Med. Microbiology & Hospital HygieneUniversity Hospital MarburgPhilipps‐University MarburgMarburgGermany
| | - Lena Holembowski
- Institute for Molecular Biology and Tumor Research (IMT)Philipps‐University MarburgMarburgGermany
| | | | - Elisabeth Kremmer
- Institute of Molecular ImmunologyHelmholtz Zentrum MünchenGerman Research Center for Environmental HealthMünchenGermany
| | - Regina Feederle
- Monoclonal Antibody Core FacilityInstitute for Diabetes and ObesityHelmholtz Zentrum MünchenGerman Research Center for Environmental HealthNeuherbergGermany
| | - Corinna U Keber
- Institute for PathologyUniversity Hospital MarburgPhilipps‐University MarburgMarburgGermany
| | - Michael Lohoff
- Institute for Med. Microbiology & Hospital HygieneUniversity Hospital MarburgPhilipps‐University MarburgMarburgGermany
| | - Emily P Slater
- Department of VisceralThoracic and Vascular SurgeryUniversity Hospital MarburgPhilipps‐University MarburgMarburgGermany
| | - Detlef K Bartsch
- Department of VisceralThoracic and Vascular SurgeryUniversity Hospital MarburgPhilipps‐University MarburgMarburgGermany
| | - Uta‐Maria Bauer
- Institute for Molecular Biology and Tumor Research (IMT)Philipps‐University MarburgMarburgGermany
| |
Collapse
|