1
|
Mao Y, Xia Z, Xia W, Jiang P. Metabolic reprogramming, sensing, and cancer therapy. Cell Rep 2024; 43:115064. [PMID: 39671294 DOI: 10.1016/j.celrep.2024.115064] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/30/2024] [Accepted: 11/21/2024] [Indexed: 12/15/2024] Open
Abstract
The metabolic reprogramming of tumor cells is a crucial strategy for their survival and proliferation, involving tissue- and condition-dependent remodeling of certain metabolic pathways. While it has become increasingly clear that tumor cells integrate extracellular and intracellular signals to adapt and proliferate, nutrient and metabolite sensing also exert direct or indirect influences, although the underlying mechanisms remain incompletely understood. Furthermore, metabolic changes not only support the rapid growth and dissemination of tumor cells but also promote immune evasion by metabolically "educating" immune cells in the tumor microenvironment (TME). Recent studies have highlighted the profound impact of metabolic reprogramming on the TME and the potential of targeting metabolic pathways as a therapeutic strategy, with several enzyme inhibitors showing promising results in clinical trials. Thus, understanding how tumor cells alter their metabolic pathways and metabolically remodel the TME to support their survival and proliferation may offer new strategies for metabolic therapy and immunotherapy.
Collapse
Affiliation(s)
- Youxiang Mao
- State Key Laboratory of Molecular Oncology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Ziyan Xia
- State Key Laboratory of Molecular Oncology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Wenjun Xia
- State Key Laboratory of Molecular Oncology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Peng Jiang
- State Key Laboratory of Molecular Oncology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China.
| |
Collapse
|
2
|
Moreno P, Ohara Y, Craig AJ, Liu H, Yang S, Dorsey TH, Zhang L, Panigrahi G, Cawley H, Azizian A, Gaedcke J, Ghadimi M, Hanna N, Hussain SP. ADRA2A promotes the classical/progenitor subtype and reduces disease aggressiveness of pancreatic cancer. Carcinogenesis 2024; 45:845-856. [PMID: 39136088 PMCID: PMC11584292 DOI: 10.1093/carcin/bgae056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/09/2024] [Accepted: 08/12/2024] [Indexed: 08/21/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) manifests diverse molecular subtypes, including the classical/progenitor and basal-like/squamous subtypes, with the latter known for its aggressiveness. We employed integrative transcriptome and metabolome analyses to identify potential genes contributing to the molecular subtype differentiation and its metabolic features. Our comprehensive analysis revealed that adrenoceptor alpha 2A (ADRA2A) was downregulated in the basal-like/squamous subtype, suggesting its potential role as a candidate suppressor of this subtype. Reduced ADRA2A expression was significantly associated with a high frequency of lymph node metastasis, higher pathological grade, advanced disease stage, and decreased survival among PDAC patients. In vitro experiments demonstrated that ADRA2A transgene expression and ADRA2A agonist inhibited PDAC cell invasion. Additionally, ADRA2A-high condition downregulated the basal-like/squamous gene expression signature, while upregulating the classical/progenitor gene expression signature in our PDAC patient cohort and PDAC cell lines. Metabolome analysis conducted on the PDAC cohort and cell lines revealed that elevated ADRA2A levels were associated with suppressed amino acid and carnitine/acylcarnitine metabolism, which are characteristic metabolic profiles of the classical/progenitor subtype. Collectively, our findings suggest that heightened ADRA2A expression induces transcriptome and metabolome characteristics indicative of classical/progenitor subtype with decreased disease aggressiveness in PDAC patients. These observations introduce ADRA2A as a candidate for diagnostic and therapeutic targeting in PDAC.
Collapse
Affiliation(s)
- Paloma Moreno
- Pancreatic Cancer Section, Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Yuuki Ohara
- Pancreatic Cancer Section, Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Amanda J Craig
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Huaitian Liu
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Shouhui Yang
- Pancreatic Cancer Section, Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Tiffany H Dorsey
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Lin Zhang
- Pancreatic Cancer Section, Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Gatikrushna Panigrahi
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Helen Cawley
- Pancreatic Cancer Section, Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Azadeh Azizian
- Städtisches Klinikum Karlsruhe, Moltkestraße 90, 76133 Karlsruhe, Germany
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany
| | - Jochen Gaedcke
- Städtisches Klinikum Karlsruhe, Moltkestraße 90, 76133 Karlsruhe, Germany
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany
| | - Michael Ghadimi
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany
| | - Nader Hanna
- Division of General and Oncologic Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, United States
- Division of Surgical Oncology, Department of Surgery, Thomas Jefferson University, Philadelphia, PA 19107, United States
| | - S Perwez Hussain
- Pancreatic Cancer Section, Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
| |
Collapse
|
3
|
Yang S, Tang W, Azizian A, Gaedcke J, Ohara Y, Cawley H, Hanna N, Ghadimi M, Lal T, Sen S, Creighton CJ, Gao J, Putluri N, Ambs S, Hussain P. MIF/NR3C2 axis regulates glucose metabolism reprogramming in pancreatic cancer through MAPK-ERK and AP-1 pathways. Carcinogenesis 2024; 45:582-594. [PMID: 38629149 PMCID: PMC11317528 DOI: 10.1093/carcin/bgae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 02/10/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024] Open
Abstract
Inflammation and aberrant cellular metabolism are widely recognized as hallmarks of cancer. In pancreatic ductal adenocarcinoma (PDAC), inflammatory signaling and metabolic reprogramming are tightly interwoven, playing pivotal roles in the pathogenesis and progression of the disease. However, the regulatory functions of inflammatory mediators in metabolic reprogramming in pancreatic cancer have not been fully explored. Earlier, we demonstrated that pro-inflammatory mediator macrophage migration inhibitory factor (MIF) enhances disease progression by inhibiting its downstream transcriptional factor nuclear receptor subfamily 3 group C member 2 (NR3C2). Here, we provide evidence that MIF and NR3C2 interactively regulate metabolic reprogramming, resulting in MIF-induced cancer growth and progression in PDAC. MIF positively correlates with the HK1 (hexokinase 1), HK2 (hexokinase 2) and LDHA (lactate dehydrogenase) expression and increased pyruvate and lactate production in PDAC patients. Additionally, MIF augments glucose uptake and lactate efflux by upregulating HK1, HK2 and LDHA expression in pancreatic cancer cells in vitro and in mouse models of PDAC. Conversely, a reduction in HK1, HK2 and LDHA expression is observed in tumors with high NR3C2 expression in PDAC patients. NR3C2 suppresses HK1, HK2 and LDHA expression, thereby inhibiting glucose uptake and lactate efflux in pancreatic cancer. Mechanistically, MIF-mediated regulation of glycolytic metabolism involves the activation of the mitogen-activated protein kinase-ERK signaling pathway, whereas NR3C2 interacts with the activator protein 1 to regulate glycolysis. Our findings reveal an interactive role of the MIF/NR3C2 axis in regulating glucose metabolism supporting tumor growth and progression and may be a potential target for designing novel approaches for improving disease outcome.
Collapse
Affiliation(s)
- Shouhui Yang
- Pancreatic Cancer Section, Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wei Tang
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Azadeh Azizian
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Jochen Gaedcke
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Yuuki Ohara
- Pancreatic Cancer Section, Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Helen Cawley
- Pancreatic Cancer Section, Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nader Hanna
- Division of Surgical Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Michael Ghadimi
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Trisha Lal
- Howard University College of Medicine, Washington, DC, USA
| | - Subrata Sen
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chad J Creighton
- Dan L. Duncan Comprehensive Cancer Center Division of Biostatistics, Baylor College of Medicine, Houston, TX, USA
| | - Jianjun Gao
- Department of Genitourinary Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nagireddy Putluri
- Department of Molecular and Cellular Biology, Dan L. Duncan Comprehensive Cancer Center, Advanced Technology Core, Alkek Center for Molecular Discovery, Baylor College of Medicine, Houston, TX, USA
| | - Stefan Ambs
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Perwez Hussain
- Pancreatic Cancer Section, Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
4
|
Qing L, Li Q, Yang Y, Xu W, Wang Y, Li R, You C, Dong Z. Hypoxia-mediated attenuation of EGLN2 inhibition of the NF-κB signaling pathway leads to the formation of a loop between HIF-1α and MUC1-C promoting chemoresistance in bladder cancer. Mol Carcinog 2024; 63:1303-1318. [PMID: 38634741 DOI: 10.1002/mc.23725] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/30/2024] [Accepted: 03/29/2024] [Indexed: 04/19/2024]
Abstract
The expression pattern of MUC1-C in tumors is closely linked to tumor progression; however, its specific mechanism remains unclear. The expression of MUC1-C in cancer and adjacent normal tissues was detected using immunohistochemistry and Western blot. The IC50 of cells to gemcitabine was determined using the CCK8 assay. The effects of hypoxia and MUC1-C on the behavioral and metabolic characteristics of bladder cancer cells were investigated. Gene expression was assessed through Western blot and polymerase chain reaction. The relationship between the genes was analyzed by co-immunoprecipitation, immunofluorescence and Western blot. Finally, the role of the EGLN2 and NF-κB signaling pathways in the interaction between MUC1-C and hypoxia-inducible factor-1α (HIF-1α) was investigated. MUC1-C expression is significantly higher in bladder cancer tissues than in adjacent normal tissues, particularly in large-volume tumors, and is closely correlated with clinical features such as tumor grade. Tumor volume-mediated hypoxia resulted in increased expression of MUC1-C and HIF-1α in bladder cancer cells. Under stimulation of hypoxia, the inhibitory effect of EGLN2 on the NF-κB signaling pathway was weakened, allowing NF-κB to promote the positive feedback formation of MUC1-C and HIF-1α. Simultaneously, EGLN2-mediated degradation of HIF-1α was reduced. This ultimately led to elevated HIF-1α-mediated downstream gene expression, promoting increased glucose uptake and glycolysis, and ultimately resulting in heightened chemotherapy resistance and malignancy.
Collapse
Affiliation(s)
- Liangliang Qing
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, China
- Key Laboratory of Urological Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Qingchao Li
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, China
- Key Laboratory of Urological Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Yongjin Yang
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, China
- Key Laboratory of Urological Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Wenbo Xu
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, China
- Key Laboratory of Urological Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Yanan Wang
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, China
- Key Laboratory of Urological Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Rongxing Li
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, China
- Key Laboratory of Urological Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Chengyu You
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, China
- Key Laboratory of Urological Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Zhilong Dong
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, China
- Key Laboratory of Urological Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
5
|
Bessho T. Up-Regulation of Non-Homologous End-Joining by MUC1. Genes (Basel) 2024; 15:808. [PMID: 38927743 PMCID: PMC11203369 DOI: 10.3390/genes15060808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/10/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024] Open
Abstract
Ionizing radiation (IR) and chemotherapy with DNA-damaging drugs such as cisplatin are vital cancer treatment options. These treatments induce double-strand breaks (DSBs) as cytotoxic DNA damage; thus, the DSB repair activity in each cancer cell significantly influences the efficacy of the treatments. Pancreatic cancers are known to be resistant to these treatments, and the overexpression of MUC1, a member of the glycoprotein mucins, is associated with IR- and chemo-resistance. Therefore, we investigated the impact of MUC1 on DSB repair. This report examined the effect of the overexpression of MUC1 on homologous recombination (HR) and non-homologous end-joining (NHEJ) using cell-based DSB repair assays. In addition, the therapeutic potential of NHEJ inhibitors including HDAC inhibitors was also studied using pancreatic cancer cell lines. The MUC1-overexpression enhances NHEJ, while partially suppressing HR. Also, MUC1-overexpressed cancer cell lines are preferentially killed by a DNA-PK inhibitor and HDAC1/2 inhibitors. Altogether, MUC1 induces metabolic changes that create an imbalance between NHEJ and HR activities, and this imbalance can be a target for selective killing by HDAC inhibitors. This is a novel mechanism of MUC1-mediated IR-resistance and will form the basis for targeting MUC1-overexpressed pancreatic cancer.
Collapse
Affiliation(s)
- Tadayoshi Bessho
- The Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, 986805 Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
6
|
Liao YN, Huang PQ, Pan H, Gai YZ, Zhan YF, Li SX, Nie HZ. Prolactin receptor potentiates chemotherapy through miRNAs-induced G6PD/TKT inhibition in pancreatic cancer. FASEB J 2024; 38:e23705. [PMID: 38805171 DOI: 10.1096/fj.202302287rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/30/2024] [Accepted: 05/15/2024] [Indexed: 05/29/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive malignancies, with a notoriously dismal prognosis. As a competitive inhibitor of DNA synthesis, gemcitabine is the cornerstone drug for treating PDAC at all stages. The therapeutic effect of gemcitabine, however, is often hindered by drug resistance, and the underlying mechanisms remain largely unknown. It is unclear whether their response to chemotherapeutics is regulated by endocrine regulators, despite the association between PDAC risk and endocrine deregulation. Here, we show that prolactin receptor (PRLR) synergizes with gemcitabine in both in vitro and in vivo treatment of PDAC. Interestingly, PRLR promotes the expression of miR-4763-3p and miR-3663-5p, two novel miRNAs whose functions are unknown. Furthermore, the analysis of transcriptome sequencing data of tumors from lactating mouse models enriches the PPP pathway, a multifunctional metabolic pathway. In addition to providing energy, the PPP pathway mainly provides a variety of raw materials for anabolism. We demonstrate that two key enzymes of the pentose phosphate pathway (PPP), G6PD and TKT, are directly targeted by miR-4763-3p and miR-3663-5p. Notably, miR-4763-3p and miR-3663-5p diminish the nucleotide synthesis of the PPP pathway, thereby increasing gemcitabine sensitivity. As a result, PRLR harnesses these two miRNAs to suppress PPP and nucleotide synthesis, subsequently elevating the gemcitabine sensitivity of PDAC cells. Also, PDAC tissues and tumors from LSL-KrasG12D/+, LSL-Trp53R172H/+, and PDX1-cre (KPC) mice exhibit downregulation of PRLR. Bisulfite sequencing of PDAC tissues revealed that PRLR downregulation is due to epigenetic methylation. In this study, we show for the first time that the endocrine receptor PRLR improves the effects of gemcitabine by boosting two new miRNAs that block the PPP pathway and nucleotide synthesis by inhibiting two essential enzymes concurrently. The PRLR-miRNAs-PPP axis may serve as a possible therapeutic target to supplement chemotherapy advantages in PDAC.
Collapse
MESH Headings
- Animals
- Female
- Humans
- Mice
- Antimetabolites, Antineoplastic/pharmacology
- Carcinoma, Pancreatic Ductal/drug therapy
- Carcinoma, Pancreatic Ductal/metabolism
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/pathology
- Cell Line, Tumor
- Deoxycytidine/analogs & derivatives
- Deoxycytidine/pharmacology
- Gemcitabine
- Gene Expression Regulation, Neoplastic/drug effects
- Glucosephosphate Dehydrogenase/metabolism
- Glucosephosphate Dehydrogenase/genetics
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Pancreatic Neoplasms/drug therapy
- Pancreatic Neoplasms/metabolism
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/pathology
- Receptors, Prolactin/metabolism
- Receptors, Prolactin/genetics
- Mice, Nude
Collapse
Affiliation(s)
- Ying-Na Liao
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Pei-Qi Huang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Hong Pan
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Yan-Zhi Gai
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Yun-Fei Zhan
- Department of Pulmonary and Critical Care Medicine, Jinan Central Hospital, Central Hospital Affiliated to Shandong First Medical University, Ji'nan, Shandong, P.R. China
| | - Shu-Xin Li
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Hui-Zhen Nie
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| |
Collapse
|
7
|
Zhang J, Wang Y, Wang L, You L, Zhang T. Pancreatic ductal adenocarcinoma chemoresistance: From metabolism reprogramming to novel treatment. Chin Med J (Engl) 2024; 137:408-420. [PMID: 37545027 PMCID: PMC10876258 DOI: 10.1097/cm9.0000000000002758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Indexed: 08/08/2023] Open
Abstract
ABSTRACT As pancreatic cancer (PC) is highly malignant, its patients tend to develop metastasis at an early stage and show a poor response to conventional chemotherapies. First-line chemotherapies for PC, according to current guidelines, include fluoropyrimidine- and gemcitabine-based regimens. Accumulating research on drug resistance has shown that biochemical metabolic aberrations in PC, especially those involving glycolysis and glutamine metabolism, are highly associated with chemoresistance. Additionally, lipid metabolism is a major factor in chemoresistance. However, emerging compounds that target these key metabolic pathways have the potential to overcome chemoresistance. This review summarizes how PC develops chemoresistance through aberrations in biochemical metabolism and discusses novel critical targets and pathways within cancer metabolism for new drug research.
Collapse
Affiliation(s)
- Jingcheng Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
- Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yutong Wang
- Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Lejunzi Wang
- Department of Anaesthesia, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Lei You
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Taiping Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
- Clinical Immunology Centre, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
8
|
Rana S, Dranchak P, Dahlin JL, Lamy L, Li W, Oliphant E, Shrimp JH, Rajacharya GH, Tharakan R, Holland DO, Whitten AS, Wilson KM, Singh PK, Durum SK, Tao D, Rai G, Inglese J. Methotrexate-based PROTACs as DHFR-specific chemical probes. Cell Chem Biol 2024; 31:221-233.e14. [PMID: 37875111 PMCID: PMC10922102 DOI: 10.1016/j.chembiol.2023.09.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/31/2023] [Accepted: 09/26/2023] [Indexed: 10/26/2023]
Abstract
Methotrexate (MTX) is a tight-binding dihydrofolate reductase (DHFR) inhibitor, used as both an antineoplastic and immunosuppressant therapeutic. MTX, like folate undergoes folylpolyglutamate synthetase-mediated γ-glutamylation, which affects cellular retention and target specificity. Mechanisms of MTX resistance in cancers include a decrease in MTX poly-γ-glutamylation and an upregulation of DHFR. Here, we report a series of potent MTX-based proteolysis targeting chimeras (PROTACs) to investigate DHFR degradation pharmacology and one-carbon biochemistry. These on-target, cell-active PROTACs show proteasome- and E3 ligase-dependent activity, and selective degradation of DHFR in multiple cancer cell lines. By comparison, treatment with MTX increases cellular DHFR protein expression. Importantly, these PROTACs produced distinct, less-lethal phenotypes compared to MTX. The chemical probe set described here should complement conventional DHFR inhibitors and serve as useful tools for studying one-carbon biochemistry and dissecting complex polypharmacology of MTX and related drugs. Such compounds may also serve as leads for potential autoimmune and antineoplastic therapeutics.
Collapse
Affiliation(s)
- Sandeep Rana
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, Rockville, MD 20850, USA
| | - Patricia Dranchak
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, Rockville, MD 20850, USA
| | - Jayme L Dahlin
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, Rockville, MD 20850, USA
| | - Laurence Lamy
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, Rockville, MD 20850, USA
| | - Wenqing Li
- Center for Cancer Research, National Cancer Institute, NIH, Frederick, MD, USA
| | - Erin Oliphant
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, Rockville, MD 20850, USA
| | - Jonathan H Shrimp
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, Rockville, MD 20850, USA
| | - Girish H Rajacharya
- Department of Oncology Science, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Ravi Tharakan
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, Rockville, MD 20850, USA
| | - David O Holland
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, Rockville, MD 20850, USA
| | - Apryl S Whitten
- Department of Oncology Science, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Kelli M Wilson
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, Rockville, MD 20850, USA
| | - Pankaj K Singh
- Department of Oncology Science, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA; OU Health Stephenson Center, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Scott K Durum
- Center for Cancer Research, National Cancer Institute, NIH, Frederick, MD, USA
| | - Dingyin Tao
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, Rockville, MD 20850, USA
| | - Ganesha Rai
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, Rockville, MD 20850, USA.
| | - James Inglese
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, Rockville, MD 20850, USA; Metabolic Medicine Branch, National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
9
|
Hasselluhn MC, Schlösser D, Versemann L, Schmidt GE, Ulisse M, Oschwald J, Zhang Z, Hamdan F, Xiao H, Kopp W, Spitalieri J, Kellner C, Schneider C, Reutlinger K, Nagarajan S, Steuber B, Sastra SA, Palermo CF, Appelhans J, Bohnenberger H, Todorovic J, Kostyuchek I, Ströbel P, Bockelmann A, König A, Ammer-Herrmenau C, Schmidleitner L, Kaulfuß S, Wollnik B, Hahn SA, Neesse A, Singh SK, Bastians H, Reichert M, Sax U, Olive KP, Johnsen SA, Schneider G, Ellenrieder V, Hessmann E. An NFATc1/SMAD3/cJUN Complex Restricted to SMAD4-Deficient Pancreatic Cancer Guides Rational Therapies. Gastroenterology 2024; 166:298-312.e14. [PMID: 37913894 DOI: 10.1053/j.gastro.2023.10.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 09/19/2023] [Accepted: 10/21/2023] [Indexed: 11/03/2023]
Abstract
BACKGROUND & AIMS The highly heterogeneous cellular and molecular makeup of pancreatic ductal adenocarcinoma (PDAC) not only fosters exceptionally aggressive tumor biology, but contradicts the current concept of one-size-fits-all therapeutic strategies to combat PDAC. Therefore, we aimed to exploit the tumor biological implication and therapeutic vulnerabilities of a clinically relevant molecular PDAC subgroup characterized by SMAD4 deficiency and high expression of the nuclear factor of activated T cells (SMAD4-/-/NFATc1High). METHODS Transcriptomic and clinical data were analyzed to determine the prognostic relevance of SMAD4-/-/NFATc1High cancers. In vitro and in vivo oncogenic transcription factor complex formation was studied by immunoprecipitation, proximity ligation assays, and validated cross model and species. The impact of SMAD4 status on therapeutically targeting canonical KRAS signaling was mechanistically deciphered and corroborated by genome-wide gene expression analysis and genetic perturbation experiments, respectively. Validation of a novel tailored therapeutic option was conducted in patient-derived organoids and cells and transgenic as well as orthotopic PDAC models. RESULTS Our findings determined the tumor biology of an aggressive and chemotherapy-resistant SMAD4-/-/NFATc1High subgroup. Mechanistically, we identify SMAD4 deficiency as a molecular prerequisite for the formation of an oncogenic NFATc1/SMAD3/cJUN transcription factor complex, which drives the expression of RRM1/2. RRM1/2 replenishes nucleoside pools that directly compete with metabolized gemcitabine for DNA strand incorporation. Disassembly of the NFATc1/SMAD3/cJUN complex by mitogen-activated protein kinase signaling inhibition normalizes RRM1/2 expression and synergizes with gemcitabine treatment in vivo to reduce the proliferative index. CONCLUSIONS Our results suggest that PDAC characterized by SMAD4 deficiency and oncogenic NFATc1/SMAD3/cJUN complex formation exposes sensitivity to a mitogen-activated protein kinase signaling inhibition and gemcitabine combination therapy.
Collapse
Affiliation(s)
- Marie C Hasselluhn
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Goettingen, Goettingen, Germany; Department of Medicine, Division of Digestive and Liver Diseases, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
| | - Denise Schlösser
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Goettingen, Goettingen, Germany
| | - Lennart Versemann
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Goettingen, Goettingen, Germany
| | - Geske E Schmidt
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Goettingen, Goettingen, Germany; Clinical Research Unit KFO5002, University Medical Center Goettingen, Goettingen, Germany
| | - Maria Ulisse
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Goettingen, Goettingen, Germany; Clinical Research Unit KFO5002, University Medical Center Goettingen, Goettingen, Germany
| | - Joana Oschwald
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Goettingen, Goettingen, Germany; Clinical Research Unit KFO5002, University Medical Center Goettingen, Goettingen, Germany
| | - Zhe Zhang
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Goettingen, Goettingen, Germany; Clinical Research Unit KFO5002, University Medical Center Goettingen, Goettingen, Germany
| | - Feda Hamdan
- Gene Regulatory Mechanisms and Molecular Epigenetics Laboratory, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Harry Xiao
- Department of Medicine, Division of Digestive and Liver Diseases, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
| | - Waltraut Kopp
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Goettingen, Goettingen, Germany; Clinical Research Unit KFO5002, University Medical Center Goettingen, Goettingen, Germany
| | - Jessica Spitalieri
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Goettingen, Goettingen, Germany; Clinical Research Unit KFO5002, University Medical Center Goettingen, Goettingen, Germany
| | - Christin Kellner
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Goettingen, Goettingen, Germany; Clinical Research Unit KFO5002, University Medical Center Goettingen, Goettingen, Germany
| | - Carolin Schneider
- Department of General, Visceral and Pediatric Surgery, University Medical Center Goettingen, Goettingen, Germany
| | - Kristina Reutlinger
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Goettingen, Goettingen, Germany
| | - Sankari Nagarajan
- Manchester Breast Centre and Manchester Cancer Research Centre, Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Benjamin Steuber
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Goettingen, Goettingen, Germany
| | - Stephen A Sastra
- Department of Medicine, Division of Digestive and Liver Diseases, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
| | - Carmine F Palermo
- Department of Medicine, Division of Digestive and Liver Diseases, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
| | - Jennifer Appelhans
- Clinical Research Unit KFO5002, University Medical Center Goettingen, Goettingen, Germany; Institute of Pathology, University Medical Center Goettingen, Goettingen, Germany
| | - Hanibal Bohnenberger
- Institute of Pathology, University Medical Center Goettingen, Goettingen, Germany
| | - Jovan Todorovic
- Clinical Research Unit KFO5002, University Medical Center Goettingen, Goettingen, Germany; Institute of Pathology, University Medical Center Goettingen, Goettingen, Germany
| | - Irina Kostyuchek
- Institute of Pathology, University Medical Center Goettingen, Goettingen, Germany
| | - Philipp Ströbel
- Clinical Research Unit KFO5002, University Medical Center Goettingen, Goettingen, Germany; Institute of Pathology, University Medical Center Goettingen, Goettingen, Germany
| | - Aiko Bockelmann
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Goettingen, Goettingen, Germany
| | - Alexander König
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Goettingen, Goettingen, Germany
| | - Christoph Ammer-Herrmenau
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Goettingen, Goettingen, Germany; Clinical Research Unit KFO5002, University Medical Center Goettingen, Goettingen, Germany
| | - Laura Schmidleitner
- Medical Clinic and Polyclinic II, Klinikum Rechts der Isar, Technical University Munich, Munich, Germany; Translational Pancreatic Research Cancer Center, Medical Clinic and Polyclinic II, Klinikum Rechts der Isar, Technical University Munich, Munich, Germany
| | - Silke Kaulfuß
- Clinical Research Unit KFO5002, University Medical Center Goettingen, Goettingen, Germany; Institute of Human Genetics, University Medical Center Goettingen, Goettingen, Germany
| | - Bernd Wollnik
- Clinical Research Unit KFO5002, University Medical Center Goettingen, Goettingen, Germany; Institute of Human Genetics, University Medical Center Goettingen, Goettingen, Germany; Cluster of Excellence Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells, University of Goettingen, Germany
| | - Stephan A Hahn
- Ruhr University Bochum, Faculty of Medicine, Department of Molecular Gastrointestinal Oncology, Bochum, Germany
| | - Albrecht Neesse
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Goettingen, Goettingen, Germany; Clinical Research Unit KFO5002, University Medical Center Goettingen, Goettingen, Germany
| | - Shiv K Singh
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Goettingen, Goettingen, Germany; Clinical Research Unit KFO5002, University Medical Center Goettingen, Goettingen, Germany
| | - Holger Bastians
- Clinical Research Unit KFO5002, University Medical Center Goettingen, Goettingen, Germany; Department of Molecular Oncology, Section for Cellular Oncology, University Medical Center Goettingen, Goettingen, Germany
| | - Maximilian Reichert
- Medical Clinic and Polyclinic II, Klinikum Rechts der Isar, Technical University Munich, Munich, Germany; Translational Pancreatic Research Cancer Center, Medical Clinic and Polyclinic II, Klinikum Rechts der Isar, Technical University Munich, Munich, Germany; German Cancer Consortium (a partnership between Deutsches Krebsforschungszentrum and University Hospital Klinikum Rechts der Isar), Munich, Germany; Center for Protein Assemblies, Technical University of Munich, Garching, Germany; Center for Organoid Systems and Tissue Engineering, Technical University Munich, Garching, Germany
| | - Ulrich Sax
- Clinical Research Unit KFO5002, University Medical Center Goettingen, Goettingen, Germany; Department of Medical Informatics, University Medical Center Goettingen, Goettingen, Germany
| | - Kenneth P Olive
- Department of Medicine, Division of Digestive and Liver Diseases, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
| | - Steven A Johnsen
- Department of General, Visceral and Pediatric Surgery, University Medical Center Goettingen, Goettingen, Germany; Robert Bosch Center for Tumor Diseases, Stuttgart, Germany
| | - Günter Schneider
- Clinical Research Unit KFO5002, University Medical Center Goettingen, Goettingen, Germany; Department of General, Visceral and Pediatric Surgery, University Medical Center Goettingen, Goettingen, Germany; Comprehensive Cancer Center, Lower Saxony, Goettingen and Hannover, Germany
| | - Volker Ellenrieder
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Goettingen, Goettingen, Germany; Clinical Research Unit KFO5002, University Medical Center Goettingen, Goettingen, Germany; Comprehensive Cancer Center, Lower Saxony, Goettingen and Hannover, Germany
| | - Elisabeth Hessmann
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Goettingen, Goettingen, Germany; Clinical Research Unit KFO5002, University Medical Center Goettingen, Goettingen, Germany; Comprehensive Cancer Center, Lower Saxony, Goettingen and Hannover, Germany.
| |
Collapse
|
10
|
Lu H, Xu WL, Wu YF, Yang WJ, Liu SW. Mucin 1 promotes salivary gland cancer cell proliferation and metastasis by regulating the epidermal growth factor receptor signaling pathway. J Dent Sci 2023; 18:1651-1662. [PMID: 37799896 PMCID: PMC10547961 DOI: 10.1016/j.jds.2023.01.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 01/29/2023] [Indexed: 02/12/2023] Open
Abstract
Background/purpose Salivary gland cancer (SGC) is the common malignant tumor of the head and neck region with poor prognosis. Mucin 1 (MUC1) has been reported to be associated with the development of cancer. However, whether MUC1 contributed to the progression of SGC remains to be explored. Materials and methods Immunohistochemical analysis was used to explore the expression levels of MUC1 in SGC tissues. Cell proliferation, colony formation, wound healing, transwell, and xenograft assays were performed to examine the effects of MUC1 on SGC in vitro and in vivo. Results We found that the expression level of MUC1 was significantly upregulated in SGC tissues, and the expression level of MUC1 was significantly correlated with lymph node metastasis and TNM stage of SGC. Further exploration demonstrated that MUC1 knockdown drastically inhibited, while its overexpression promoted, cell growth, colony formation, migration, and invasion abilities of SGC cells in vitro. MUC1 knockdown significantly inhibited tumor growth in vivo, and vice versa. More importantly, we found that MUC1 promotes malignant phenotypes of SGC cells by regulating the epidermal growth factor receptor (EGFR) signaling pathway. Conclusion Our results revealed that MUC1 promotes the development of SGC by mediating the EGFR signaling pathway, which highlights the potential therapeutic target of MUC1/ EGFR in SGC.
Collapse
Affiliation(s)
- Hao Lu
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Disease, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Wan-Lin Xu
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Disease, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
- Department of Oral Pathology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi-Fan Wu
- Department of Oral Pathology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wen-Jun Yang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Disease, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Sheng-Wen Liu
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Disease, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| |
Collapse
|
11
|
Formica V, Riondino S, Morelli C, Guerriero S, D'Amore F, Di Grazia A, Del Vecchio Blanco G, Sica G, Arkenau HT, Monteleone G, Roselli M. HIF2α, Hepcidin and their crosstalk as tumour-promoting signalling. Br J Cancer 2023; 129:222-236. [PMID: 37081189 PMCID: PMC10338631 DOI: 10.1038/s41416-023-02266-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 03/25/2023] [Accepted: 03/30/2023] [Indexed: 04/22/2023] Open
Abstract
Not all aspects of the disruption of iron homeostasis in cancer have been fully elucidated. Iron accumulation in cancer cells is frequent for many solid tumours, and this is often accompanied by the contemporary rise of two key iron regulators, HIF2α and Hepcidin. This scenario is different from what happens under physiological conditions, where Hepcidin parallels systemic iron concentrations while HIF2α levels are inversely associated to Hepcidin. The present review highlights the increasing body of evidence for the pro-tumoral effect of HIF2α and Hepcidin, discusses the possible imbalance in HIF2α, Hepcidin and iron homeostasis during cancer, and explores therapeutic options relying on these pathways as anticancer strategies.
Collapse
Affiliation(s)
- Vincenzo Formica
- Medical Oncology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Viale Oxford, 81, 00133, Rome, Italy.
| | - Silvia Riondino
- Medical Oncology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Viale Oxford, 81, 00133, Rome, Italy
| | - Cristina Morelli
- Medical Oncology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Viale Oxford, 81, 00133, Rome, Italy
- PhD Program in Systems and Experimental Medicine (XXXV cycle), University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy
| | - Simona Guerriero
- Medical Oncology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Viale Oxford, 81, 00133, Rome, Italy
| | - Federica D'Amore
- Medical Oncology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Viale Oxford, 81, 00133, Rome, Italy
| | - Antonio Di Grazia
- Gastroenterology Unit, Department of Systems Medicine, University of Rome Tor Vergata, 00133, Rome, Italy
| | | | - Giuseppe Sica
- Department of Surgery, University of Rome Tor Vergata, Rome, Italy
| | | | - Giovanni Monteleone
- Gastroenterology Unit, Department of Systems Medicine, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Mario Roselli
- Medical Oncology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Viale Oxford, 81, 00133, Rome, Italy
| |
Collapse
|
12
|
Liu H, Zhou Y, Li Y, Gong Z. Important roles of Hif1a in maternal or adult BPA exposure induced pancreatic injuries. Sci Rep 2023; 13:11502. [PMID: 37460698 PMCID: PMC10352259 DOI: 10.1038/s41598-023-38614-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 07/11/2023] [Indexed: 07/20/2023] Open
Abstract
Bisphenol A (BPA) is a monomer to produce polycarbonate plastics and can be released into the environment through human activities, leading to its accumulation in animals, plants and humans through direct contact or environmental exposure. Epidemiological studies have reported that BPA exposure is associated with metabolic disorders. The pancreas is an important endocrine organ and plays an important role in metabolic disorders. To explore the possible long-term effects of BPA exposure on neonatal health, bioinformatic methods were used to identify differentially expressed genes (DEGs) by comparing the neonatal pancreas after maternal exposure to BPA with the adult pancreas after direct exposure to BPA. Two datasets about BPA exposure and pancreatic abnormality, GSE82175 and GSE126297 in Gene Expression Omnibus (GEO) at the National Center for Biotechnology Information (NCBI) were collected. Control (or BPA-exposed) offspring (maternal exposure) and Control (or BPA-exposed) adults (direct exposure) were defined as Control (or BPA) groups. The results showed that BPA disturbed the normal function of the pancreas in both offspring and adults, with offspring showing higher susceptibility to BPA than adults. Seventeen insulin secretion-related DEGs (Stxbp5l, Fam3d, Mia3, Igf1, Hif1a, Aqp1, Kif5b, Tiam1, Map4k4, Cyp51, Pde1c, Rab3c, Arntl, Clock, Edn3, Kcnb1, and Krt20) in the BPA group were identified, and 15 regulator DEGs (Zfp830, 4931431B13Rik, Egr1, Ddit4l, Cep55, G530011O06Rik, Hspa1b, Hspa1a, Cox6a2, Ibtk, Banf1, Slc35b2, Golt1b, Lrp8, and Pttg1) with opposite expression trends and a regulator gene Cerkl with the similar expression trend in the Control and BPA groups were identified. Hif1α might be an important molecular target for pancreatic cancer caused by BPA exposure, and pregnancy is a critical window of susceptibility to BPA exposure.
Collapse
Affiliation(s)
- Huiping Liu
- Department of Cardiopulmonary Function Examination, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 030013, China
| | - Yongnian Zhou
- Department of Clinical Laboratory, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yike Li
- Department of Clinical Laboratory, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhihua Gong
- Department of Clinical Laboratory, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China.
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, 030006, China.
| |
Collapse
|
13
|
Zhang J, Song J, Tang S, Zhao Y, Wang L, Luo Y, Tang J, Ji Y, Wang X, Li T, Zhang H, Shao W, Sheng J, Liang T, Bai X. Multi-omics analysis reveals the chemoresistance mechanism of proliferating tissue-resident macrophages in PDAC via metabolic adaptation. Cell Rep 2023; 42:112620. [PMID: 37285267 DOI: 10.1016/j.celrep.2023.112620] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/16/2023] [Accepted: 05/23/2023] [Indexed: 06/09/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal cancer that typically demonstrates resistance to chemotherapy. Tumor-associated macrophages (TAMs) are essential in tumor microenvironment (TME) regulation, including promoting chemoresistance. However, the specific TAM subset and mechanisms behind this promotion remain unclear. We employ multi-omics strategies, including single-cell RNA sequencing (scRNA-seq), transcriptomics, multicolor immunohistochemistry (mIHC), flow cytometry, and metabolomics, to analyze chemotherapy-treated samples from both humans and mice. We identify four major TAM subsets within PDAC, among which proliferating resident macrophages (proliferating rMφs) are strongly associated with poor clinical outcomes. These macrophages are able to survive chemotherapy by producing more deoxycytidine (dC) and fewer dC kinases (dCKs) to decrease the absorption of gemcitabine. Moreover, proliferating rMφs promote fibrosis and immunosuppression in PDAC. Eliminating them in the transgenic mouse model alleviates fibrosis and immunosuppression, thereby re-sensitizing PDAC to chemotherapy. Consequently, targeting proliferating rMφs may become a potential treatment strategy for PDAC to enhance chemotherapy.
Collapse
Affiliation(s)
- Junlei Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang University Cancer Center, Zhejiang University, Hangzhou 310002, China
| | - Jinyuan Song
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang University Cancer Center, Zhejiang University, Hangzhou 310002, China
| | - Shima Tang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China
| | - Yaxing Zhao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang University Cancer Center, Zhejiang University, Hangzhou 310002, China
| | - Lin Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang University Cancer Center, Zhejiang University, Hangzhou 310002, China
| | - Yandong Luo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang University Cancer Center, Zhejiang University, Hangzhou 310002, China
| | - Jianghui Tang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang University Cancer Center, Zhejiang University, Hangzhou 310002, China
| | - Yongtao Ji
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang University Cancer Center, Zhejiang University, Hangzhou 310002, China
| | - Xun Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang University Cancer Center, Zhejiang University, Hangzhou 310002, China
| | - Taohong Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang University Cancer Center, Zhejiang University, Hangzhou 310002, China
| | - Hui Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang University Cancer Center, Zhejiang University, Hangzhou 310002, China
| | - Wei Shao
- College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210000, China.
| | - Jianpeng Sheng
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang University Cancer Center, Zhejiang University, Hangzhou 310002, China.
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang University Cancer Center, Zhejiang University, Hangzhou 310002, China.
| | - Xueli Bai
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang University Cancer Center, Zhejiang University, Hangzhou 310002, China.
| |
Collapse
|
14
|
Yang Q, Wang B, Zheng Q, Li H, Meng X, Zhou F, Zhang L. A Review of Gut Microbiota-Derived Metabolites in Tumor Progression and Cancer Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207366. [PMID: 36951547 PMCID: PMC10214247 DOI: 10.1002/advs.202207366] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/15/2023] [Indexed: 05/27/2023]
Abstract
Gut microbiota-derived metabolites are key hubs connecting the gut microbiome and cancer progression, primarily by remodeling the tumor microenvironment and regulating key signaling pathways in cancer cells and multiple immune cells. The use of microbial metabolites in radiotherapy and chemotherapy mitigates the severe side effects from treatment and improves the efficacy of treatment. Immunotherapy combined with microbial metabolites effectively activates the immune system to kill tumors and overcomes drug resistance. Consequently, various novel strategies have been developed to modulate microbial metabolites. Manipulation of genes involved in microbial metabolism using synthetic biology approaches directly affects levels of microbial metabolites, while fecal microbial transplantation and phage strategies affect levels of microbial metabolites by altering the composition of the microbiome. However, some microbial metabolites harbor paradoxical functions depending on the context (e.g., type of cancer). Furthermore, the metabolic effects of microorganisms on certain anticancer drugs such as irinotecan and gemcitabine, render the drugs ineffective or exacerbate their adverse effects. Therefore, a personalized and comprehensive consideration of the patient's condition is required when employing microbial metabolites to treat cancer. The purpose of this review is to summarize the correlation between gut microbiota-derived metabolites and cancer, and to provide fresh ideas for future scientific research.
Collapse
Affiliation(s)
- Qiqing Yang
- General SurgeryCancer CenterDepartment of Breast SurgeryZhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College)Hangzhou310058China
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058China
| | - Bin Wang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058China
| | - Qinghui Zheng
- General SurgeryCancer CenterDepartment of Breast SurgeryZhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College)Hangzhou310058China
| | - Heyu Li
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058China
| | - Xuli Meng
- General SurgeryCancer CenterDepartment of Breast SurgeryZhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College)Hangzhou310058China
| | - Fangfang Zhou
- Institutes of Biology and Medical ScienceSoochow UniversitySuzhou215123P. R. China
| | - Long Zhang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058China
- International Biomed‐X Research CenterSecond Affiliated Hospital of Zhejiang University School of MedicineZhejiang UniversityHangzhou310058China
- Center for Infection & Immunity of International Institutes of Medicine The Fourth Affiliated HospitalZhejiang University School of MedicineYiwu322000China
- Cancer CenterZhejiang UniversityHangzhou310058China
| |
Collapse
|
15
|
Bhoopathi P, Mannangatti P, Das SK, Fisher PB, Emdad L. Chemoresistance in pancreatic ductal adenocarcinoma: Overcoming resistance to therapy. Adv Cancer Res 2023; 159:285-341. [PMID: 37268399 DOI: 10.1016/bs.acr.2023.02.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC), a prominent cause of cancer deaths worldwide, is a highly aggressive cancer most frequently detected at an advanced stage that limits treatment options to systemic chemotherapy, which has provided only marginal positive clinical outcomes. More than 90% of patients with PDAC die within a year of being diagnosed. PDAC is increasing at a rate of 0.5-1.0% per year, and it is expected to be the second leading cause of cancer-related mortality by 2030. The resistance of tumor cells to chemotherapeutic drugs, which can be innate or acquired, is the primary factor contributing to the ineffectiveness of cancer treatments. Although many PDAC patients initially responds to standard of care (SOC) drugs they soon develop resistance caused partly by the substantial cellular heterogeneity seen in PDAC tissue and the tumor microenvironment (TME), which are considered key factors contributing to resistance to therapy. A deeper understanding of molecular mechanisms involved in PDAC progression and metastasis development, and the interplay of the TME in all these processes is essential to better comprehend the etiology and pathobiology of chemoresistance observed in PDAC. Recent research has recognized new therapeutic targets ushering in the development of innovative combinatorial therapies as well as enhancing our comprehension of several different cell death pathways. These approaches facilitate the lowering of the therapeutic threshold; however, the possibility of subsequent resistance development still remains a key issue and concern. Discoveries, that can target PDAC resistance, either alone or in combination, have the potential to serve as the foundation for future treatments that are effective without posing undue health risks. In this chapter, we discuss potential causes of PDAC chemoresistance and approaches for combating chemoresistance by targeting different pathways and different cellular functions associated with and mediating resistance.
Collapse
Affiliation(s)
- Praveen Bhoopathi
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Richmond, VA, United States
| | - Padmanabhan Mannangatti
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Richmond, VA, United States
| | - Swadesh K Das
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States.
| | - Luni Emdad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States.
| |
Collapse
|
16
|
Qing L, Li Q, Yang Y, Xu W, Dong Z. A prognosis marker MUC1 correlates with metabolism and drug resistance in bladder cancer: a bioinformatics research. BMC Urol 2022; 22:114. [PMID: 35879749 PMCID: PMC9309451 DOI: 10.1186/s12894-022-01067-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/19/2022] [Indexed: 12/12/2022] Open
Abstract
Abstract
Background
MUC1 is a type I transmembrane protein that plays an important role in tumor cell signal transduction. Although current studies have shown that MUC1 is upregulated in bladder cancer (BC), the specific mechanism is still unclear.
Methods
We performed expression analysis, gene set enrichment analysis, survival analysis, immune infiltration analysis, drug sensitivity analysis, and metabolism-related gene expression analysis on TCGA-BLCA, GES31684 and GSE13507.
Results
The expression of MUC1 in the tumor and lymphatic metastasis positive samples was significantly increased. Genes related to MUC1 expression were significantly enriched in immune response, ribosomes, exosomes, and energy metabolism. The results of the immune infiltration analysis showed that M1 macrophages in BC with high MUC1 expression were significantly decreased. Expression of MUC1 increases drug resistance in BC patients. In addition, MUC1 increases glycolysis, glucose uptake, and lactate production by inducing metabolic reprogramming.
Conclusion
MUC1 has a significant effect on the metabolism and immune cell infiltration of BC, which may be the cause of increased drug resistance, and can be used as a molecular target for the diagnosis and treatment of BC.
Collapse
|
17
|
Hypoxia activated HGF expression in pancreatic stellate cells confers resistance of pancreatic cancer cells to EGFR inhibition. EBioMedicine 2022; 86:104352. [PMID: 36371988 PMCID: PMC9664470 DOI: 10.1016/j.ebiom.2022.104352] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/18/2022] [Accepted: 10/21/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Epidermal growth factor receptor (EGFR) is an essential target for cancer treatment. However, EGFR inhibitor erlotinib showed limited clinical benefit in pancreatic cancer therapy. Here, we showed the underlying mechanism of tumor microenvironment suppressing the sensitivity of EGFR inhibitor through the pancreatic stellate cell (PSC). METHODS The expression of alpha-smooth muscle actin (α-SMA) and hypoxia marker in human pancreatic cancer tissues were detected by immunohistochemistry, and their correlation with overall survival was evaluated. Human immortalized PSC was constructed and used to investigate the potential effect on pancreatic cancer cell lines in hypoxia and normoxia. Luciferase reporter assay and Chromatin immunoprecipitation were performed to explore the potential mechanisms in vitro. The combined inhibition of EGFR and Met was evaluated in an orthotopic xenograft mouse model of pancreatic cancer. FINDINGS We found that high expression levels of α-SMA and hypoxia markers are associated with poor prognosis of pancreatic cancer patients. Mechanistically, we demonstrated that hypoxia induced the expression and secretion of HGF in PSC via transcription factor HIF-1α. PSC-derived HGF activates Met, the HGF receptor, suppressing the sensitivity of pancreatic cancer cells to EGFR inhibitor in a KRAS-independent manner by activating the PI3K-AKT pathway. Furthermore, we found that the combination of EGFR inhibitor and Met inhibitor significantly suppressed tumor growth in an orthotopic xenograft mouse model. INTERPRETATION Our study revealed a previously uncharacterized HIF1α-HGF-Met-PI3K-AKT signaling axis between PSC and cancer cells and indicated that EGFR inhibition plus Met inhibition might be a promising strategy for pancreatic cancer treatment. FUNDING This study was supported by The National Natural Science Foundation of China.
Collapse
|
18
|
Qing L, Li Q, Dong Z. MUC1: An emerging target in cancer treatment and diagnosis. Bull Cancer 2022; 109:1202-1216. [DOI: 10.1016/j.bulcan.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/26/2022] [Accepted: 08/01/2022] [Indexed: 10/14/2022]
|
19
|
Metabolic Pathways as a Novel Landscape in Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2022; 14:cancers14153799. [PMID: 35954462 PMCID: PMC9367608 DOI: 10.3390/cancers14153799] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 11/17/2022] Open
Abstract
Metabolism plays a fundamental role in both human physiology and pathology, including pancreatic ductal adenocarcinoma (PDAC) and other tumors. Anabolic and catabolic processes do not only have energetic implications but are tightly associated with other cellular activities, such as DNA duplication, redox reactions, and cell homeostasis. PDAC displays a marked metabolic phenotype and the observed reduction in tumor growth induced by calorie restriction with in vivo models supports the crucial role of metabolism in this cancer type. The aggressiveness of PDAC might, therefore, be reduced by interventions on bioenergetic circuits. In this review, we describe the main metabolic mechanisms involved in PDAC growth and the biological features that may favor its onset and progression within an immunometabolic context. We also discuss the need to bridge the gap between basic research and clinical practice in order to offer alternative therapeutic approaches for PDAC patients in the more immediate future.
Collapse
|
20
|
Shen X, Chen Y, Liu M, Shi J, Tang Y, Yang X, Xu D, Yao H, Lu P, Sun Y, Xue J, Niu N. Glycolysis addiction compensating for a defective pentose phosphate pathway confers gemcitabine sensitivity in SETD2-deficient pancreatic cancer. Biochem Biophys Res Commun 2022; 615:9-16. [PMID: 35679751 DOI: 10.1016/j.bbrc.2022.05.047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 05/12/2022] [Indexed: 11/19/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignancy driven by genetic mutations and/or epigenetic dysregulation. Gemcitabine chemotherapy is the first-line regimen for pancreatic cancer but has limited efficacy. Our previous study revealed the role of SETD2-H3K36me3 loss in the initiation and metastasis of PDAC, but little is known about its role in tumor metabolism. Here, we found that SETD2-deficient PDAC enhanced glycolysis addiction via upregulation of glucose transporter 1 (GLUT1) to meet its large demand for glucose in progression. Moreover, SETD2 deficiency impaired nucleoside synthesis by directly downregulating the transcriptional level of transketolase (TKT) in the pentose phosphate pathway. The metabolic changes confer SETD2-deficient PDAC cells with increased sensitivity to gemcitabine under glycolysis restriction conditions. Collectively, our study provides mechanistic insights into how SETD2 deficiency reprograms glycolytic metabolism to compensate for insufficient nucleoside synthesis, suggesting that glycolysis restriction combined with gemcitabine might be a potential therapeutic strategy for PDAC patients with SETD2 deficiency.
Collapse
Affiliation(s)
- Xuqing Shen
- State Key Laboratory of Oncogenes and Related Genes, Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yueyue Chen
- State Key Laboratory of Oncogenes and Related Genes, Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingzhu Liu
- State Key Laboratory of Oncogenes and Related Genes, Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Juanjuan Shi
- State Key Laboratory of Oncogenes and Related Genes, Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingying Tang
- State Key Laboratory of Oncogenes and Related Genes, Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaotong Yang
- State Key Laboratory of Oncogenes and Related Genes, Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dapeng Xu
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongfei Yao
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ping Lu
- State Key Laboratory of Oncogenes and Related Genes, Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongwei Sun
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Xue
- State Key Laboratory of Oncogenes and Related Genes, Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Ningning Niu
- State Key Laboratory of Oncogenes and Related Genes, Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
21
|
Nelson JK, Thin MZ, Evan T, Howell S, Wu M, Almeida B, Legrave N, Koenis DS, Koifman G, Sugimoto Y, Llorian Sopena M, MacRae J, Nye E, Howell M, Snijders AP, Prachalias A, Zen Y, Sarker D, Behrens A. USP25 promotes pathological HIF-1-driven metabolic reprogramming and is a potential therapeutic target in pancreatic cancer. Nat Commun 2022; 13:2070. [PMID: 35440539 PMCID: PMC9018856 DOI: 10.1038/s41467-022-29684-9] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 03/29/2022] [Indexed: 12/12/2022] Open
Abstract
Deubiquitylating enzymes (DUBs) play an essential role in targeted protein degradation and represent an emerging therapeutic paradigm in cancer. However, their therapeutic potential in pancreatic ductal adenocarcinoma (PDAC) has not been explored. Here, we develop a DUB discovery pipeline, combining activity-based proteomics with a loss-of-function genetic screen in patient-derived PDAC organoids and murine genetic models. This approach identifies USP25 as a master regulator of PDAC growth and maintenance. Genetic and pharmacological USP25 inhibition results in potent growth impairment in PDAC organoids, while normal pancreatic organoids are insensitive, and causes dramatic regression of patient-derived xenografts. Mechanistically, USP25 deubiquitinates and stabilizes the HIF-1α transcription factor. PDAC is characterized by a severely hypoxic microenvironment, and USP25 depletion abrogates HIF-1α transcriptional activity and impairs glycolysis, inducing PDAC cell death in the tumor hypoxic core. Thus, the USP25/HIF-1α axis is an essential mechanism of metabolic reprogramming and survival in PDAC, which can be therapeutically exploited.
Collapse
Affiliation(s)
- Jessica K Nelson
- Adult Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Cancer Stem Cell Laboratory, The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK
| | - May Zaw Thin
- Adult Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Cancer Stem Cell Laboratory, The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK
| | - Theodore Evan
- Adult Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Steven Howell
- Proteomics, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Mary Wu
- High Throughput Screening, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Bruna Almeida
- Experimental Histopathology, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Nathalie Legrave
- Metabolomics, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Duco S Koenis
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Gabriela Koifman
- Adult Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Cancer Stem Cell Laboratory, The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK
| | - Yoichiro Sugimoto
- Hypoxia Biology Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Miriam Llorian Sopena
- Bioinformatics and Biostatistics, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - James MacRae
- Metabolomics, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Emma Nye
- Experimental Histopathology, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Michael Howell
- High Throughput Screening, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | | | - Andreas Prachalias
- Hepatobiliary and Pancreatic Surgery, King's College Hospital, Denmark Hill, London, SE5 9RS, UK
| | - Yoh Zen
- Institute of Liver Studies, King's College Hospital, Denmark Hill, London, SE5 9RS, UK
| | - Debashis Sarker
- School of Cancer and Pharmaceutical Sciences, King's College Hospital, Denmark Hill, London, SE5 9RS, UK
| | - Axel Behrens
- Adult Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
- Cancer Stem Cell Laboratory, The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK.
- Imperial College, Division of Cancer, Department of Surgery and Cancer, Imperial College, Exhibition Road, London, SW7 2AZ, UK.
- Convergence Science Centre, Imperial College, Exhibition Road, London, SW7 2BU, UK.
| |
Collapse
|
22
|
Robust Validation and Comprehensive Analysis of a Novel Signature Derived from Crucial Metabolic Pathways of Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2022; 14:cancers14071825. [PMID: 35406597 PMCID: PMC8997486 DOI: 10.3390/cancers14071825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 02/01/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a malignant tumor with a dismal prognosis. PDAC have extensively reprogrammed metabolic characteristics influenced by interactions with normal cells, the effects of the tumor microenvironment and oncogene-mediated cell-autonomous pathways. In this study, we found that among all cancer hallmarks, metabolism played an important role in PDAC. Subsequently, a 16-gene prognostic signature was established with genes derived from crucial metabolic pathways, including glycolysis, bile acid metabolism, cholesterol homeostasis and xenobiotic metabolism (gbcx). The signature was used to distinguish overall survival in multiple cohorts from public datasets as well as a validation cohort followed up by us at Shanghai Cancer Center. Notably, the gbcx-related risk score (gbcxMRS) also accurately predicted poor PDAC subtypes, such as pure-basal-like and squamous types. At the same time, it also predicted PDAC recurrence. The gbcxMRS was also associated with immune cells, especially CD8 T cells, Treg cells. Furthermore, a high gbcxMRS may indicate high drug sensitivity to irinotecan and docetaxel and CTLA4 inhibitor immunotherapy. Taken together, these results indicate a robust and reproducible metabolic-related signature based on analysis of the overall pathogenesis of pancreatic cancer, which may have excellent prognostic and therapeutic implications for PDAC.
Collapse
|
23
|
Won EJ, Park H, Yoon TJ, Cho YS. Gene Therapy Using Nanocarriers for Pancreatic Ductal Adenocarcinoma: Applications and Challenges in Cancer Therapeutics. Pharmaceutics 2022; 14:137. [PMID: 35057033 PMCID: PMC8780888 DOI: 10.3390/pharmaceutics14010137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/22/2021] [Accepted: 12/31/2021] [Indexed: 12/16/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers worldwide, and its incidence is increasing. PDAC often shows resistance to several therapeutic modalities and a higher recurrence rate after surgical treatment in the early localized stage. Combination chemotherapy in advanced pancreatic cancer has minimal impact on overall survival. RNA interference (RNAi) is a promising tool for regulating target genes to achieve sequence-specific gene silencing. Here, we summarize RNAi-based therapeutics using nanomedicine-based delivery systems that are currently being tested in clinical trials and are being developed for the treatment of PDAC. Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) genome editing has been widely used for the development of cancer models as a genetic screening tool for the identification and validation of therapeutic targets, as well as for potential cancer therapeutics. This review discusses current advances in CRISPR/Cas9 technology and its application to PDAC research. Continued progress in understanding the PDAC tumor microenvironment and nanomedicine-based gene therapy will improve the clinical outcomes of patients with PDAC.
Collapse
Affiliation(s)
- Eun-Jeong Won
- Laboratory of NanoPharmacy, College of Pharmacy, Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, 206 Worldcup-ro, Yeongtong-gu, Suwon 16499, Korea; (E.-J.W.); (T.-J.Y.)
| | - Hyeji Park
- Division of Gastroenterology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea;
| | - Tae-Jong Yoon
- Laboratory of NanoPharmacy, College of Pharmacy, Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, 206 Worldcup-ro, Yeongtong-gu, Suwon 16499, Korea; (E.-J.W.); (T.-J.Y.)
| | - Young-Seok Cho
- Division of Gastroenterology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea;
| |
Collapse
|
24
|
Nie M, Yao K, Zhu X, Chen N, Xiao N, Wang Y, Peng B, Yao L, Li P, Zhang P, Hu Z. Evolutionary metabolic landscape from preneoplasia to invasive lung adenocarcinoma. Nat Commun 2021; 12:6479. [PMID: 34759281 PMCID: PMC8580984 DOI: 10.1038/s41467-021-26685-y] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 10/12/2021] [Indexed: 12/13/2022] Open
Abstract
Metabolic reprogramming evolves during cancer initiation and progression. However, thorough understanding of metabolic evolution from preneoplasia to lung adenocarcinoma (LUAD) is still limited. Here, we perform large-scale targeted metabolomics on resected lesions and plasma obtained from invasive LUAD and its precursors, and decipher the metabolic trajectories from atypical adenomatous hyperplasia (AAH) to adenocarcinoma in situ (AIS), minimally invasive adenocarcinoma (MIA) and invasive adenocarcinoma (IAC), revealing that perturbed metabolic pathways emerge early in premalignant lesions. Furthermore, three panels of plasma metabolites are identified as non-invasive predictive biomarkers to distinguish IAC and its precursors with benign diseases. Strikingly, metabolomics clustering defines three metabolic subtypes of IAC patients with distinct clinical characteristics. We identify correlation between aberrant bile acid metabolism in subtype III with poor clinical features and demonstrate dysregulated bile acid metabolism promotes migration of LUAD, which could be exploited as potential targetable vulnerability and for stratifying patients. Collectively, the comprehensive landscape of the metabolic evolution along the development of LUAD will improve early detection and provide impactful therapeutic strategies.
Collapse
Affiliation(s)
- Meng Nie
- School of Pharmaceutical Sciences, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, 100084, China
| | - Ke Yao
- School of Pharmaceutical Sciences, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, 100084, China
| | - Xinsheng Zhu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | - Na Chen
- School of Pharmaceutical Sciences, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, 100084, China
| | - Nan Xiao
- School of Pharmaceutical Sciences, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, 100084, China
| | - Yi Wang
- School of Pharmaceutical Sciences, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, 100084, China
| | - Bo Peng
- School of Pharmaceutical Sciences, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, 100084, China
| | - LiAng Yao
- School of Pharmaceutical Sciences, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, 100084, China
| | - Peng Li
- Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, 200438, China
- Shanghai Qi Zhi Institute, Shanghai, 200030, China
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Peng Zhang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China.
| | - Zeping Hu
- School of Pharmaceutical Sciences, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
25
|
Chen X, Zeh HJ, Kang R, Kroemer G, Tang D. Cell death in pancreatic cancer: from pathogenesis to therapy. Nat Rev Gastroenterol Hepatol 2021; 18:804-823. [PMID: 34331036 DOI: 10.1038/s41575-021-00486-6] [Citation(s) in RCA: 210] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/18/2021] [Indexed: 02/06/2023]
Abstract
Pancreatic cancer is a devastating gastrointestinal cancer characterized by late diagnosis, limited treatment success and dismal prognosis. Exocrine tumours account for 95% of pancreatic cancers and the most common pathological type is pancreatic ductal adenocarcinoma (PDAC). The occurrence and progression of PDAC involve multiple factors, including internal genetic alterations and external inflammatory stimuli. The biology and therapeutic response of PDAC are further shaped by various forms of regulated cell death, such as apoptosis, necroptosis, ferroptosis, pyroptosis and alkaliptosis. Cell death induced by local or systemic treatments suppresses tumour proliferation, invasion and metastasis. However, unrestricted cell death or tissue damage might result in an inflammation-related immunosuppressive microenvironment, which is conducive to tumour progression or recurrence. The precise extent to which cell death affects PDAC is not yet well described. A growing body of preclinical and clinical studies document significant correlations between mutations (for example, in KRAS and TP53), stress responses (such as hypoxia and autophagy), metabolic reprogramming and chemotherapeutic responses. Here, we describe the molecular machinery of cell death, discuss the complexity and multifaceted nature of lethal signalling in PDAC cells, and highlight the challenges and opportunities for activating cell death pathways through precision oncology treatments.
Collapse
Affiliation(s)
- Xin Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, The Third Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China.,Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China.,Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Herbert J Zeh
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA.
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, INSERM U1138, Institut Universitaire de France, Paris, France. .,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France. .,Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France. .,Suzhou Institute for Systems Biology, Chinese Academy of Sciences, Suzhou, China. .,Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden.
| | - Daolin Tang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, The Third Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China. .,Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
26
|
Pecoraro C, Faggion B, Balboni B, Carbone D, Peters GJ, Diana P, Assaraf YG, Giovannetti E. GSK3β as a novel promising target to overcome chemoresistance in pancreatic cancer. Drug Resist Updat 2021; 58:100779. [PMID: 34461526 DOI: 10.1016/j.drup.2021.100779] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/02/2021] [Accepted: 08/09/2021] [Indexed: 02/07/2023]
Abstract
Pancreatic cancer is an aggressive malignancy with increasing incidence and poor prognosis due to its late diagnosis and intrinsic chemoresistance. Most pancreatic cancer patients present with locally advanced or metastatic disease characterized by inherent resistance to chemotherapy. These features pose a series of therapeutic challenges and new targets are urgently needed. Glycogen synthase kinase 3 beta (GSK3β) is a conserved serine/threonine kinase, which regulates key cellular processes including cell proliferation, DNA repair, cell cycle progression, signaling and metabolic pathways. GSK3β is implicated in non-malignant and malignant diseases including inflammation, neurodegenerative diseases, diabetes and cancer. GSK3β recently emerged among the key factors involved in the onset and progression of pancreatic cancer, as well as in the acquisition of chemoresistance. Intensive research has been conducted on key oncogenic functions of GSK3β and its potential as a druggable target; currently developed GSK3β inhibitors display promising results in preclinical models of distinct tumor types, including pancreatic cancer. Here, we review the latest findings about GSK-3β biology and its role in the development and progression of pancreatic cancer. Moreover, we discuss therapeutic agents targeting GSK3β that could be administered as monotherapy or in combination with other drugs to surmount chemoresistance. Several studies are also defining potential gene signatures to identify patients who might benefit from GSK3β-based therapeutic intervention. This detailed overview emphasizes the urgent need of additional molecular studies on the impact of GSK3β inhibition as well as structural analysis of novel compounds and omics studies of predictive biomarkers.
Collapse
Affiliation(s)
- Camilla Pecoraro
- Department of Medical Oncology, Amsterdam University Medical Center, VU University, 1081 HV Amsterdam, the Netherlands; Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Beatrice Faggion
- Department of Medical Oncology, Amsterdam University Medical Center, VU University, 1081 HV Amsterdam, the Netherlands
| | - Beatrice Balboni
- Department of Medical Oncology, Amsterdam University Medical Center, VU University, 1081 HV Amsterdam, the Netherlands; Computational and Chemical Biology, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy, and Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Daniela Carbone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Godefridus J Peters
- Department of Medical Oncology, Amsterdam University Medical Center, VU University, 1081 HV Amsterdam, the Netherlands; Department of Biochemistry, Medical University of Gdansk, Poland
| | - Patrizia Diana
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Elisa Giovannetti
- Department of Medical Oncology, Amsterdam University Medical Center, VU University, 1081 HV Amsterdam, the Netherlands; Cancer Pharmacology Lab, Fondazione Pisana per la Scienza, Via Ferruccio Giovannini 13, 56017 San Giuliano Terme (Pisa), Italy.
| |
Collapse
|
27
|
Beatty GL, Werba G, Lyssiotis CA, Simeone DM. The biological underpinnings of therapeutic resistance in pancreatic cancer. Genes Dev 2021; 35:940-962. [PMID: 34117095 PMCID: PMC8247606 DOI: 10.1101/gad.348523.121] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a leading cause of cancer-related mortality in the United States and has only recently achieved a 5-yr survival rate of 10%. This dismal prognosis reflects the remarkable capacity of PDAC to effectively adapt to and resist therapeutic intervention. In this review, we discuss recent advances in our understanding of the biological underpinnings of PDAC and their implications as targetable vulnerabilities in this highly lethal disease.
Collapse
Affiliation(s)
- Gregory L Beatty
- Abramson Cancer Center; University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Gregor Werba
- Department of Surgery, New York University School of Medicine, New York, New York 10016, USA
- Perlmutter Cancer Center, New York University Langone Medical Center, New York, New York 10016, USA
| | - Costas A Lyssiotis
- Department of Molecular and Integrative Physiology, Division of Gastroenterology and Hepatology, University of Michigan, Ann Arbor, Michigan 48109, USA
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Michigan, Ann Arbor, Michigan 48109, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Diane M Simeone
- Department of Surgery, New York University School of Medicine, New York, New York 10016, USA
- Perlmutter Cancer Center, New York University Langone Medical Center, New York, New York 10016, USA
- Department of Pathology, New York University School of Medicine, New York, New York 10016, USA
| |
Collapse
|
28
|
Huang TQ, Bi YN, Cui Z, Guan JP, Huang YC. MUC1 confers radioresistance in head and neck squamous cell carcinoma (HNSCC) cells. Bioengineered 2021; 11:769-778. [PMID: 32662743 PMCID: PMC8291802 DOI: 10.1080/21655979.2020.1791590] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Mucin 1 (MUC1), a transmembrane glycoprotein, has shown to be as the possible prognostic marker to predict the risk of aggressive head and neck squamous cell carcinoma (HNSCC). In the present study, we investigated the effect of MUC1 in HNSCC cells and the response to X-ray irradiation (IR). Here, we examined the impact of MUC1 overexpression or downexpression on clonogenic survival and apoptosis in response to X-ray irradiation (IR). Radioresistance and radiosensitivity were also observed in HNSCC cells that are MUC1 overexpression and MUC1 downexpression. This enhanced resistance to IR in MUC1-overexpressing cells is primarily due to increased the number of radiation-induced γH2AX/53BP1-positive foci and DNA double-strand break (DSB) repair kinetics. MUC1 overexpression repaired more than 90% of DSBs after 2 Gy radiation by 24 h compared to the empty vector overexpressing cells with less than 50% of DSB repair. However, MUC1 downexpression repaired less than 20% of DSBs compared to the empty vector-overexpresing cells. MUC1 overexpression inhibited proapoptotic protein expression, such as caspase-3, caspase-8, and caspase-9, and induced antiapoptotic protein Bcl-2, followed by resistance to IR-induced apoptosis. Our results showed that targeting MUC1 may be as a promising strategy to counteract radiation resistance of HNSCC cells.
Collapse
Affiliation(s)
- Tian-Qiao Huang
- Department of Otolaryngology, The Affiliated Hospital of Qingdao University , Qingdao, Shandong, China
| | - Ya-Nan Bi
- Operating Room, The Affiliated Hospital of Qingdao University , Qingdao, Shandong, China
| | - Zheng Cui
- Endoscopy, The Affiliated Hospital of Qingdao University , Qingdao, Shandong, China
| | - Jin-Ping Guan
- Emergency Surgery, The Affiliated Hospital of Qingdao University , Qingdao, Shandong, China
| | - Yi-Chuan Huang
- Department of Otolaryngology, The Affiliated Hospital of Qingdao University , Qingdao, Shandong, China
| |
Collapse
|
29
|
Wang S, Guan G, Zou C, Guo Q, Cheng W, Shen S, Dong F, Wu A, Li G, Zhu C. Genome profiling of mismatch repair genes in eight types of tumors. Cell Cycle 2021; 20:1091-1106. [PMID: 33966609 DOI: 10.1080/15384101.2021.1922160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Mismatch repair (MMR) plays an important role in the occurrence and development of tumors. At present, it is widely believed that MMR is a protective mechanism of tumors that plays a critical role in the progresses of cancer. In this study, 34 genes related to MMR selected from Gene Ontology (GO) database were scored by single sample Gene sets enrichment analysis (ssGSEA), and eight cancers were screened from 23 TCGA solid cancers to investigate the clinical significance of MMR score. MMR had different effects on the prognosis of the eight tumors, with a protective effect in three cancers and functioning as a risk factor in the remaining five cancers. We used unsupervised clustering to divide the patients into four clusters. We found that the immune and metabolic status of the four clusters were extremely different, among which cluster1 had the lowest tumor purity and the most complex microenvironment; this may explain its poor prognosis and immunotherapy effect. In summary, MMR scores can improve the predictive ability and provide effective guidance for immunotherapy in individual type of tumors.
Collapse
Affiliation(s)
- Siqi Wang
- Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang, China
| | - Gefei Guan
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Cunyi Zou
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Qing Guo
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Wen Cheng
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Shuai Shen
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Fang Dong
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Anhua Wu
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Guang Li
- Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang, China
| | - Chen Zhu
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
30
|
Ahmad IM, Dafferner AJ, O’Connell KA, Mehla K, Britigan BE, Hollingsworth MA, Abdalla MY. Heme Oxygenase-1 Inhibition Potentiates the Effects of Nab-Paclitaxel-Gemcitabine and Modulates the Tumor Microenvironment in Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2021; 13:2264. [PMID: 34066839 PMCID: PMC8125955 DOI: 10.3390/cancers13092264] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/22/2021] [Accepted: 05/03/2021] [Indexed: 12/27/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignancy with a poor prognosis. Tumor hypoxia plays an active role in promoting tumor progression, malignancy, and resistance to therapy in PDAC. We present evidence that nab-paclitaxel-gemcitabine (NPG) and/or a hypoxic tumor microenvironment (TME) up-regulate heme oxygenase-1 (HO-1), providing a survival advantage for tumors. Using PDAC cells in vitro and a PDAC mouse model, we found that NPG chemotherapy up-regulated expression of HO-1 in PDAC cells and increased its nuclear translocation. Inhibition of HO-1 with ZnPP and SnPP sensitized PDAC cells to NPG-induced cytotoxicity (p < 0.05) and increased apoptosis (p < 0.05). Additionally, HO-1 expression was increased in gemcitabine-resistant PDAC cells (p < 0.05), and HO-1 inhibition increased GEM-resistant PDAC sensitivity to NPG (p < 0.05). NPG combined with HO-1 inhibitor inhibited tumor size in an orthotopic model. In parallel, HO-1 inhibition abrogated the influx of macrophages and FoxP3+ cells, while increasing the proportion of CD8+ infiltration in the pancreatic tumors. These effects were mediated primarily by reducing expression of the immunosuppressive cytokine IL-10.
Collapse
Affiliation(s)
- Iman M. Ahmad
- College of Allied Health Professions, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Alicia J. Dafferner
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Kelly A. O’Connell
- Fred & Pamela Buffett Cancer Center, The Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, NE 68198, USA; (K.A.O.); (K.M.); (M.A.H.)
| | - Kamiya Mehla
- Fred & Pamela Buffett Cancer Center, The Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, NE 68198, USA; (K.A.O.); (K.M.); (M.A.H.)
| | - Bradley E. Britigan
- Veterans Affairs Medical Center-Nebraska Western Iowa, Department of Internal Medicine and Research Service, Omaha, NE 68105, USA;
| | - Michael A. Hollingsworth
- Fred & Pamela Buffett Cancer Center, The Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, NE 68198, USA; (K.A.O.); (K.M.); (M.A.H.)
| | - Maher Y. Abdalla
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| |
Collapse
|
31
|
Serkova NJ, Glunde K, Haney CR, Farhoud M, De Lille A, Redente EF, Simberg D, Westerly DC, Griffin L, Mason RP. Preclinical Applications of Multi-Platform Imaging in Animal Models of Cancer. Cancer Res 2021; 81:1189-1200. [PMID: 33262127 PMCID: PMC8026542 DOI: 10.1158/0008-5472.can-20-0373] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 06/10/2020] [Accepted: 11/25/2020] [Indexed: 11/16/2022]
Abstract
In animal models of cancer, oncologic imaging has evolved from a simple assessment of tumor location and size to sophisticated multimodality exploration of molecular, physiologic, genetic, immunologic, and biochemical events at microscopic to macroscopic levels, performed noninvasively and sometimes in real time. Here, we briefly review animal imaging technology and molecular imaging probes together with selected applications from recent literature. Fast and sensitive optical imaging is primarily used to track luciferase-expressing tumor cells, image molecular targets with fluorescence probes, and to report on metabolic and physiologic phenotypes using smart switchable luminescent probes. MicroPET/single-photon emission CT have proven to be two of the most translational modalities for molecular and metabolic imaging of cancers: immuno-PET is a promising and rapidly evolving area of imaging research. Sophisticated MRI techniques provide high-resolution images of small metastases, tumor inflammation, perfusion, oxygenation, and acidity. Disseminated tumors to the bone and lung are easily detected by microCT, while ultrasound provides real-time visualization of tumor vasculature and perfusion. Recently available photoacoustic imaging provides real-time evaluation of vascular patency, oxygenation, and nanoparticle distributions. New hybrid instruments, such as PET-MRI, promise more convenient combination of the capabilities of each modality, enabling enhanced research efficacy and throughput.
Collapse
Affiliation(s)
- Natalie J Serkova
- Department of Radiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado.
- Animal Imaging Shared Resource, University of Colorado Cancer Center, Aurora, Colorado
| | - Kristine Glunde
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology, and the Sydney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Chad R Haney
- Center for Advanced Molecular Imaging, Northwestern University, Evanston, Illinois
| | | | | | | | - Dmitri Simberg
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - David C Westerly
- Animal Imaging Shared Resource, University of Colorado Cancer Center, Aurora, Colorado
- Department of Radiation Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Lynn Griffin
- Department of Radiology, Veterinary Teaching Hospital, Colorado State University, Fort Collins, Colorado
| | - Ralph P Mason
- Department of Radiology, University of Texas Southwestern, Dallas, Texas
| |
Collapse
|
32
|
Zhu M, Wang S. Functional Nucleic‐Acid‐Decorated Spherical Nanoparticles: Preparation Strategies and Current Applications in Cancer Therapy. SMALL SCIENCE 2021. [DOI: 10.1002/smsc.202000056] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Min Zhu
- Department of Pharmaceutical Engineering College of Chemistry and Chemical Engineering Central South University No. 932 South Lushan Rd Changsha Hunan 410083 P. R. China
| | - Shan Wang
- Department of Pharmaceutical Engineering College of Chemistry and Chemical Engineering Central South University No. 932 South Lushan Rd Changsha Hunan 410083 P. R. China
| |
Collapse
|
33
|
Phan T, Nguyen VH, Buettner R, Morales C, Yang L, Wong P, Tsai W, Salazar MD, Gil Z, Diamond DJ, Rabinowitz JD, Rosen S, Melstrom LG. Inhibition of de novo pyrimidine synthesis augments Gemcitabine induced growth inhibition in an immunocompetent model of pancreatic cancer. Int J Biol Sci 2021; 17:2240-2251. [PMID: 34239352 PMCID: PMC8241727 DOI: 10.7150/ijbs.60473] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 05/18/2021] [Indexed: 12/13/2022] Open
Abstract
Leflunomide (Lef) is an agent used in autoimmune disorders that interferes with DNA synthesis. De Novo pyrimidine synthesis is a mechanism of Gemcitabine (Gem) resistance in pancreatic cancer. This study aims to assess the efficacy and changes in the tumor microenvironment of Lef monotherapy and in combination with Gem, in a syngeneic mouse model of pancreatic cancer. Methods: MTS proliferation assays were conducted to assess growth inhibition by Gem (0-20 nM), Lef (0-40 uM) and Gem+Lef in KPC (KrasLSL.G12D/+;p53R172H/+; PdxCretg/+) cells in vitro. An in vivo heterotopic KPC model was used and cohorts were treated with: PBS (control), Gem (75 mg/kg/q3d), Lef (40 mg/kg/d), or Gem+Lef. At d28 post-treatment, tumor burden, proliferation index (Ki67), and vascularity (CD31) were measured. Changes in the frequency of peripheral and intratumoral immune cell subsets were evaluated via FACS. Liquid chromatography-mass spectrometry was used for metabolomics profiling. Results: Lef inhibits KPC cell growth and synergizes with Gem in vitro (P<0.05; Combination Index 0.44 (<1 indicates synergy). In vivo, Lef alone and in combination with Gem delays KPC tumor progression (P<0.001). CTLA-4+T cells are also significantly decreased in tumors treated with Lef, Gem or in combination (Gem+Lef) compared to controls (P<0.05). Combination therapy also decreased the Ki67 and vascularity (P<0.01). Leflunomide inhibits de novo pyrimidine synthesis both in vitro (p<0.0001) and in vivo (p<0.05). Conclusions: In this study, we demonstrated that Gem+Lef inhibits pancreatic cancer growth, decrease T cell exhaustion, vascularity and as proof of principle inhibits de novo pyrimidine synthesis. Further characterization of changes in adaptive immunity are necessary to characterize the mechanism of tumor growth inhibition and facilitate translation to a clinical trial.
Collapse
Affiliation(s)
- Thuy Phan
- Department of Surgery, City of Hope National Medical Center, Duarte, CA 91010
| | - Vu H. Nguyen
- Department of Hematology, City of Hope National Medical Center, Duarte, CA 91010
| | - Ralf Buettner
- Department of Hematology, City of Hope National Medical Center, Duarte, CA 91010
| | - Corey Morales
- Department of Hematology, City of Hope National Medical Center, Duarte, CA 91010
| | - Lifeng Yang
- Lewis Sigler Institute for Integrative Genomics and Department of Chemistry, Princeton University, Princeton, NJ 08544
| | - Paul Wong
- Department of Surgery, City of Hope National Medical Center, Duarte, CA 91010
| | - Weiman Tsai
- Department of Hematology, City of Hope National Medical Center, Duarte, CA 91010
| | | | - Ziv Gil
- Rambam Medical Center, Israel
| | - Don J Diamond
- Department of Hematology, City of Hope National Medical Center, Duarte, CA 91010
| | - Joshua D. Rabinowitz
- Lewis Sigler Institute for Integrative Genomics and Department of Chemistry, Princeton University, Princeton, NJ 08544
| | - Steven Rosen
- Department of Hematology, City of Hope National Medical Center, Duarte, CA 91010
| | - Laleh G. Melstrom
- Department of Surgery, City of Hope National Medical Center, Duarte, CA 91010
- ✉ Corresponding author: Laleh Melstrom MD, City of Hope National Medical Center, Department of Surgery and Immuno-oncology, 1500 E Duarte Road, Duarte, CA 91010. E-mail: ; Phone: 626 218 0282; Fax: 626 218 1113
| |
Collapse
|
34
|
Distinct roles for the hypoxia-inducible transcription factors HIF-1α and HIF-2α in human osteoclast formation and function. Sci Rep 2020; 10:21072. [PMID: 33273561 PMCID: PMC7713367 DOI: 10.1038/s41598-020-78003-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/19/2020] [Indexed: 01/04/2023] Open
Abstract
Bone homeostasis is maintained by a balance between osteoblast-mediated bone formation and osteoclast-driven bone resorption. Hypoxia modulates this relationship partially via direct and indirect effects of the hypoxia-inducible factor-1 alpha (HIF-1α) transcription factor on osteoclast formation and bone resorption. Little data is available on the role(s) of the HIF-2α isoform of HIF in osteoclast biology. Here we describe induction of HIF-1α and HIF-2α during the differentiation of human CD14+ monocytes into osteoclasts. Knockdown of HIF-1α did not affect osteoclast differentiation but prevented the increase in bone resorption that occurs under hypoxic conditions. HIF-2α knockdown did not affect bone resorption but moderately inhibited osteoclast formation. Growth of osteoclasts in 3D gels reversed the effect of HIF-2α knockdown; HIF-2α siRNA increasing osteoclast formation in 3D. Glycolysis is the main HIF-regulated pathway that drives bone resorption. HIF knockdown only affected glucose uptake and bone resorption in hypoxic conditions. Inhibition of glycolysis with 2-deoxy-d-glucose (2-DG) reduced osteoclast formation and activity under both basal and hypoxic conditions, emphasising the importance of glycolytic metabolism in osteoclast biology. In summary, HIF-1α and HIF-2α play different but overlapping roles in osteoclast biology, highlighting the importance of the HIF pathway as a potential therapeutic target in osteolytic disease.
Collapse
|
35
|
Sharma N, Bhushan A, He J, Kaushal G, Bhardwaj V. Metabolic plasticity imparts erlotinib-resistance in pancreatic cancer by upregulating glucose-6-phosphate dehydrogenase. Cancer Metab 2020; 8:19. [PMID: 32974013 PMCID: PMC7507640 DOI: 10.1186/s40170-020-00226-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 09/06/2020] [Indexed: 12/12/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most malignant forms of cancer. Lack of effective treatment options and drug resistance contributes to the low survival among PDAC patients. In this study, we investigated the metabolic alterations in pancreatic cancer cells that do not respond to the EGFR inhibitor erlotinib. We selected erlotinib-resistant pancreatic cancer cells from MiaPaCa2 and AsPC1 cell lines. Metabolic profiling of erlotinib-resistant cells revealed a significant downregulation of glycolytic activity and reduced level of glycolytic metabolites compared to the sensitive cells. The resistant cells displayed elevated expression of the pentose phosphate pathway (PPP) enzymes involved in ROS regulation and nucleotide biosynthesis. The enhanced PPP elevated cellular NADPH/NADP+ ratio and protected the cells from reactive oxygen species (ROS)-induced damage. Inhibition of PPP using 6-aminonicotinamide (6AN) elevated ROS levels, induced G1 cell cycle arrest, and sensitized resistant cells to erlotinib. Genetic studies identified elevated PPP enzyme glucose-6-phosphate dehydrogenase (G6PD) as an important contributor to erlotinib resistance. Mechanistically, our data showed that upregulation of inhibitor of differentiation (ID1) regulates G6PD expression in resistant cells thus contributing to altered metabolic phenotype and reduced response to erlotinib. Together, our results highlight an underlying role of tumor metabolism in PDAC drug response and identify G6PD as a target to overcome drug resistance.
Collapse
Affiliation(s)
- Neha Sharma
- Department of Pharmaceutical Sciences, Jefferson College of Pharmacy, Thomas Jefferson University, Philadelphia, PA USA
| | - Alok Bhushan
- Department of Pharmaceutical Sciences, Jefferson College of Pharmacy, Thomas Jefferson University, Philadelphia, PA USA
| | - Jun He
- Department of Pathology, Anatomy & Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, USA
| | - Gagan Kaushal
- Department of Pharmaceutical Sciences, Jefferson College of Pharmacy, Thomas Jefferson University, Philadelphia, PA USA
| | - Vikas Bhardwaj
- Department of Pharmaceutical Sciences, Jefferson College of Pharmacy, Thomas Jefferson University, Philadelphia, PA USA
| |
Collapse
|
36
|
Yoo HC, Yu YC, Sung Y, Han JM. Glutamine reliance in cell metabolism. Exp Mol Med 2020; 52:1496-1516. [PMID: 32943735 PMCID: PMC8080614 DOI: 10.1038/s12276-020-00504-8] [Citation(s) in RCA: 565] [Impact Index Per Article: 113.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/22/2020] [Accepted: 07/27/2020] [Indexed: 12/20/2022] Open
Abstract
As knowledge of cell metabolism has advanced, glutamine has been considered an important amino acid that supplies carbon and nitrogen to fuel biosynthesis. A recent study provided a new perspective on mitochondrial glutamine metabolism, offering mechanistic insights into metabolic adaptation during tumor hypoxia, the emergence of drug resistance, and glutaminolysis-induced metabolic reprogramming and presenting metabolic strategies to target glutamine metabolism in cancer cells. In this review, we introduce the various biosynthetic and bioenergetic roles of glutamine based on the compartmentalization of glutamine metabolism to explain why cells exhibit metabolic reliance on glutamine. Additionally, we examined whether glutamine derivatives contribute to epigenetic regulation associated with tumorigenesis. In addition, in discussing glutamine transporters, we propose a metabolic target for therapeutic intervention in cancer.
Collapse
Affiliation(s)
- Hee Chan Yoo
- Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon, 21983, South Korea
| | - Ya Chun Yu
- Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon, 21983, South Korea
| | - Yulseung Sung
- Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon, 21983, South Korea
| | - Jung Min Han
- Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon, 21983, South Korea.
- Department of Integrated OMICS for Biomedical Science, Yonsei University, Seoul, 03722, South Korea.
| |
Collapse
|
37
|
Soliman GA, Shukla SK, Etekpo A, Gunda V, Steenson SM, Gautam N, Alnouti Y, Singh PK. The Synergistic Effect of an ATP-Competitive Inhibitor of mTOR and Metformin on Pancreatic Tumor Growth. Curr Dev Nutr 2020; 4:nzaa131. [PMID: 32908958 PMCID: PMC7467276 DOI: 10.1093/cdn/nzaa131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/11/2020] [Accepted: 07/27/2020] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND The mechanistic target of rapamycin complex 1 (mTORC1) is a nutrient-sensing pathway and a key regulator of amino acid and glucose metabolism. Dysregulation of the mTOR pathways is implicated in the pathogenesis of metabolic syndrome, obesity, type 2 diabetes, and pancreatic cancer. OBJECTIVES We investigated the impact of inhibition of mTORC1/mTORC2 and synergism with metformin on pancreatic tumor growth and metabolomics. METHODS Cell lines derived from pancreatic tumors of the KPC (KrasG12D/+; p53R172H/+; Pdx1-Cre) transgenic mice model were implanted into the pancreas of C57BL/6 albino mice (n = 10/group). Two weeks later, the mice were injected intraperitoneally with daily doses of 1) Torin 2 (mTORC1/mTORC2 inhibitor) at a high concentration (TH), 2) Torin 2 at a low concentration (TL), 3) metformin at a low concentration (ML), 4) a combination of Torin 2 and metformin at low concentrations (TLML), or 5) DMSO vehicle (control) for 12 d. Tissues and blood samples were collected for targeted xenometabolomics analysis, drug concentration, and cell signaling. RESULTS Metabolomic analysis of the control and treated plasma samples showed differential metabolite profiles. Phenylalanine was significantly elevated in the TLML group compared with the control (+426%, P = 0.0004), whereas uracil was significantly lower (-38%, P = 0.009). The combination treatment reduced tumor growth in the orthotopic mouse model. TLML significantly decreased pancreatic tumor volume (498 ± 104 mm3; 37%; P < 0.0004) compared with control (1326 ± 134 mm3; 100%), ML (853 ± 67 mm3; 64%), TL (745 ± 167 mm3; 54%), and TH (665 ± 182 mm3; 50%) (ANOVA and post hoc tests). TLML significantly decreased tumor weights (0.66 ± 0.08 g; 52%) compared with the control (1.28 ± 0.19 g; 100%) (P < 0.002). CONCLUSIONS The combination of mTOR dual inhibition by Torin 2 and metformin is associated with an altered metabolomic profile and a significant reduction in pancreatic tumor burden compared with single-agent therapy, and it is better tolerated.
Collapse
Affiliation(s)
- Ghada A Soliman
- Department of Environmental, Occupational, and Geospatial Health Sciences, CUNY Graduate School of Public Health and Health Policy, City University of New York, New York, NY, USA
| | - Surendra K Shukla
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | | | - Venugopal Gunda
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Sharalyn M Steenson
- Department of Health Promotion, College of Public Health, University of Nebraska Medical Center, Omaha, NE, USA
| | - Nagsen Gautam
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Yazen Alnouti
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Pankaj K Singh
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
38
|
Strapcova S, Takacova M, Csaderova L, Martinelli P, Lukacikova L, Gal V, Kopacek J, Svastova E. Clinical and Pre-Clinical Evidence of Carbonic Anhydrase IX in Pancreatic Cancer and Its High Expression in Pre-Cancerous Lesions. Cancers (Basel) 2020; 12:E2005. [PMID: 32707920 PMCID: PMC7464147 DOI: 10.3390/cancers12082005] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/14/2020] [Accepted: 07/16/2020] [Indexed: 12/11/2022] Open
Abstract
Hypoxia is a common phenomenon that occurs in most solid tumors. Regardless of tumor origin, the evolution of a hypoxia-adapted phenotype is critical for invasive cancer development. Pancreatic ductal adenocarcinoma is also characterized by hypoxia, desmoplasia, and the presence of necrosis, predicting poor outcome. Carbonic anhydrase IX (CAIX) is one of the most strict hypoxia regulated genes which plays a key role in the adaptation of cancer cells to hypoxia and acidosis. Here, we summarize clinical data showing that CAIX expression is associated with tumor necrosis, vascularization, expression of Frizzled-1, mucins, or proteins involved in glycolysis, and inevitably, poor prognosis of pancreatic cancer patients. We also describe the transcriptional regulation of CAIX in relation to signaling pathways activated in pancreatic cancers. A large part deals with the preclinical evidence supporting the relevance of CAIX in processes leading to the aggressive behavior of pancreatic tumors. Furthermore, we focus on CAIX occurrence in pre-cancerous lesions, and for the first time, we describe CAIX expression within intraductal papillary mucinous neoplasia. Our review concludes with a detailed account of clinical trials implicating that treatment consisting of conventionally used therapies combined with CAIX targeting could result in an improved anti-cancer response in pancreatic cancer patients.
Collapse
Affiliation(s)
- Sabina Strapcova
- Department of Tumor Biology, Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia; (S.S.); (M.T.); (L.C.); (L.L.); (J.K.)
| | - Martina Takacova
- Department of Tumor Biology, Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia; (S.S.); (M.T.); (L.C.); (L.L.); (J.K.)
| | - Lucia Csaderova
- Department of Tumor Biology, Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia; (S.S.); (M.T.); (L.C.); (L.L.); (J.K.)
| | - Paola Martinelli
- Institute of Cancer Research, Clinic of Internal Medicine I, Medical University of Vienna, 1090 Vienna, Austria;
- Cancer Cell Signaling, Boehringer-Ingelheim RCV Vienna, A-1121 Vienna, Austria
| | - Lubomira Lukacikova
- Department of Tumor Biology, Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia; (S.S.); (M.T.); (L.C.); (L.L.); (J.K.)
| | - Viliam Gal
- Alpha Medical Pathology, Ruzinovska 6, 82606 Bratislava, Slovakia;
| | - Juraj Kopacek
- Department of Tumor Biology, Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia; (S.S.); (M.T.); (L.C.); (L.L.); (J.K.)
| | - Eliska Svastova
- Department of Tumor Biology, Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia; (S.S.); (M.T.); (L.C.); (L.L.); (J.K.)
| |
Collapse
|
39
|
Fu X, Tang N, Xie WQ, Mao L, Qiu YD. MUC1 promotes glycolysis through inhibiting BRCA1 expression in pancreatic cancer. Chin J Nat Med 2020; 18:178-185. [PMID: 32245587 DOI: 10.1016/s1875-5364(20)30019-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Indexed: 12/14/2022]
Abstract
Enhanced glucose metabolism is one of the hallmarks of pancreatic cancer. MUC1, a transmembrane protein, is a global regulator of glucose metabolism and essential for progression of pancreatic cancer. To clarify the role of MUC1 in glucose metabolism, we knocked out MUC1 in Capan-1 and CFPAC-1 cells. MUC1 knockout (KO) cells uptook less glucose and secreted less lactate with a much lower proliferating rate. The mRNA level of key enzymes in glycolysis also decreased significantly in MUC1 KO cells. We also observed increased expression of breast cancer type 1 susceptibility protein (BRCA1) in MUC1 KO cells. Since BRCA1 has a strong inhibitory effect on glycolysis, we want to know whether the decreased glucose metabolism in MUC1 KO cells is due to increased BRCA1 expression. We treated wild type (WT) and MUC1 KO cells with BRCA1 inhibitor. BRCA1 inhibition significantly enhanced glucose uptake and lactate secretion in both WT and MUC1 KO cells. Expression of key enzymes in glycolysis also elevated after BRCA1 inhibition. Elevated glucose metabolism is known to facilitate cancer cells to gain chemoresistance. We treated MUC1 KO cells with gemcitabine and FOLFIRINOX in vitro and in vivo. The results showed that MUC1 KO sensitized pancreatic cancer cells to chemotherapy both in vitro and in vivo. In conclusion, we demonstrated that MUC1 promotes glycolysis through inhibiting BRCA1 expression. MUC1 may be a therapeutic target in pancreatic cancer treatment.
Collapse
Affiliation(s)
- Xiao Fu
- The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210009, China
| | - Neng Tang
- The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210009, China
| | - Wei-Qi Xie
- The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210009, China
| | - Liang Mao
- The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210009, China
| | - Yu-Dong Qiu
- The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210009, China.
| |
Collapse
|
40
|
Hexosamine pathway inhibition overcomes pancreatic cancer resistance to gemcitabine through unfolded protein response and EGFR-Akt pathway modulation. Oncogene 2020; 39:4103-4117. [PMID: 32235891 DOI: 10.1038/s41388-020-1260-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 01/09/2023]
Abstract
Different evidence has indicated metabolic rewiring as a necessity for pancreatic cancer (PC) growth, invasion, and chemotherapy resistance. A relevant role has been assigned to glucose metabolism. In particular, an enhanced flux through the Hexosamine Biosynthetic Pathway (HBP) has been tightly linked to PC development. Here, we show that enhancement of the HBP, through the upregulation of the enzyme Phosphoacetylglucosamine Mutase 3 (PGM3), is associated with the onset of gemcitabine (GEM) resistance in PC. Indeed, mRNA profiles of GEM sensitive and resistant patient-derived tumor xenografts (PDXs) indicate that PGM3 expression is specifically increased in GEM-resistant PDXs. Of note, PGM3 results also overexpressed in human PC tissues as compared to paired adjacent normal tissues and its higher expression in PC patients is associated with worse median overall survival (OS). Strikingly, genetic or pharmacological PGM3 inhibition reduces PC cell growth, migration, invasion, in vivo tumor growth and enhances GEM sensitivity. Thus, combined treatment between a specific inhibitor of PGM3, named FR054, and GEM results in a potent reduction of xenograft tumor growth without any obvious side effects in normal tissues. Mechanistically, PGM3 inhibition, reducing protein glycosylation, causes a sustained Unfolded Protein Response (UPR), a significant attenuation of the pro-tumorigenic Epidermal Growth Factor Receptor (EGFR)-Akt axis, and finally cell death. In conclusion this study identifies the HBP as a metabolic pathway involved in GEM resistance and provides a strong rationale for a PC therapy addressing the combined treatment with the PGM3 inhibitor and GEM.
Collapse
|
41
|
Yamada KJ, Heim CE, Xi X, Attri KS, Wang D, Zhang W, Singh PK, Bronich TK, Kielian T. Monocyte metabolic reprogramming promotes pro-inflammatory activity and Staphylococcus aureus biofilm clearance. PLoS Pathog 2020; 16:e1008354. [PMID: 32142554 PMCID: PMC7080272 DOI: 10.1371/journal.ppat.1008354] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 03/18/2020] [Accepted: 01/27/2020] [Indexed: 02/07/2023] Open
Abstract
Biofilm-associated prosthetic joint infections (PJIs) cause significant morbidity due to their recalcitrance to immune-mediated clearance and antibiotics, with Staphylococcus aureus (S. aureus) among the most prevalent pathogens. We previously demonstrated that S. aureus biofilm-associated monocytes are polarized to an anti-inflammatory phenotype and the adoptive transfer of pro-inflammatory macrophages attenuated biofilm burden, highlighting the critical role of monocyte/macrophage inflammatory status in dictating biofilm persistence. The inflammatory properties of leukocytes are linked to their metabolic state, and here we demonstrate that biofilm-associated monocytes exhibit a metabolic bias favoring oxidative phosphorylation (OxPhos) and less aerobic glycolysis to facilitate their anti-inflammatory activity and biofilm persistence. To shift monocyte metabolism in vivo and reprogram cells to a pro-inflammatory state, a nanoparticle approach was utilized to deliver the OxPhos inhibitor oligomycin to monocytes. Using a mouse model of S. aureus PJI, oligomycin nanoparticles were preferentially internalized by monocytes, which significantly reduced S. aureus biofilm burden by altering metabolism and promoting the pro-inflammatory properties of infiltrating monocytes as revealed by metabolomics and RT-qPCR, respectively. Injection of oligomycin alone had no effect on monocyte metabolism or biofilm burden, establishing that intracellular delivery of oligomycin is required to reprogram monocyte metabolic activity and that oligomycin lacks antibacterial activity against S. aureus biofilms. Remarkably, monocyte metabolic reprogramming with oligomycin nanoparticles was effective at clearing established biofilms in combination with systemic antibiotics. These findings suggest that metabolic reprogramming of biofilm-associated monocytes may represent a novel therapeutic approach for PJI.
Collapse
Affiliation(s)
- Kelsey J. Yamada
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Cortney E. Heim
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Xinyuan Xi
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Kuldeep S. Attri
- Eppley Institute, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Dezhen Wang
- Eppley Institute, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Wenting Zhang
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Pankaj K. Singh
- Eppley Institute, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Tatiana K. Bronich
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Tammy Kielian
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| |
Collapse
|
42
|
Tiemin P, Peng X, Qingfu L, Yan W, Junlin X, Zhefeng H, Ming Z, Desen L, Qinghui M. Dysregulation of the miR-148a-GLUT1 axis promotes the progression and chemoresistance of human intrahepatic cholangiocarcinoma. Oncogenesis 2020; 9:19. [PMID: 32054829 PMCID: PMC7018977 DOI: 10.1038/s41389-020-0207-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 01/30/2020] [Accepted: 02/04/2020] [Indexed: 11/09/2022] Open
Abstract
Intrahepatic cholangiocarcinoma (iCCA) is a highly fatal malignant cancer worldwide. Elucidating the underlying molecular mechanism of iCCA progression is critical for the identification of new therapeutic targets. The present study explored the role of the miR-148a-GLUT1 axis in the progression of iCCA. The expression of GLUT1 was detected by using immunohistochemistry, western blot assays, and real-time polymerase chain reaction. The effects of GLUT1 on cell proliferation, invasion, and chemoresistance were investigated both in vitro and in vivo. A luciferase reporter assay was used to explore the effect of miR-148a on GLUT1 expression. GLUT1 was overexpressed in iCCA tissues. GLUT1 overexpression was associated with shorter overall and disease-free survival. Knockdown of GLUT1 reduced, while overexpression of GLUT1 promoted, the proliferation, motility, and invasiveness of iCCA cells in vitro and in vivo. Silencing GLUT1 significantly sensitized iCCA cells to gemcitabine in vitro and in vivo. GLUT1 was directly regulated by miR-148a, whose downregulation was associated with the proliferation, migration, and invasion of iCCA cells. WZB117, a GLUT1 inhibitor, inhibited tumor growth in an iCCA patient-derived xenograft model. These results indicate that downregulation of miR-148a levels results in GLUT1 overexpression in iCCA, leading to iCCA progression and gemcitabine resistance.
Collapse
Affiliation(s)
- Pei Tiemin
- Department of General Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiao Peng
- Department of General Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lang Qingfu
- Department of General Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wang Yan
- Department of General Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xue Junlin
- Department of General Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - He Zhefeng
- Department of General Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhao Ming
- Department of General Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Liang Desen
- Department of General Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Meng Qinghui
- Department of General Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
43
|
A Variant of SLC1A5 Is a Mitochondrial Glutamine Transporter for Metabolic Reprogramming in Cancer Cells. Cell Metab 2020; 31:267-283.e12. [PMID: 31866442 DOI: 10.1016/j.cmet.2019.11.020] [Citation(s) in RCA: 277] [Impact Index Per Article: 55.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 08/05/2019] [Accepted: 11/27/2019] [Indexed: 12/27/2022]
Abstract
Glutamine is an essential nutrient that regulates energy production, redox homeostasis, and signaling in cancer cells. Despite the importance of glutamine in mitochondrial metabolism, the mitochondrial glutamine transporter has long been unknown. Here, we show that the SLC1A5 variant plays a critical role in cancer metabolic reprogramming by transporting glutamine into mitochondria. The SLC1A5 variant has an N-terminal targeting signal for mitochondrial localization. Hypoxia-induced gene expression of the SLC1A5 variant is mediated by HIF-2α. Overexpression of the SLC1A5 variant mediates glutamine-induced ATP production and glutathione synthesis and confers gemcitabine resistance to pancreatic cancer cells. SLC1A5 variant knockdown and overexpression alter cancer cell and tumor growth, supporting an oncogenic role. This work demonstrates that the SLC1A5 variant is a mitochondrial glutamine transporter for cancer metabolic reprogramming.
Collapse
|
44
|
Li M, Zhang X, Lu Y, Meng S, Quan H, Hou P, Tong P, Chai D, Gao X, Zheng J, Tong X, Bai J. The nuclear translocation of transketolase inhibits the farnesoid receptor expression by promoting the binding of HDAC3 to FXR promoter in hepatocellular carcinoma cell lines. Cell Death Dis 2020; 11:31. [PMID: 31949131 PMCID: PMC6965636 DOI: 10.1038/s41419-020-2225-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 12/27/2019] [Accepted: 12/28/2019] [Indexed: 02/07/2023]
Abstract
Transketolase (TKT), which is a metabolic enzyme in the nonoxidative phase of the pentose phosphate pathway (PPP), plays an important role in providing cancer cells with raw materials for macromolecular biosynthesis. The ectopic expression of TKT in hepatocellular carcinoma (HCC) was reported previously. However, the role of TKT in the initiation of liver cancer is still obscure. In our previous study, we found that TKT deficiency protects the liver from DNA damage by increasing levels of ribose 5-phosphate and nucleotides. What’s more interesting is that we found TKT deficiency reduced bile acids and loss of TKT promoted the farnesoid receptor (FXR) expression. We further showed that TKT translocated into the nucleus of HCC cell lines through interacting with the signal transducer and activator of transcription 1 (STAT1), and then the complex inhibited FXR expression by promoting the binding of histone deacetylase 3 (HDAC3) to FXR promoter.
Collapse
Affiliation(s)
- Minle Li
- Cancer Institute, Xuzhou Medical University, 221002, Xuzhou, Jiangsu, China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 221002, Xuzhou, Jiangsu, China
| | - Xuping Zhang
- Cancer Institute, Xuzhou Medical University, 221002, Xuzhou, Jiangsu, China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 221002, Xuzhou, Jiangsu, China
| | - Ying Lu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Sen Meng
- Cancer Institute, Xuzhou Medical University, 221002, Xuzhou, Jiangsu, China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 221002, Xuzhou, Jiangsu, China
| | - Haoyu Quan
- Cancer Institute, Xuzhou Medical University, 221002, Xuzhou, Jiangsu, China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 221002, Xuzhou, Jiangsu, China
| | - Pingfu Hou
- Cancer Institute, Xuzhou Medical University, 221002, Xuzhou, Jiangsu, China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 221002, Xuzhou, Jiangsu, China
| | - Pan Tong
- Affiliated Hospital of Xuzhou Medical University, 221002, Xuzhou, Jiangsu, China
| | - Dafei Chai
- Cancer Institute, Xuzhou Medical University, 221002, Xuzhou, Jiangsu, China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 221002, Xuzhou, Jiangsu, China
| | - Xiaoge Gao
- Cancer Institute, Xuzhou Medical University, 221002, Xuzhou, Jiangsu, China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 221002, Xuzhou, Jiangsu, China
| | - Junnian Zheng
- Cancer Institute, Xuzhou Medical University, 221002, Xuzhou, Jiangsu, China. .,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 221002, Xuzhou, Jiangsu, China. .,Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, 221002, Xuzhou, Jiangsu, China.
| | - Xuemei Tong
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.
| | - Jin Bai
- Cancer Institute, Xuzhou Medical University, 221002, Xuzhou, Jiangsu, China. .,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 221002, Xuzhou, Jiangsu, China.
| |
Collapse
|
45
|
Jing X, Yang F, Shao C, Wei K, Xie M, Shen H, Shu Y. Role of hypoxia in cancer therapy by regulating the tumor microenvironment. Mol Cancer 2019; 18:157. [PMID: 31711497 PMCID: PMC6844052 DOI: 10.1186/s12943-019-1089-9] [Citation(s) in RCA: 1254] [Impact Index Per Article: 209.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 10/18/2019] [Indexed: 02/06/2023] Open
Abstract
AIM Clinical resistance is a complex phenomenon in major human cancers involving multifactorial mechanisms, and hypoxia is one of the key components that affect the cellular expression program and lead to therapy resistance. The present study aimed to summarize the role of hypoxia in cancer therapy by regulating the tumor microenvironment (TME) and to highlight the potential of hypoxia-targeted therapy. METHODS Relevant published studies were retrieved from PubMed, Web of Science, and Embase using keywords such as hypoxia, cancer therapy, resistance, TME, cancer, apoptosis, DNA damage, autophagy, p53, and other similar terms. RESULTS Recent studies have shown that hypoxia is associated with poor prognosis in patients by regulating the TME. It confers resistance to conventional therapies through a number of signaling pathways in apoptosis, autophagy, DNA damage, mitochondrial activity, p53, and drug efflux. CONCLUSION Hypoxia targeting might be relevant to overcome hypoxia-associated resistance in cancer treatment.
Collapse
Affiliation(s)
- Xinming Jing
- Department of Oncology, The Affiliated Sir Run Run Hospital of Nanjing Medical University, Nanjing, China.,Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Fengming Yang
- Department of Oncology, The Affiliated Sir Run Run Hospital of Nanjing Medical University, Nanjing, China.,Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chuchu Shao
- Department of Oncology, The Affiliated Sir Run Run Hospital of Nanjing Medical University, Nanjing, China.,Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ke Wei
- Department of Thoracic surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Mengyan Xie
- Department of Oncology, The Affiliated Sir Run Run Hospital of Nanjing Medical University, Nanjing, China.,Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hua Shen
- Department of Oncology, The Affiliated Sir Run Run Hospital of Nanjing Medical University, Nanjing, China. .,Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Yongqian Shu
- Department of Oncology, The Affiliated Sir Run Run Hospital of Nanjing Medical University, Nanjing, China. .,Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
46
|
Mesmar F, Dai B, Ibrahim A, Hases L, Jafferali MH, Jose Augustine J, DiLorenzo S, Kang Y, Zhao Y, Wang J, Kim M, Lin CY, Berkenstam A, Fleming J, Williams C. Clinical candidate and genistein analogue AXP107-11 has chemoenhancing functions in pancreatic adenocarcinoma through G protein-coupled estrogen receptor signaling. Cancer Med 2019; 8:7705-7719. [PMID: 31568691 PMCID: PMC6912054 DOI: 10.1002/cam4.2581] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 09/13/2019] [Accepted: 09/13/2019] [Indexed: 12/17/2022] Open
Abstract
Despite advances in cancer therapeutics, pancreatic cancer remains difficult to treat and often develops resistance to chemotherapies. We have evaluated a bioavailable genistein analogue, AXP107-11 which has completed phase Ib clinical trial, as an approach to sensitize tumor cells to chemotherapy. Using organotypic cultures of 14 patient-derived xenografts (PDX) of pancreatic ductal adenocarcinoma, we found that addition of AXP107-11 indeed sensitized 57% of cases to gemcitabine treatment. Results were validated using PDX models in vivo. Further, RNA-Seq from responsive and unresponsive tumors proposed a 41-gene treatment-predictive signature. Functional and molecular assays were performed in cell lines and demonstrated that the effect was synergistic. Transcriptome analysis indicated activation of G-protein-coupled estrogen receptor (GPER1) as the main underlying mechanism of action, which was corroborated using GPER1-selective agonists and antagonists. GPER1 expression in pancreatic tumors was indicative of survival, and our study proposes that activation of GPER1 may constitute a new avenue for pancreatic cancer therapeutics.
Collapse
Affiliation(s)
- Fahmi Mesmar
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX, USA.,Department of Protein Science, KTH Royal Institute of Technology, Science for Life Laboratory, Solna, Sweden
| | - Bingbing Dai
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ahmed Ibrahim
- Department of Protein Science, KTH Royal Institute of Technology, Science for Life Laboratory, Solna, Sweden
| | - Linnea Hases
- Department of Protein Science, KTH Royal Institute of Technology, Science for Life Laboratory, Solna, Sweden.,Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden
| | - Mohammed Hakim Jafferali
- Department of Protein Science, KTH Royal Institute of Technology, Science for Life Laboratory, Solna, Sweden
| | - Jithesh Jose Augustine
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sebastian DiLorenzo
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden.,National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Ya'an Kang
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yang Zhao
- Department of Bioinformatics and Computing Science, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jing Wang
- Department of Bioinformatics and Computing Science, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael Kim
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chin-Yo Lin
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | | | - Jason Fleming
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Cecilia Williams
- Department of Protein Science, KTH Royal Institute of Technology, Science for Life Laboratory, Solna, Sweden
| |
Collapse
|
47
|
Yan L, Raj P, Yao W, Ying H. Glucose Metabolism in Pancreatic Cancer. Cancers (Basel) 2019; 11:cancers11101460. [PMID: 31569510 PMCID: PMC6826406 DOI: 10.3390/cancers11101460] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/25/2019] [Accepted: 09/25/2019] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive and lethal cancers, with a five-year survival rate of around 5% to 8%. To date, very few available drugs have been successfully used to treat PDAC due to the poor understanding of the tumor-specific features. One of the hallmarks of pancreatic cancer cells is the deregulated cellular energetics characterized by the “Warburg effect”. It has been known for decades that cancer cells have a dramatically increased glycolytic flux even in the presence of oxygen and normal mitochondrial function. Glycolytic flux is the central carbon metabolism process in all cells, which not only produces adenosine triphosphate (ATP) but also provides biomass for anabolic processes that support cell proliferation. Expression levels of glucose transporters and rate-limiting enzymes regulate the rate of glycolytic flux. Intermediates that branch out from glycolysis are responsible for redox homeostasis, glycosylation, and biosynthesis. Beyond enhanced glycolytic flux, pancreatic cancer cells activate nutrient salvage pathways, which includes autophagy and micropinocytosis, from which the generated sugars, amino acids, and fatty acids are used to buffer the stresses induced by nutrient deprivation. Further, PDAC is characterized by extensive metabolic crosstalk between tumor cells and cells in the tumor microenvironment (TME). In this review, we will give an overview on recent progresses made in understanding glucose metabolism-related deregulations in PDAC.
Collapse
Affiliation(s)
- Liang Yan
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Priyank Raj
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Wantong Yao
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Haoqiang Ying
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
48
|
Dhar D, Raina K, Kant R, Wempe MF, Serkova NJ, Agarwal C, Agarwal R. Bitter melon juice-intake modulates glucose metabolism and lactate efflux in tumors in its efficacy against pancreatic cancer. Carcinogenesis 2019; 40:1164-1176. [PMID: 31194859 PMCID: PMC7384253 DOI: 10.1093/carcin/bgz114] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 05/21/2019] [Accepted: 06/12/2019] [Indexed: 12/12/2022] Open
Abstract
The established role of bitter melon juice (BMJ), a natural product, in activating master metabolic regulator adenosine monophosphate-activated protein kinase in pancreatic cancer (PanC) cells served as a basis for pursuing deeper investigation into the underlying metabolic alterations leading to BMJ efficacy in PanC. We investigated the comparative metabolic profiles of PanC cells with differential KRAS mutational status on BMJ exposure. Specifically, we employed nuclear magnetic resonance (NMR) metabolomics and in vivo imaging platforms to understand the relevance of altered metabolism in PanC management by BMJ. Multinuclear NMR metabolomics was performed, as a function of time, post-BMJ treatment followed by partial least square discriminant analysis assessments on the quantitative metabolic data sets to visualize the treatment group clustering; altered glucose uptake, lactate export and energy state were identified as the key components responsible for cell death induction. We next employed PANC1 xenograft model for assessing in vivo BMJ efficacy against PanC. Positron emission tomography ([18FDG]-PET) and magnetic resonance imaging on PANC1 tumor-bearing animals reiterated the in vitro results, with BMJ-associated significant changes in tumor volumes, tumor cellularity and glucose uptake. Additional studies in BMJ-treated PanC cells and xenografts displayed a strong decrease in the expression of glucose and lactate transporters GLUT1 and MCT4, respectively, supporting their role in metabolic changes by BMJ. Collectively, these results highlight BMJ-induced modification in PanC metabolomics phenotype and establish primarily lactate efflux and glucose metabolism, specifically GLUT1 and MCT4 transporters, as the potential metabolic targets underlying BMJ efficacy in PanC.
Collapse
Affiliation(s)
- Deepanshi Dhar
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver-Anschutz Medical Campus, Aurora, CO, USA
| | - Komal Raina
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver-Anschutz Medical Campus, Aurora, CO, USA
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, SD, USA
| | - Rama Kant
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver-Anschutz Medical Campus, Aurora, CO, USA
| | - Michael F Wempe
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver-Anschutz Medical Campus, Aurora, CO, USA
| | - Natalie J Serkova
- Department of Radiology, Animal Imaging Shared Resources, University of Colorado Denver-Anschutz Medical Campus, Aurora, CO, USA
- University of Colorado Comprehensive Cancer Center, University of Colorado Denver-Anschutz Medical Campus, Aurora, CO, USA
| | - Chapla Agarwal
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver-Anschutz Medical Campus, Aurora, CO, USA
- University of Colorado Comprehensive Cancer Center, University of Colorado Denver-Anschutz Medical Campus, Aurora, CO, USA
| | - Rajesh Agarwal
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver-Anschutz Medical Campus, Aurora, CO, USA
- University of Colorado Comprehensive Cancer Center, University of Colorado Denver-Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
49
|
McDonald PC, Chafe SC, Brown WS, Saberi S, Swayampakula M, Venkateswaran G, Nemirovsky O, Gillespie JA, Karasinska JM, Kalloger SE, Supuran CT, Schaeffer DF, Bashashati A, Shah SP, Topham JT, Yapp DT, Li J, Renouf DJ, Stanger BZ, Dedhar S. Regulation of pH by Carbonic Anhydrase 9 Mediates Survival of Pancreatic Cancer Cells With Activated KRAS in Response to Hypoxia. Gastroenterology 2019; 157:823-837. [PMID: 31078621 DOI: 10.1053/j.gastro.2019.05.004] [Citation(s) in RCA: 162] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 05/05/2019] [Accepted: 05/06/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND & AIMS Most pancreatic ductal adenocarcinomas (PDACs) express an activated form of KRAS, become hypoxic and dysplastic, and are refractory to chemo and radiation therapies. To survive in the hypoxic environment, PDAC cells upregulate enzymes and transporters involved in pH regulation, including the extracellular facing carbonic anhydrase 9 (CA9). We evaluated the effect of blocking CA9, in combination with administration of gemcitabine, in mouse models of pancreatic cancer. METHODS We knocked down expression of KRAS in human (PK-8 and PK-1) PDAC cells with small hairpin RNAs. Human and mouse (KrasG12D/Pdx1-Cre/Tp53/RosaYFP) PDAC cells were incubated with inhibitors of MEK (trametinib) or extracellular signal-regulated kinase (ERK), and some cells were cultured under hypoxic conditions. We measured levels and stability of the hypoxia-inducible factor 1 subunit alpha (HIF1A), endothelial PAS domain 1 protein (EPAS1, also called HIF2A), CA9, solute carrier family 16 member 4 (SLC16A4, also called MCT4), and SLC2A1 (also called GLUT1) by immunoblot analyses. We analyzed intracellular pH (pHi) and extracellular metabolic flux. We knocked down expression of CA9 in PDAC cells, or inhibited CA9 with SLC-0111, incubated them with gemcitabine, and assessed pHi, metabolic flux, and cytotoxicity under normoxic and hypoxic conditions. Cells were also injected into either immune-compromised or immune-competent mice and growth of xenograft tumors was assessed. Tumor fragments derived from patients with PDAC were surgically ligated to the pancreas of mice and the growth of tumors was assessed. We performed tissue microarray analyses of 205 human PDAC samples to measure levels of CA9 and associated expression of genes that regulate hypoxia with outcomes of patients using the Cancer Genome Atlas database. RESULTS Under hypoxic conditions, PDAC cells had increased levels of HIF1A and HIF2A, upregulated expression of CA9, and activated glycolysis. Knockdown of KRAS in PDAC cells, or incubation with trametinib, reduced the posttranscriptional stabilization of HIF1A and HIF2A, upregulation of CA9, pHi, and glycolysis in response to hypoxia. CA9 was expressed by 66% of PDAC samples analyzed; high expression of genes associated with metabolic adaptation to hypoxia, including CA9, correlated with significantly reduced survival times of patients. Knockdown or pharmacologic inhibition of CA9 in PDAC cells significantly reduced pHi in cells under hypoxic conditions, decreased gemcitabine-induced glycolysis, and increased their sensitivity to gemcitabine. PDAC cells with knockdown of CA9 formed smaller xenograft tumors in mice, and injection of gemcitabine inhibited tumor growth and significantly increased survival times of mice. In mice with xenograft tumors grown from human PDAC cells, oral administration of SLC-0111 and injection of gemcitabine increased intratumor acidosis and increased cell death. These tumors, and tumors grown from PDAC patient-derived tumor fragments, grew more slowly than xenograft tumors in mice given control agents, resulting in longer survival times. In KrasG12D/Pdx1-Cre/Tp53/RosaYFP genetically modified mice, oral administration of SLC-0111 and injection of gemcitabine reduced numbers of B cells in tumors. CONCLUSIONS In response to hypoxia, PDAC cells that express activated KRAS increase expression of CA9, via stabilization of HIF1A and HIF2A, to regulate pH and glycolysis. Disruption of this pathway slows growth of PDAC xenograft tumors in mice and might be developed for treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Paul C McDonald
- Department of Integrative Oncology, BC Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Shawn C Chafe
- Department of Integrative Oncology, BC Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Wells S Brown
- Department of Integrative Oncology, BC Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Saeed Saberi
- Department of Molecular Oncology, BC Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Mridula Swayampakula
- Department of Integrative Oncology, BC Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Geetha Venkateswaran
- Department of Integrative Oncology, BC Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Oksana Nemirovsky
- Department of Integrative Oncology, BC Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Jordan A Gillespie
- Department of Integrative Oncology, BC Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Joanna M Karasinska
- Pancreas Centre BC, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - Steve E Kalloger
- Pancreas Centre BC, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - Claudiu T Supuran
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Sesto Fiorentino, Florence, Italy
| | - David F Schaeffer
- Pancreas Centre BC, Vancouver General Hospital, Vancouver, British Columbia, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ali Bashashati
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sohrab P Shah
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - James T Topham
- Pancreas Centre BC, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - Donald T Yapp
- Department of Experimental Therapeutics, BC Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Jinyang Li
- Gastroenterology Division, Department of Medicine and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Daniel J Renouf
- Medical Oncology, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Ben Z Stanger
- Gastroenterology Division, Department of Medicine and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Shoukat Dedhar
- Department of Integrative Oncology, BC Cancer Research Centre, Vancouver, British Columbia, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
50
|
Qin RF, Zhang J, Huo HR, Yuan ZJ, Xue JD. MiR-205 mediated APC regulation contributes to pancreatic cancer cell proliferation. World J Gastroenterol 2019; 25:3775-3786. [PMID: 31391772 PMCID: PMC6676546 DOI: 10.3748/wjg.v25.i28.3775] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 06/07/2019] [Accepted: 06/23/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Pancreatic cancer is a deadly malignancy with aggressive properties. MicroRNAs (miRNAs) participate in the pathogenesis of a variety of diseases and molecular processes by targeting functional mRNAs. Nevertheless, the regulatory role of miRNAs in signaling pathways involved in pancreatic cancer remains largely unknown.
AIM To explore the molecular regulation involved in pancreatic cancer and potential mechanisms of miR-205.
METHODS Microarray analysis was performed to investigate the expression profile of miRNAs in pancreatic cancer. Expression of miR-205 was validated by qRT-PCR. Target prediction and functional enrichment analysis were employed to seek potential target genes of miR-205 and potential functions of these genes. The target binding of miR-205 and adenomatous polyposis coli (APC) was validated by luciferase reporter assay. APC protein expression in pancreatic cancer was validated by qRT-PCR and Western blot. Proliferation was evaluated by MTT and colony formation assays.
RESULTS A large number of miRNAs with altered expression were identified in pancreatic cancer. MiR-205 was significantly up-regulated. APC was found to be a validated target of miR-205 and down-regulated in pancreatic cancer. Proliferation experiments showed that miR-205 could promote cell proliferation in pancreatic cancer by targeting APC.
CONCLUSION The above findings suggested that miR-205 mediated APC regulation contributes to pancreatic cancer development, which could be considered as a novel prognostic biomarker for clinical care.
Collapse
Affiliation(s)
- Rui-Feng Qin
- Third Department of General Surgery, Handan Central Hospital, Handan 056000, Hebei Province, China
| | - Jia Zhang
- Third Department of General Surgery, Handan Central Hospital, Handan 056000, Hebei Province, China
| | - Hao-Ran Huo
- Third Department of General Surgery, Handan Central Hospital, Handan 056000, Hebei Province, China
| | - Zeng-Jiang Yuan
- Third Department of General Surgery, Handan Central Hospital, Handan 056000, Hebei Province, China
| | - Jia-Dong Xue
- Third Department of General Surgery, Handan Central Hospital, Handan 056000, Hebei Province, China
| |
Collapse
|