1
|
Liu H, Karsidag M, Chhatwal K, Wang P, Tang T. Single-cell and bulk RNA sequencing analysis reveals CENPA as a potential biomarker and therapeutic target in cancers. PLoS One 2025; 20:e0314745. [PMID: 39820192 PMCID: PMC11737691 DOI: 10.1371/journal.pone.0314745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 11/14/2024] [Indexed: 01/19/2025] Open
Abstract
BACKGROUND Cancer remains one of the most significant public health challenges worldwide. A widely recognized hallmark of cancer is the ability to sustain proliferative signaling, which is closely tied to various cell cycle processes. Centromere Protein A (CENPA), a variant of the standard histone H3, is crucial for selective chromosome segregation during the cell cycle. Despite its importance, a comprehensive pan-cancer bioinformatic analysis of CENPA has not yet been conducted. METHODS Data on genomes, transcriptomes, and clinical information were retrieved from publicly accessible databases. We analyzed CENPA's genetic alterations, mRNA expression, functional enrichment, association with stemness, mutations, expression across cell populations and cellular locations, link to the cell cycle, impact on survival, and its relationship with the immune microenvironment. Additionally, a prognostic model for glioma patients was developed to demonstrate CENPA's potential as a biomarker. Furthermore, drugs targeting CENPA in cancer cells were identified and predicted using drug sensitivity correlations and protein-ligand docking. RESULTS CENPA exhibited low levels of gene mutation across various cancers. It was found to be overexpressed in nearly all cancer types analyzed in TCGA, relative to normal controls, and was predominantly located in the nucleus of malignant cells. CENPA showed a strong association with the cancer cell cycle, particularly as a biomarker for the G2 phase. It also emerged as a valuable diagnostic and prognostic biomarker across multiple cancer types. In glioma, CENPA demonstrated reliable prognostic potential when used alongside other prognostic factors. Additionally, CENPA was linked to the immune microenvironment. Drugs such as CD-437, 3-Cl-AHPC, Trametinib, BI-2536, and GSK461364 were predicted to target CENPA in cancer cells. CONCLUSION CENPA serves as a crucial biomarker for the cell cycle in cancers, offering both diagnostic and prognostic value.
Collapse
Affiliation(s)
- Hengrui Liu
- Cancer Research Institute, Jinan University, Guangzhou, Guangdong, China
- Yinuo Biomedical Co., Ltd, Tianjin, China
| | - Miray Karsidag
- Canyon Crest Academy, San Diego, CA, United States of America
| | - Kunwer Chhatwal
- Hopkinton High School, Hopkinton, MA, United States of America
| | - Panpan Wang
- The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Tao Tang
- Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| |
Collapse
|
2
|
Aksöz M, Gafencu GA, Stoilova B, Buono M, Zhang Y, Turkalj S, Meng Y, Jakobsen NA, Metzner M, Clark SA, Beveridge R, Thongjuea S, Vyas P, Nerlov C. Hematopoietic stem cell heterogeneity and age-associated platelet bias are evolutionarily conserved. Sci Immunol 2024; 9:eadk3469. [PMID: 39178276 DOI: 10.1126/sciimmunol.adk3469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 06/22/2024] [Accepted: 07/25/2024] [Indexed: 08/25/2024]
Abstract
Hematopoietic stem cells (HSCs) reconstitute multilineage human hematopoiesis after clinical bone marrow (BM) transplantation and are the cells of origin of some hematological malignancies. Although HSCs provide multilineage engraftment, individual murine HSCs are lineage biased and contribute unequally to blood cell lineages. Here, we performed high-throughput single-cell RNA sequencing in mice after xenograft with molecularly barcoded adult human BM HSCs. We demonstrated that human individual BM HSCs are also functionally and transcriptionally lineage biased. Specifically, we identified platelet-biased and multilineage human HSCs. Quantitative comparison of transcriptomes from single HSCs from young and aged BM showed that both the proportion of platelet-biased HSCs and their level of transcriptional platelet priming increase with age. Therefore, platelet-biased HSCs and their increased prevalence and transcriptional platelet priming during aging are conserved features of mammalian evolution.
Collapse
Affiliation(s)
- Merve Aksöz
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Grigore-Aristide Gafencu
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Bilyana Stoilova
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Mario Buono
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Ying Zhang
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Sven Turkalj
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Yiran Meng
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Niels Asger Jakobsen
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Marlen Metzner
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Sally-Ann Clark
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Ryan Beveridge
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Supat Thongjuea
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Paresh Vyas
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Oxford NIHR BRC Haematology Theme, University of Oxford, Oxford, UK
| | - Claus Nerlov
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
3
|
Fernandes P, Waldron N, Chatzilygeroudi T, Naji NS, Karantanos T. Acute Erythroid Leukemia: From Molecular Biology to Clinical Outcomes. Int J Mol Sci 2024; 25:6256. [PMID: 38892446 PMCID: PMC11172574 DOI: 10.3390/ijms25116256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
Acute Erythroid Leukemia (AEL) is a rare and aggressive subtype of Acute Myeloid Leukemia (AML). In 2022, the World Health Organization (WHO) defined AEL as a biopsy with ≥30% proerythroblasts and erythroid precursors that account for ≥80% of cellularity. The International Consensus Classification refers to this neoplasm as "AML with mutated TP53". Classification entails ≥20% blasts in blood or bone marrow biopsy and a somatic TP53 mutation (VAF > 10%). This type of leukemia is typically associated with biallelic TP53 mutations and a complex karyotype, specifically 5q and 7q deletions. Transgenic mouse models have implicated several molecules in the pathogenesis of AEL, including transcriptional master regulator GATA1 (involved in erythroid differentiation), master oncogenes, and CDX4. Recent studies have also characterized AEL by epigenetic regulator mutations and transcriptome subgroups. AEL patients have overall poor clinical outcomes, mostly related to their poor response to the standard therapies, which include hypomethylating agents and intensive chemotherapy. Allogeneic bone marrow transplantation (AlloBMT) is the only potentially curative approach but requires deep remission, which is very challenging for these patients. Age, AlloBMT, and a history of antecedent myeloid neoplasms further affect the outcomes of these patients. In this review, we will summarize the diagnostic criteria of AEL, review the current insights into the biology of AEL, and describe the treatment options and outcomes of patients with this disease.
Collapse
Affiliation(s)
- Priyanka Fernandes
- Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; (P.F.); (N.W.)
| | - Natalie Waldron
- Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; (P.F.); (N.W.)
| | - Theodora Chatzilygeroudi
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; (T.C.); (N.S.N.)
| | - Nour Sabiha Naji
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; (T.C.); (N.S.N.)
| | - Theodoros Karantanos
- Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; (P.F.); (N.W.)
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; (T.C.); (N.S.N.)
| |
Collapse
|
4
|
Wang C, Wang B, Mou Y, Liu X, Chen Q, Pu W, Rao Q, Wang C, Song J, Huang Y, Yan L, Huang L, Li Y. Design, Synthesis, and Anti-Leukemic Evaluation of a Series of Dianilinopyrimidines by Regulating the Ras/Raf/MEK/ERK and STAT3/c-Myc Pathways. Molecules 2024; 29:1597. [PMID: 38611876 PMCID: PMC11013136 DOI: 10.3390/molecules29071597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/17/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024] Open
Abstract
Although the long-term survival rate for leukemia has made significant progress over the years with the development of chemotherapeutics, patients still suffer from relapse, leading to an unsatisfactory outcome. To discover the new effective anti-leukemia compounds, we synthesized a series of dianilinopyrimidines and evaluated the anti-leukemia activities of those compounds by using leukemia cell lines (HEL, Jurkat, and K562). The results showed that the dianilinopyrimidine analog H-120 predominantly displayed the highest cytotoxic potential in HEL cells. It remarkably induced apoptosis of HEL cells by activating the apoptosis-related proteins (cleaved caspase-3, cleaved caspase-9 and cleaved poly ADP-ribose polymerase (PARP)), increasing apoptosis protein Bad expression, and decreasing the expression of anti-apoptotic proteins (Bcl-2 and Bcl-xL). Furthermore, it induced cell cycle arrest in G2/M; concomitantly, we observed the activation of p53 and a reduction in phosphorylated cell division cycle 25C (p-CDC25C) / Cyclin B1 levels in treated cells. Additionally, the mechanism study revealed that H-120 decreased these phosphorylated signal transducers and activators of transcription 3, rat sarcoma, phosphorylated cellular RAF proto-oncogene serine / threonine kinase, phosphorylated mitogen-activated protein kinase kinase, phosphorylated extracellular signal-regulated kinase, and cellular myelocytomatosis oncogene (p-STAT3, Ras, p-C-Raf, p-MEK, p-MRK, and c-Myc) protein levels in HEL cells. Using the cytoplasmic and nuclear proteins isolation assay, we found for the first time that H-120 can inhibit the activation of STAT3 and c-Myc and block STAT3 phosphorylation and dimerization. Moreover, H-120 treatment effectively inhibited the disease progression of erythroleukemia mice by promoting erythroid differentiation into the maturation of erythrocytes and activating the immune cells. Significantly, H-120 also improved liver function in erythroleukemia mice. Therefore, H-120 may be a potential chemotherapeutic drug for leukemia patients.
Collapse
Affiliation(s)
- Chaoyan Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; (C.W.); (B.W.); (Y.M.); (X.L.); (Q.C.); (W.P.); (Q.R.); (C.W.); (J.S.); (Y.H.)
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China
- College of Pharmacy, Guizhou Medical University, Guiyang 550004, China
| | - Bo Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; (C.W.); (B.W.); (Y.M.); (X.L.); (Q.C.); (W.P.); (Q.R.); (C.W.); (J.S.); (Y.H.)
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China
- College of Basic Medical, Guizhou Medical University, Guiyang 550004, China
| | - Yu Mou
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; (C.W.); (B.W.); (Y.M.); (X.L.); (Q.C.); (W.P.); (Q.R.); (C.W.); (J.S.); (Y.H.)
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China
- College of Pharmacy, Guizhou Medical University, Guiyang 550004, China
| | - Xiang Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; (C.W.); (B.W.); (Y.M.); (X.L.); (Q.C.); (W.P.); (Q.R.); (C.W.); (J.S.); (Y.H.)
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China
- College of Basic Medical, Guizhou Medical University, Guiyang 550004, China
| | - Qiqing Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; (C.W.); (B.W.); (Y.M.); (X.L.); (Q.C.); (W.P.); (Q.R.); (C.W.); (J.S.); (Y.H.)
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China
- College of Pharmacy, Guizhou Medical University, Guiyang 550004, China
| | - Weidong Pu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; (C.W.); (B.W.); (Y.M.); (X.L.); (Q.C.); (W.P.); (Q.R.); (C.W.); (J.S.); (Y.H.)
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China
- College of Pharmacy, Guizhou Medical University, Guiyang 550004, China
| | - Qing Rao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; (C.W.); (B.W.); (Y.M.); (X.L.); (Q.C.); (W.P.); (Q.R.); (C.W.); (J.S.); (Y.H.)
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Chunlin Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; (C.W.); (B.W.); (Y.M.); (X.L.); (Q.C.); (W.P.); (Q.R.); (C.W.); (J.S.); (Y.H.)
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Jingrui Song
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; (C.W.); (B.W.); (Y.M.); (X.L.); (Q.C.); (W.P.); (Q.R.); (C.W.); (J.S.); (Y.H.)
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Yubing Huang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; (C.W.); (B.W.); (Y.M.); (X.L.); (Q.C.); (W.P.); (Q.R.); (C.W.); (J.S.); (Y.H.)
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Longjia Yan
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550000, China
| | - Lei Huang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; (C.W.); (B.W.); (Y.M.); (X.L.); (Q.C.); (W.P.); (Q.R.); (C.W.); (J.S.); (Y.H.)
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Yanmei Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; (C.W.); (B.W.); (Y.M.); (X.L.); (Q.C.); (W.P.); (Q.R.); (C.W.); (J.S.); (Y.H.)
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| |
Collapse
|
5
|
Martinez TC, McNerney ME. Haploinsufficient Transcription Factors in Myeloid Neoplasms. ANNUAL REVIEW OF PATHOLOGY 2024; 19:571-598. [PMID: 37906947 DOI: 10.1146/annurev-pathmechdis-051222-013421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Many transcription factors (TFs) function as tumor suppressor genes with heterozygous phenotypes, yet haploinsufficiency generally has an underappreciated role in neoplasia. This is no less true in myeloid cells, which are normally regulated by a delicately balanced and interconnected transcriptional network. Detailed understanding of TF dose in this circuitry sheds light on the leukemic transcriptome. In this review, we discuss the emerging features of haploinsufficient transcription factors (HITFs). We posit that: (a) monoallelic and biallelic losses can have distinct cellular outcomes; (b) the activity of a TF exists in a greater range than the traditional Mendelian genetic doses; and (c) how a TF is deleted or mutated impacts the cellular phenotype. The net effect of a HITF is a myeloid differentiation block and increased intercellular heterogeneity in the course of myeloid neoplasia.
Collapse
Affiliation(s)
- Tanner C Martinez
- Department of Pathology, Department of Pediatrics, Section of Hematology/Oncology, The University of Chicago Medicine Comprehensive Cancer Center, The University of Chicago, Chicago, Illinois, USA;
- Medical Scientist Training Program, The University of Chicago, Chicago, Illinois, USA
| | - Megan E McNerney
- Department of Pathology, Department of Pediatrics, Section of Hematology/Oncology, The University of Chicago Medicine Comprehensive Cancer Center, The University of Chicago, Chicago, Illinois, USA;
| |
Collapse
|
6
|
Heyes E, Wilhelmson AS, Wenzel A, Manhart G, Eder T, Schuster MB, Rzepa E, Pundhir S, D'Altri T, Frank AK, Gentil C, Woessmann J, Schoof EM, Meggendorfer M, Schwaller J, Haferlach T, Grebien F, Porse BT. TET2 lesions enhance the aggressiveness of CEBPA-mutant acute myeloid leukemia by rebalancing GATA2 expression. Nat Commun 2023; 14:6185. [PMID: 37794021 PMCID: PMC10550934 DOI: 10.1038/s41467-023-41927-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 09/22/2023] [Indexed: 10/06/2023] Open
Abstract
The myeloid transcription factor CEBPA is recurrently biallelically mutated (i.e., double mutated; CEBPADM) in acute myeloid leukemia (AML) with a combination of hypermorphic N-terminal mutations (CEBPANT), promoting expression of the leukemia-associated p30 isoform, and amorphic C-terminal mutations. The most frequently co-mutated genes in CEBPADM AML are GATA2 and TET2, however the molecular mechanisms underlying this co-mutational spectrum are incomplete. By combining transcriptomic and epigenomic analyses of CEBPA-TET2 co-mutated patients with models thereof, we identify GATA2 as a conserved target of the CEBPA-TET2 mutational axis, providing a rationale for the mutational spectra in CEBPADM AML. Elevated CEBPA levels, driven by CEBPANT, mediate recruitment of TET2 to the Gata2 distal hematopoietic enhancer thereby increasing Gata2 expression. Concurrent loss of TET2 in CEBPADM AML induces a competitive advantage by increasing Gata2 promoter methylation, thereby rebalancing GATA2 levels. Of clinical relevance, demethylating treatment of Cebpa-Tet2 co-mutated AML restores Gata2 levels and prolongs disease latency.
Collapse
Affiliation(s)
- Elizabeth Heyes
- University of Veterinary Medicine, Institute of Medical Biochemistry, Vienna, Austria
| | - Anna S Wilhelmson
- The Finsen Laboratory, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Biotech Research and Innovation Centre (BRIC), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Danish Stem Cell Center (DanStem), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anne Wenzel
- The Finsen Laboratory, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Biotech Research and Innovation Centre (BRIC), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Danish Stem Cell Center (DanStem), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gabriele Manhart
- University of Veterinary Medicine, Institute of Medical Biochemistry, Vienna, Austria
| | - Thomas Eder
- University of Veterinary Medicine, Institute of Medical Biochemistry, Vienna, Austria
| | - Mikkel B Schuster
- The Finsen Laboratory, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Biotech Research and Innovation Centre (BRIC), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Danish Stem Cell Center (DanStem), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Edwin Rzepa
- University of Veterinary Medicine, Institute of Medical Biochemistry, Vienna, Austria
| | - Sachin Pundhir
- The Finsen Laboratory, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Biotech Research and Innovation Centre (BRIC), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Danish Stem Cell Center (DanStem), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Teresa D'Altri
- The Finsen Laboratory, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Biotech Research and Innovation Centre (BRIC), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Danish Stem Cell Center (DanStem), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anne-Katrine Frank
- The Finsen Laboratory, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Biotech Research and Innovation Centre (BRIC), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Danish Stem Cell Center (DanStem), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Coline Gentil
- The Finsen Laboratory, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Biotech Research and Innovation Centre (BRIC), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Danish Stem Cell Center (DanStem), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jakob Woessmann
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Erwin M Schoof
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | | | - Jürg Schwaller
- Department of Biomedicine, University Children's Hospital Basel, Basel, Switzerland
| | | | - Florian Grebien
- University of Veterinary Medicine, Institute of Medical Biochemistry, Vienna, Austria.
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria.
| | - Bo T Porse
- The Finsen Laboratory, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark.
- Biotech Research and Innovation Centre (BRIC), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.
- Danish Stem Cell Center (DanStem), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
7
|
Rein A, Geron I, Kugler E, Fishman H, Gottlieb E, Abramovich I, Giladi A, Amit I, Mulet-Lazaro R, Delwel R, Gröschel S, Levin-Zaidman S, Dezorella N, Holdengreber V, Rao TN, Yacobovich J, Steinberg-Shemer O, Huang QH, Tan Y, Chen SJ, Izraeli S, Birger Y. Cellular and metabolic characteristics of pre-leukemic hematopoietic progenitors with GATA2 haploinsufficiency. Haematologica 2023; 108:2316-2330. [PMID: 36475518 PMCID: PMC10483369 DOI: 10.3324/haematol.2022.279437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 12/01/2022] [Indexed: 09/08/2023] Open
Abstract
Mono-allelic germline disruptions of the transcription factor GATA2 result in a propensity for developing myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML), affecting more than 85% of carriers. How a partial loss of GATA2 functionality enables leukemic transformation years later is unclear. This question has remained unsolved mainly due to the lack of informative models, as Gata2 heterozygote mice do not develop hematologic malignancies. Here we show that two different germline Gata2 mutations (TgErg/Gata2het and TgErg/Gata2L359V) accelerate AML in mice expressing the human hematopoietic stem cell regulator ERG. Analysis of Erg/Gata2het fetal liver and bone marrow-derived hematopoietic cells revealed a distinct pre-leukemic phenotype. This was characterized by enhanced transition from stem to progenitor state, increased proliferation, and a striking mitochondrial phenotype, consisting of highly expressed oxidative-phosphorylation-related gene sets, elevated oxygen consumption rates, and notably, markedly distorted mitochondrial morphology. Importantly, the same mitochondrial gene-expression signature was observed in human AML harboring GATA2 aberrations. Similar to the observations in mice, non-leukemic bone marrows from children with germline GATA2 mutation demonstrated marked mitochondrial abnormalities. Thus, we observed the tumor suppressive effects of GATA2 in two germline Gata2 genetic mouse models. As oncogenic mutations often accumulate with age, GATA2 deficiency-mediated priming of hematopoietic cells for oncogenic transformation may explain the earlier occurrence of MDS/AML in patients with GATA2 germline mutation. The mitochondrial phenotype is a potential therapeutic opportunity for the prevention of leukemic transformation in these patients.
Collapse
Affiliation(s)
- Avigail Rein
- Department of Human Molecular Genetics and Biochemistry, Sackler Medical School, Aviv University, Aviv 69978, Israel; The Rina Zaizov Division of Pediatric Hematology-Oncology, Schneider Children's Medical Center, Petah Tikva; Israel; Functional Genomics and Childhood Leukaemia Research, Sheba Medical Centre, Tel-Hashomer
| | - Ifat Geron
- Department of Human Molecular Genetics and Biochemistry, Sackler Medical School, Aviv University, Aviv 69978, Israel; The Rina Zaizov Division of Pediatric Hematology-Oncology, Schneider Children's Medical Center, Petah Tikva; Israel; Functional Genomics and Childhood Leukaemia Research, Sheba Medical Centre, Tel-Hashomer, Israel; Felsenstein Medical Research Center, Sackler School of Medicine Tel-Aviv University, Petah Tikva
| | - Eitan Kugler
- Department of Human Molecular Genetics and Biochemistry, Sackler Medical School, Aviv University, Aviv 69978, Israel; The Rina Zaizov Division of Pediatric Hematology-Oncology, Schneider Children's Medical Center, Petah Tikva; Israel; Functional Genomics and Childhood Leukaemia Research, Sheba Medical Centre, Tel-Hashomer
| | - Hila Fishman
- Department of Human Molecular Genetics and Biochemistry, Sackler Medical School, Aviv University, Aviv 69978, Israel; The Rina Zaizov Division of Pediatric Hematology-Oncology, Schneider Children's Medical Center, Petah Tikva; Israel; Functional Genomics and Childhood Leukaemia Research, Sheba Medical Centre, Tel-Hashomer
| | - Eyal Gottlieb
- Technion Integrated Cancer Center, Faculty of Medicine, Technion Israel Institute of Technology, Haifa
| | - Ifat Abramovich
- Technion Integrated Cancer Center, Faculty of Medicine, Technion Israel Institute of Technology, Haifa
| | - Amir Giladi
- Department of Immunology, Weizmann Institute of Science, Rehovot
| | - Ido Amit
- Department of Immunology, Weizmann Institute of Science, Rehovot
| | - Roger Mulet-Lazaro
- Department of Hematology, Erasmus University Medical Center, Rotterdam, 3015 GE
| | - Ruud Delwel
- Department of Hematology, Erasmus University Medical Center, Rotterdam, 3015 GE, the Netherlands; Oncode Institute, Erasmus University Medical Center, Rotterdam
| | - Stefan Gröschel
- Department of Hematology, Erasmus University Medical Center, Rotterdam, 3015 GE, the Netherlands; Molecular Leukemogenesis, Deutsches Krebsforschungszentrum, 69120 Heidelberg, Germany; Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg
| | | | - Nili Dezorella
- Electron Microscopy Unit, Weizmann Institute of Science, Rehovot
| | - Vered Holdengreber
- Electron Microscopy Unit, IDRFU, Faculty of Life Sciences, Aviv University
| | - Tata Nageswara Rao
- Stem Cells and Leukemia Laboratory, University Clinic of Hematology and Central Hematology, Department of Biomedical Research (DBMR), Inselspital Bern, University of Bern
| | - Joanne Yacobovich
- The Rina Zaizov Division of Pediatric Hematology-Oncology, Schneider Children's Medical Center, Petah Tikva
| | - Orna Steinberg-Shemer
- The Rina Zaizov Division of Pediatric Hematology-Oncology, Schneider Children's Medical Center, Petah Tikva; Israel; Felsenstein Medical Research Center, Sackler School of Medicine Tel-Aviv University, Petah Tikva
| | - Qiu-Hua Huang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital, Jiao Tong University School of Medicine, Shanghai 200025
| | - Yun Tan
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital, Jiao Tong University School of Medicine, Shanghai 200025
| | - Sai-Juan Chen
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital, Jiao Tong University School of Medicine, Shanghai 200025
| | - Shai Izraeli
- Department of Human Molecular Genetics and Biochemistry, Sackler Medical School, Aviv University, Aviv 69978, Israel; The Rina Zaizov Division of Pediatric Hematology-Oncology, Schneider Children's Medical Center, Petah Tikva; Israel; Functional Genomics and Childhood Leukaemia Research, Sheba Medical Centre, Tel-Hashomer, Israel; Felsenstein Medical Research Center, Sackler School of Medicine Tel-Aviv University, Petah Tikva.
| | - Yehudit Birger
- Department of Human Molecular Genetics and Biochemistry, Sackler Medical School, Aviv University, Aviv 69978, Israel; The Rina Zaizov Division of Pediatric Hematology-Oncology, Schneider Children's Medical Center, Petah Tikva; Israel; Functional Genomics and Childhood Leukaemia Research, Sheba Medical Centre, Tel-Hashomer, Israel; Felsenstein Medical Research Center, Sackler School of Medicine Tel-Aviv University, Petah Tikva.
| |
Collapse
|
8
|
Mahony CB, Copper L, Vrljicak P, Noyvert B, Constantinidou C, Browne S, Pan Y, Palles C, Ott S, Higgs MR, Monteiro R. Lineage skewing and genome instability underlie marrow failure in a zebrafish model of GATA2 deficiency. Cell Rep 2023; 42:112571. [PMID: 37256751 DOI: 10.1016/j.celrep.2023.112571] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 03/14/2023] [Accepted: 05/12/2023] [Indexed: 06/02/2023] Open
Abstract
Inherited bone marrow failure associated with heterozygous mutations in GATA2 predisposes toward hematological malignancies, but the mechanisms remain poorly understood. Here, we investigate the mechanistic basis of marrow failure in a zebrafish model of GATA2 deficiency. Single-cell transcriptomics and chromatin accessibility assays reveal that loss of gata2a leads to skewing toward the erythroid lineage at the expense of myeloid cells, associated with loss of cebpa expression and decreased PU.1 and CEBPA transcription factor accessibility in hematopoietic stem and progenitor cells (HSPCs). Furthermore, gata2a mutants show impaired expression of npm1a, the zebrafish NPM1 ortholog. Progressive loss of npm1a in HSPCs is associated with elevated levels of DNA damage in gata2a mutants. Thus, Gata2a maintains myeloid lineage priming through cebpa and protects against genome instability and marrow failure by maintaining expression of npm1a. Our results establish a potential mechanism underlying bone marrow failure in GATA2 deficiency.
Collapse
Affiliation(s)
- Christopher B Mahony
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Lucy Copper
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK; Cancer Research UK Birmingham Centre, Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Pavle Vrljicak
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Boris Noyvert
- Centre for Computational Biology, Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Chrystala Constantinidou
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK; Bioinformatics Research Technology Platform, University of Warwick, Coventry, UK
| | - Sofia Browne
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Yi Pan
- Centre for Computational Biology, Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Claire Palles
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Sascha Ott
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK; Bioinformatics Research Technology Platform, University of Warwick, Coventry, UK
| | - Martin R Higgs
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Rui Monteiro
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.
| |
Collapse
|
9
|
Meng Y, Carrelha J, Drissen R, Ren X, Zhang B, Gambardella A, Valletta S, Thongjuea S, Jacobsen SE, Nerlov C. Epigenetic programming defines haematopoietic stem cell fate restriction. Nat Cell Biol 2023; 25:812-822. [PMID: 37127714 DOI: 10.1038/s41556-023-01137-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/22/2023] [Indexed: 05/03/2023]
Abstract
Haematopoietic stem cells (HSCs) are multipotent, but individual HSCs can show restricted lineage output in vivo. Currently, the molecular mechanisms and physiological role of HSC fate restriction remain unknown. Here we show that lymphoid fate is epigenetically but not transcriptionally primed in HSCs. In multi-lineage HSCs that produce lymphocytes, lymphoid-specific upstream regulatory elements (LymUREs) but not promoters are preferentially accessible compared with platelet-biased HSCs that do not produce lymphoid cell types, providing transcriptionally silent lymphoid lineage priming. Runx3 is preferentially expressed in multi-lineage HSCs, and reinstating Runx3 expression increases LymURE accessibility and lymphoid-primed multipotent progenitor 4 (MPP4) output in old, platelet-biased HSCs. In contrast, platelet-biased HSCs show elevated levels of epigenetic platelet-lineage priming and give rise to MPP2 progenitors with molecular platelet bias. These MPP2 progenitors generate platelets with faster kinetics and through a more direct cellular pathway compared with MPP2s derived from multi-lineage HSCs. Epigenetic programming therefore predicts both fate restriction and differentiation kinetics in HSCs.
Collapse
Affiliation(s)
- Yiran Meng
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Joana Carrelha
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Haematopoietic Stem Cell Laboratory, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Roy Drissen
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Xiying Ren
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Bowen Zhang
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Adriana Gambardella
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Simona Valletta
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Supat Thongjuea
- MRC WIMM Centre for Computational Biology, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Sten Eirik Jacobsen
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Haematopoietic Stem Cell Laboratory, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Department of Cell and Molecular Biology, Wallenberg Institute for Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
- Karolinska University Hospital, Stockholm, Sweden
| | - Claus Nerlov
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK.
| |
Collapse
|
10
|
Tran VL, Liu P, Katsumura KR, Kim E, Schoff BM, Johnson KD, Bresnick EH. Restricting genomic actions of innate immune mediators on fetal hematopoietic progenitor cells. iScience 2023; 26:106297. [PMID: 36950124 PMCID: PMC10025987 DOI: 10.1016/j.isci.2023.106297] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/03/2023] [Accepted: 02/24/2023] [Indexed: 03/15/2023] Open
Abstract
Innate immune signaling protects against pathogens, controls hematopoietic development, and functions in oncogenesis, yet the relationship between these mechanisms is undefined. Downregulating the GATA2 transcription factor in fetal hematopoietic progenitor cells upregulates genes encoding innate immune regulators, increases Interferon-γ (IFNγ) signaling, and disrupts differentiation. We demonstrate that deletion of an enhancer that confers GATA2 expression in fetal progenitors elevated Toll-like receptor (TLR) TLR1/2 and TLR2/6 expression and signaling. Rescue by expressing GATA2 downregulated elevated TLR signaling. IFNγ amplified TLR1/2 and TLR2/6 signaling in GATA2-deficient progenitors, synergistically activating cytokine/chemokine genes and elevating cytokine/chemokine production in myeloid cell progeny. Genomic analysis of how innate immune signaling remodels the GATA2-deficient progenitor transcriptome revealed hypersensitive responses at innate immune genes harboring motifs for signal-dependent transcription factors and factors not linked to these mechanisms. As GATA2 establishes a transcriptome that constrains innate immune signaling, insufficient GATA2 renders fetal progenitor cells hypersensitive to innate immune signaling.
Collapse
Affiliation(s)
- Vu L. Tran
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Peng Liu
- Department of Biostatistics and Biomedical Informatics, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Koichi R. Katsumura
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Erin Kim
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Bjorn M. Schoff
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Kirby D. Johnson
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Emery H. Bresnick
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
11
|
Lin H, Hu P, Zhang H, Deng Y, Yang Z, Zhang L. GATA2-Mediated Transcriptional Activation of Notch3 Promotes Pancreatic Cancer Liver Metastasis. Mol Cells 2022; 45:329-342. [PMID: 35534193 PMCID: PMC9095506 DOI: 10.14348/molcells.2022.2176] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 11/08/2021] [Accepted: 12/24/2021] [Indexed: 12/04/2022] Open
Abstract
The liver is the predominant metastatic site for pancreatic cancer. However, the factors that determine the liver metastasis and the specific molecular mechanisms are still unclear. In this study, we used human pancreatic cancer cell line Hs766T to establish Hs766T-L3, a subline of Hs766T with stable liver metastatic ability. We performed RNA sequencing of Hs766T-L3 and its parental cell line Hs766T, and revealed huge differences in gene expression patterns and pathway activation between these two cell lines. We correlated the difference in pathway activation with the expression of the four core transcriptional factors including STAT1, NR2F2, GATA2, and SMAD4. Using the TCGA database, we examined the relative expression of these transcription factors (TFs) in pan-cancer and their relationship with the prognosis of the pancreatic cancer. Among these TFs, we considered GATA2 is closely involved in tumor metastasis and may serve as a potential metastatic driver. Further in vitro and in vivo experiments confirmed that GATA2-mediated transcriptional activation of Notch3 promotes the liver metastasis of Hs766T-L3, and knockdown of either GATA2 or Notch3 reduces the metastatic ability of Hs766T-L3. Therefore, we claim that GATA2 may serve as a metastatic driver of pancreatic cancer and a potential therapeutic target to treat liver metastasis of pancreatic cancer.
Collapse
Affiliation(s)
- Heng Lin
- Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Peng Hu
- Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Hongyu Zhang
- Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Yong Deng
- Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Zhiqing Yang
- Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Leida Zhang
- Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| |
Collapse
|
12
|
Monte ER, Leubolt G, Windisch R, Kerbs P, Dutta S, Sippenauer T, Istvánffy R, Oostendorp RAJ, Chen-Wichmann L, Herold T, Cusan M, Schotta G, Wichmann C, Greif PA. Specific effects of somatic GATA2 zinc finger mutations on erythroid differentiation. Exp Hematol 2022; 108:26-35. [PMID: 35181392 DOI: 10.1016/j.exphem.2022.02.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 11/25/2022]
Abstract
GATA2 Zinc-Finger (ZF) mutations are associated with distinct entities of myeloid malignancies. The specific distribution of these mutations points towards different mechanisms of leukemogenesis depending on the affected ZF domain. In this study, we compared recurring somatic mutations in ZF1 and ZF2. All tested ZF mutants disrupted DNA-binding in vitro. In transcription assays, co-expression of FOG1 counteracted GATA2-dependent transcriptional activation, while a variable response to FOG1-mediated repression was observed for individual GATA2 mutants. In primary murine bone marrow cells, GATA2 wild-type (WT) expression inhibited colony formation, while this effect was reduced for both mutants A318T (ZF1) and L359V (ZF2) with a shift towards granulopoiesis. In primary human CD34+ bone marrow cells and in the myeloid cell line K562, ectopic expression of GATA2 L359V but not A318T or G320D caused a block of erythroid differentiation accompanied by downregulation of GATA1, STAT5B and PLCG1. Our findings may explain the role of GATA2 L359V during the progression of chronic myeloid leukemia and the collaboration of GATA2 ZF1 alterations with CEBPA double mutations in erythroleukemia.
Collapse
Affiliation(s)
- Enric Redondo Monte
- Department of Medicine III, University Hospital, LMU Munich, 81377 Munich, Germany; German Cancer Consortium (DKTK), partner site Munich, 81377 Munich, Germany; German Cancer Research Center (DKFZ), 69121 Heidelberg, Germany
| | - Georg Leubolt
- Department of Medicine III, University Hospital, LMU Munich, 81377 Munich, Germany; German Cancer Consortium (DKTK), partner site Munich, 81377 Munich, Germany; German Cancer Research Center (DKFZ), 69121 Heidelberg, Germany
| | - Roland Windisch
- Department of Transfusion Medicine, Cell Therapeutics and Hemostasis, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Paul Kerbs
- Department of Medicine III, University Hospital, LMU Munich, 81377 Munich, Germany; German Cancer Consortium (DKTK), partner site Munich, 81377 Munich, Germany; German Cancer Research Center (DKFZ), 69121 Heidelberg, Germany
| | - Sayantanee Dutta
- Department of Medicine III, University Hospital, LMU Munich, 81377 Munich, Germany; German Cancer Consortium (DKTK), partner site Munich, 81377 Munich, Germany; German Cancer Research Center (DKFZ), 69121 Heidelberg, Germany
| | - Theresa Sippenauer
- Technical University of Munich, Department of Internal Medicine III, Munich, Germany
| | - Rouzanna Istvánffy
- Technical University of Munich, Department of Internal Medicine III, Munich, Germany
| | - Robert A J Oostendorp
- Technical University of Munich, Department of Internal Medicine III, Munich, Germany
| | - Linping Chen-Wichmann
- Department of Transfusion Medicine, Cell Therapeutics and Hemostasis, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Tobias Herold
- Department of Medicine III, University Hospital, LMU Munich, 81377 Munich, Germany; German Cancer Consortium (DKTK), partner site Munich, 81377 Munich, Germany; German Cancer Research Center (DKFZ), 69121 Heidelberg, Germany
| | - Monica Cusan
- Department of Medicine III, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Gunnar Schotta
- Molecular Biology Division, Biomedical Center, Ludwig-Maximilians-University, Munich, Germany
| | - Christian Wichmann
- Department of Transfusion Medicine, Cell Therapeutics and Hemostasis, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Philipp A Greif
- Department of Medicine III, University Hospital, LMU Munich, 81377 Munich, Germany; German Cancer Consortium (DKTK), partner site Munich, 81377 Munich, Germany; German Cancer Research Center (DKFZ), 69121 Heidelberg, Germany.
| |
Collapse
|
13
|
Allele-specific expression of GATA2 due to epigenetic dysregulation in CEBPA double-mutant AML. Blood 2021; 138:160-177. [PMID: 33831168 DOI: 10.1182/blood.2020009244] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 03/24/2021] [Indexed: 12/11/2022] Open
Abstract
Transcriptional deregulation is a central event in the development of acute myeloid leukemia (AML). To identify potential disturbances in gene regulation, we conducted an unbiased screen of allele-specific expression (ASE) in 209 AML cases. The gene encoding GATA binding protein 2 (GATA2) displayed ASE more often than any other myeloid- or cancer-related gene. GATA2 ASE was strongly associated with CEBPA double mutations (DMs), with 95% of cases presenting GATA2 ASE. In CEBPA DM AML with GATA2 mutations, the mutated allele was preferentially expressed. We found that GATA2 ASE was a somatic event lost in complete remission, supporting the notion that it plays a role in CEBPA DM AML. Acquisition of GATA2 ASE involved silencing of 1 allele via promoter methylation and concurrent overactivation of the other allele, thereby preserving expression levels. Notably, promoter methylation was also lost in remission along with GATA2 ASE. In summary, we propose that GATA2 ASE is acquired by epigenetic mechanisms and is a prerequisite for the development of AML with CEBPA DMs. This finding constitutes a novel example of an epigenetic hit cooperating with a genetic hit in the pathogenesis of AML.
Collapse
|
14
|
Barabino SML, Citterio E, Ronchi AE. Transcription Factors, R-Loops and Deubiquitinating Enzymes: Emerging Targets in Myelodysplastic Syndromes and Acute Myeloid Leukemia. Cancers (Basel) 2021; 13:cancers13153753. [PMID: 34359655 PMCID: PMC8345071 DOI: 10.3390/cancers13153753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 12/19/2022] Open
Abstract
Simple Summary The advent of DNA massive sequencing technologies has allowed for the first time an extensive look into the heterogeneous spectrum of genes and mutations underpinning myelodysplastic syndromes (MDSs) and acute myeloid leukemia (AML). In this review, we wish to explore the most recent advances and the rationale for the potential therapeutic interest of three main actors in myelo-leukemic transformation: transcription factors that govern myeloid differentiation; RNA splicing factors, which ensure proper mRNA maturation and whose mutations increase R-loops formation; and deubiquitinating enzymes, which contribute to genome stability in hematopoietic stem cells (HSCs). Abstract Myeloid neoplasms encompass a very heterogeneous family of diseases characterized by the failure of the molecular mechanisms that ensure a balanced equilibrium between hematopoietic stem cells (HSCs) self-renewal and the proper production of differentiated cells. The origin of the driver mutations leading to preleukemia can be traced back to HSC/progenitor cells. Many properties typical to normal HSCs are exploited by leukemic stem cells (LSCs) to their advantage, leading to the emergence of a clonal population that can eventually progress to leukemia with variable latency and evolution. In fact, different subclones might in turn develop from the original malignant clone through accumulation of additional mutations, increasing their competitive fitness. This process ultimately leads to a complex cancer architecture where a mosaic of cellular clones—each carrying a unique set of mutations—coexists. The repertoire of genes whose mutations contribute to the progression toward leukemogenesis is broad. It encompasses genes involved in different cellular processes, including transcriptional regulation, epigenetics (DNA and histones modifications), DNA damage signaling and repair, chromosome segregation and replication (cohesin complex), RNA splicing, and signal transduction. Among these many players, transcription factors, RNA splicing proteins, and deubiquitinating enzymes are emerging as potential targets for therapeutic intervention.
Collapse
|
15
|
Tumor suppressor function of Gata2 in Acute Promyelocytic Leukemia. Blood 2021; 138:1148-1161. [PMID: 34125173 DOI: 10.1182/blood.2021011758] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/06/2021] [Indexed: 11/20/2022] Open
Abstract
Most patients with acute promyelocytic leukemia (APL) can be cured with combined All Trans Retinoic Acid (ATRA) and Arsenic Trioxide therapy, which induce the destruction of PML-RARA, the initiating fusion protein for this disease1. However, the underlying mechanisms by which PML-RARA initiates and maintains APL cells are still not clear. We therefore identified genes that are dysregulated by PML-RARA in mouse and human APL cells, and prioritized GATA2 for functional studies because 1) it is highly expressed in pre-leukemic cells expressing PML-RARA, 2) its high expression persists in transformed APL cells, and 3) spontaneous somatic mutations of GATA2 occur during APL progression in both mice and humans. These and other findings suggested that GATA2 may be upregulated to thwart the proliferative signal generated by PML-RARA, and that its inactivation by mutation (and/or epigenetic silencing) may accelerate disease progression in APL and other forms of AML. Indeed, biallelic knockout of Gata2 with CRISPR/Cas9-mediated gene editing increased the serial replating efficiency of PML-RARA-expressing myeloid progenitors (and also progenitors expressing RUNX1-RUNX1T1, or deficient for Cebpa), increased mouse APL penetrance, and decreased latency. Restoration of Gata2 expression suppressed PML-RARA-driven aberrant self-renewal and leukemogenesis. Conversely, addback of a mutant GATA2R362G protein associated with APL and AML minimally suppressed PML-RARA-induced aberrant self-renewal, suggesting that it is a loss-of-function mutation. These studies reveal a potential role for Gata2 as a tumor suppressor in AML, and suggest that restoration of its function (when inactivated) may provide benefit for AML patients.
Collapse
|
16
|
LSD1 defines erythroleukemia metabolism by controlling the lineage-specific transcription factors GATA1 and C/EBPα. Blood Adv 2021; 5:2305-2318. [PMID: 33929501 DOI: 10.1182/bloodadvances.2020003521] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 03/17/2021] [Indexed: 12/18/2022] Open
Abstract
Acute myeloid leukemia (AML) is a heterogenous malignancy characterized by distinct lineage subtypes and various genetic/epigenetic alterations. As with other neoplasms, AML cells have well-known aerobic glycolysis, but metabolic variations depending on cellular lineages also exist. Lysine-specific demethylase-1 (LSD1) has been reported to be crucial for human leukemogenesis, which is currently one of the emerging therapeutic targets. However, metabolic roles of LSD1 and lineage-dependent factors remain to be elucidated in AML cells. Here, we show that LSD1 directs a hematopoietic lineage-specific metabolic program in AML subtypes. Erythroid leukemia (EL) cells particularly showed activated glycolysis and high expression of LSD1 in both AML cell lines and clinical samples. Transcriptome, chromatin immunoprecipitation-sequencing, and metabolomic analyses revealed that LSD1 was essential not only for glycolysis but also for heme synthesis, the most characteristic metabolic pathway of erythroid origin. Notably, LSD1 stabilized the erythroid transcription factor GATA1, which directly enhanced the expression of glycolysis and heme synthesis genes. In contrast, LSD1 epigenetically downregulated the granulo-monocytic transcription factor C/EBPα. Thus, the use of LSD1 knockdown or chemical inhibitor dominated C/EBPα instead of GATA1 in EL cells, resulting in metabolic shifts and growth arrest. Furthermore, GATA1 suppressed the gene encoding C/EBPα that then acted as a repressor of GATA1 target genes. Collectively, we conclude that LSD1 shapes metabolic phenotypes in EL cells by balancing these lineage-specific transcription factors and that LSD1 inhibitors pharmacologically cause lineage-dependent metabolic remodeling.
Collapse
|
17
|
Human GATA2 mutations and hematologic disease: how many paths to pathogenesis? Blood Adv 2021; 4:4584-4592. [PMID: 32960960 DOI: 10.1182/bloodadvances.2020002953] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 08/21/2020] [Indexed: 01/19/2023] Open
Abstract
The surge of human genetic information, enabled by increasingly facile and economically feasible genomic technologies, has accelerated discoveries on the relationship of germline genetic variation to hematologic diseases. For example, germline variation in GATA2, encoding a vital transcriptional regulator of multilineage hematopoiesis, creates a predisposition to bone marrow failure and acute myeloid leukemia termed GATA2 deficiency syndrome. More than 300 GATA2 variants representing missense, truncating, and noncoding enhancer mutations have been documented. Although these variants can diminish GATA2 expression and/or function, the functional ramifications of many variants are unknown. Studies using genetic rescue and knockin mouse systems have established that GATA2 mutations differentially affect molecular processes in distinct target genes and within a single target cell. Considering that target genes for a transcription factor can differ in sensitivity to altered levels of the factor, and transcriptional mechanisms are often cell type specific, the context-dependent consequences of GATA2 mutations in experimental systems portend the complex phenotypes and interindividual variation of GATA2 deficiency syndrome. This review documents GATA2 human genetics and the state of efforts to traverse from physiological insights to pathogenic mechanisms.
Collapse
|
18
|
Di Genua C, Nerlov C. To bi or not to bi: Acute erythroid leukemias and hematopoietic lineage choice. Exp Hematol 2021; 97:6-13. [PMID: 33600869 DOI: 10.1016/j.exphem.2021.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/09/2021] [Accepted: 02/11/2021] [Indexed: 10/22/2022]
Abstract
Acute erythroid leukemia (AEL) is an acute leukemia characterized by erythroid lineage transformation. The World Health Organization (WHO) 2008 classification recognized two subtypes of AEL: bilineage erythroleukemia (erythroid/myeloid leukemia) and pure erythroid leukemia. The erythroleukemia subtype was removed in the updated 2016 WHO classification, with about half of cases reclassified as myelodysplastic syndrome (MDS) and half as acute myeloid leukemia (AML). Diagnosis and classification are currently based on morphology using standard blast cutoffs, without integration of underlying genomic and other molecular features. Key outstanding questions are therefore whether AEL can be accurately diagnosed based solely on morphology or whether genetic or other molecular criteria should be included in its classification, and whether considering AEL as an entity distinct from AML and MDS is clinically relevant. We discuss recent work on the molecular basis of AEL, including the identification of mutations causative of AEL and of transcriptional and epigenetic features that can be used to distinguish AEL from MDS and nonerythroid AML, and the prognostic value of these molecular features.
Collapse
MESH Headings
- Animals
- Epigenesis, Genetic
- Erythroid Cells/metabolism
- Erythroid Cells/pathology
- Gene Expression Regulation, Leukemic
- Humans
- Leukemia, Erythroblastic, Acute/diagnosis
- Leukemia, Erythroblastic, Acute/genetics
- Leukemia, Erythroblastic, Acute/pathology
- Leukemia, Myeloid, Acute/diagnosis
- Leukemia, Myeloid, Acute/genetics
- Mutation
- Myelodysplastic Syndromes/diagnosis
- Myelodysplastic Syndromes/genetics
Collapse
Affiliation(s)
- Cristina Di Genua
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, UK
| | - Claus Nerlov
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, UK.
| |
Collapse
|
19
|
Abstract
Malignancies of the erythroid lineage are rare but aggressive diseases. Notably, the first insights into their biology emerged over half a century ago from avian and murine tumor viruses-induced erythroleukemia models providing the rationale for several transgenic mouse models that unraveled the transforming potential of signaling effectors and transcription factors in the erythroid lineage. More recently, genetic roadmaps have fueled efforts to establish models that are based on the epigenomic lesions observed in patients with erythroid malignancies. These models, together with often unexpected erythroid phenotypes in genetically modified mice, provided further insights into the molecular mechanisms of disease initiation and maintenance. Here, we review how the increasing knowledge of human erythroleukemia genetics combined with those from various mouse models indicate that the pathogenesis of the disease is based on the interplay between signaling mutations, impaired TP53 function, and altered chromatin organization. These alterations lead to aberrant activity of erythroid transcriptional master regulators like GATA1, indicating that erythroleukemia will most likely require combinatorial targeting for efficient therapeutic interventions.
Collapse
|