1
|
Long Y, Liu J, Wang Y, Guo H, Cui G. The complex effects of miR-146a in the pathogenesis of Alzheimer's disease. Neural Regen Res 2025; 20:1309-1323. [PMID: 39075895 PMCID: PMC11624861 DOI: 10.4103/nrr.nrr-d-23-01566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 01/11/2024] [Accepted: 05/06/2024] [Indexed: 07/31/2024] Open
Abstract
Alzheimer's disease is a neurodegenerative disorder characterized by cognitive dysfunction and behavioral abnormalities. Neuroinflammatory plaques formed through the extracellular deposition of amyloid-β proteins, as well as neurofibrillary tangles formed by the intracellular deposition of hyperphosphorylated tau proteins, comprise two typical pathological features of Alzheimer's disease. Besides symptomatic treatment, there are no effective therapies for delaying Alzheimer's disease progression. MicroRNAs (miR) are small, non-coding RNAs that negatively regulate gene expression at the transcriptional and translational levels and play important roles in multiple physiological and pathological processes. Indeed, miR-146a, a NF-κB-regulated gene, has been extensively implicated in the development of Alzheimer's disease through several pathways. Research has demonstrated substantial dysregulation of miR-146a both during the initial phases and throughout the progression of this disorder. MiR-146a is believed to reduce amyloid-β deposition and tau protein hyperphosphorylation through the TLR/IRAK1/TRAF6 pathway; however, there is also evidence supporting that it can promote these processes through many other pathways, thus exacerbating the pathological manifestations of Alzheimer's disease. It has been widely reported that miR-146a mediates synaptic dysfunction, mitochondrial dysfunction, and neuronal death by targeting mRNAs encoding synaptic-related proteins, mitochondrial-related proteins, and membrane proteins, as well as other mRNAs. Regarding the impact on glial cells, miR-146a also exhibits differential effects. On one hand, it causes widespread and sustained inflammation through certain pathways, while on the other hand, it can reverse the polarization of astrocytes and microglia, alleviate neuroinflammation, and promote oligodendrocyte progenitor cell differentiation, thus maintaining the normal function of the myelin sheath and exerting a protective effect on neurons. In this review, we provide a comprehensive analysis of the involvement of miR-146a in the pathogenesis of Alzheimer's disease. We aim to elucidate the relationship between miR-146a and the key pathological manifestations of Alzheimer's disease, such as amyloid-β deposition, tau protein hyperphosphorylation, neuronal death, mitochondrial dysfunction, synaptic dysfunction, and glial cell dysfunction, as well as summarize recent relevant studies that have highlighted the potential of miR-146a as a clinical diagnostic marker and therapeutic target for Alzheimer's disease.
Collapse
Affiliation(s)
- Yunfan Long
- Department of Neurology, Shanghai No. 9 People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jiajia Liu
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu Wang
- Department of Neurology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Haidong Guo
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guohong Cui
- Department of Neurology, Shanghai No. 9 People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Circular RNAs in Ischemic Stroke: Biological Role and Experimental Models. Biomolecules 2023; 13:biom13020214. [PMID: 36830585 PMCID: PMC9953235 DOI: 10.3390/biom13020214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/13/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
Ischemic stroke is among the leading causes of morbidity, disability, and mortality worldwide. Despite the recent progress in the management of acute ischemic stroke, timely intervention still represents a challenge. Hence, strategies to counteract ischemic brain injury during and around the acute event are still lacking, also due to the limited knowledge of the underlying mechanisms. Despite the increasing understanding of the complex pathophysiology underlying ischemic brain injury, some relevant pieces of information are still required, particularly regarding the fine modulation of biological processes. In this context, there is emerging evidence that the modulation of circular RNAs, a class of highly conserved non-coding RNA with a closed-loop structure, are involved in pathophysiological processes behind ischemic stroke, unveiling a number of potential therapeutic targets and possible clinical biomarkers. This paper aims to provide a comprehensive overview of experimental studies on the role of circular RNAs in ischemic stroke.
Collapse
|
3
|
Ilieva M, Uchida S. Potential Involvement of LncRNAs in Cardiometabolic Diseases. Genes (Basel) 2023; 14:213. [PMID: 36672953 PMCID: PMC9858747 DOI: 10.3390/genes14010213] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/17/2023] Open
Abstract
Characterized by cardiovascular disease and diabetes, cardiometabolic diseases are a major cause of mortality around the world. As such, there is an urgent need to understand the pathogenesis of cardiometabolic diseases. Increasing evidence suggests that most of the mammalian genome are transcribed as RNA, but only a few percent of them encode for proteins. All of the RNAs that do not encode for proteins are collectively called non-protein-coding RNAs (ncRNAs). Among these ncRNAs, long ncRNAs (lncRNAs) are considered as missing keys to understand the pathogeneses of various diseases, including cardiometabolic diseases. Given the increased interest in lncRNAs, in this study, we will summarize the latest trend in the lncRNA research from the perspective of cardiometabolism and disease by focusing on the major risk factors of cardiometabolic diseases: obesity, cholesterol, diabetes, and hypertension. Because genetic inheritance is unavoidable in cardiometabolic diseases, we paid special attention to the genetic factors of lncRNAs that may influence cardiometabolic diseases.
Collapse
Affiliation(s)
| | - Shizuka Uchida
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, DK-2450 Copenhagen SV, Denmark or
| |
Collapse
|
4
|
Ward Z, Schmeier S, Pearson J, Cameron VA, Frampton CM, Troughton RW, Doughty RN, Richards AM, Pilbrow AP. Identifying Candidate Circulating RNA Markers for Coronary Artery Disease by Deep RNA-Sequencing in Human Plasma. Cells 2022; 11:3191. [PMID: 36291058 PMCID: PMC9599983 DOI: 10.3390/cells11203191] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 10/03/2022] [Accepted: 10/07/2022] [Indexed: 11/17/2023] Open
Abstract
Advances in RNA sequencing (RNA-Seq) have facilitated transcriptomic analysis of plasma for the discovery of new diagnostic and prognostic markers for disease. We aimed to develop a short-read RNA-Seq protocol to detect mRNAs, long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) in plasma for the discovery of novel markers for coronary artery disease (CAD) and heart failure (HF). Circulating cell-free RNA from 59 patients with stable CAD (half of whom developed HF within 3 years) and 30 controls was sequenced to a median depth of 108 paired reads per sample. We identified fragments from 3986 messenger RNAs (mRNAs), 164 long non-coding RNAs (lncRNAs), 405 putative novel lncRNAs and 227 circular RNAs in plasma. Circulating levels of 160 mRNAs, 10 lncRNAs and 2 putative novel lncRNAs were altered in patients compared with controls (absolute fold change >1.2, p < 0.01 adjusted for multiple comparisons). The most differentially abundant transcripts were enriched in mRNAs encoded by the mitochondrial genome. We did not detect any differences in the plasma RNA profile between patients who developed HF compared with those who did not. In summary, we show that mRNAs, lncRNAs and circular RNAs can be reliably detected in plasma by deep RNA-Seq. Multiple coding and non-coding transcripts were altered in association with CAD, including several mitochondrial mRNAs, which may indicate underlying myocardial ischaemia and oxidative stress. If validated, circulating levels of these transcripts could potentially be used to help identify asymptomatic individuals with established CAD prior to an acute coronary event.
Collapse
Affiliation(s)
- Zoe Ward
- Christchurch Heart Institute, Department of Medicine, University of Otago—Christchurch, Christchurch 8140, New Zealand
| | - Sebastian Schmeier
- School of Natural and Computational Sciences, Massey University, Auckland 0632, New Zealand
- Evotec SE, Essener Bogen 7, 22419 Hamburg, Germany
| | - John Pearson
- Biostatistics and Computational Biology Unit, University of Otago—Christchurch, Christchurch 8140, New Zealand
| | - Vicky A Cameron
- Christchurch Heart Institute, Department of Medicine, University of Otago—Christchurch, Christchurch 8140, New Zealand
| | - Chris M Frampton
- Christchurch Heart Institute, Department of Medicine, University of Otago—Christchurch, Christchurch 8140, New Zealand
| | - Richard W Troughton
- Christchurch Heart Institute, Department of Medicine, University of Otago—Christchurch, Christchurch 8140, New Zealand
| | - Rob N Doughty
- Heart Health Research Group, University of Auckland, Auckland 1023, New Zealand
| | - A. Mark Richards
- Christchurch Heart Institute, Department of Medicine, University of Otago—Christchurch, Christchurch 8140, New Zealand
- Cardiovascular Research Institute, National University of Singapore, Singapore 119228, Singapore
| | - Anna P Pilbrow
- Christchurch Heart Institute, Department of Medicine, University of Otago—Christchurch, Christchurch 8140, New Zealand
| |
Collapse
|
5
|
Rogula S, Pomirski B, Czyżak N, Eyileten C, Postuła M, Szarpak Ł, Filipiak KJ, Kurzyna M, Jaguszewski M, Mazurek T, Grabowski M, Gąsecka A. Biomarker-based approach to determine etiology and severity of pulmonary hypertension: Focus on microRNA. Front Cardiovasc Med 2022; 9:980718. [PMID: 36277769 PMCID: PMC9582157 DOI: 10.3389/fcvm.2022.980718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/12/2022] [Indexed: 11/25/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is characterized by remodeling of the pulmonary arteries, and defined by elevated pulmonary arterial pressure, measured during right heart catheterization. There are three main challenges to the diagnostic and therapeutic process of patients with PAH. First, it is difficult to differentiate particular PAH etiology. Second, invasive diagnostic is required to precisely determine the severity of PAH, and thus to qualify patients for an appropriate treatment. Third, the results of treatment of PAH are unpredictable and remain unsatisfactory. MicroRNAs (miRNAs) are small non-coding RNAs that regulate post transcriptional gene-expression. Their role as a prognostic, and diagnostic biomarkers in many different diseases have been studied in recent years. MiRNAs are promising novel biomarkers in PAH due to their activity in various molecular pathways and processes underlying PAH. Lack of biomarkers to differentiate between particular PAH etiology and evaluate the severity of PAH, as well as paucity of therapeutic targets in PAH open a new field for the possibility to use miRNAs in these applications. In our article, we discuss the potential of miRNAs use as diagnostic tools, prognostic biomarkers and therapeutic targets in PAH.
Collapse
Affiliation(s)
- Sylwester Rogula
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Warsaw, Poland,*Correspondence: Sylwester Rogula,
| | - Bartosz Pomirski
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Warsaw, Poland
| | - Norbert Czyżak
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Warsaw, Poland
| | - Ceren Eyileten
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology, Medical University of Warsaw, Warsaw, Poland,Genomics Core Facility, Center of New Technologies (CeNT), University of Warsaw, Warsaw, Poland
| | - Marek Postuła
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology, Medical University of Warsaw, Warsaw, Poland
| | - Łukasz Szarpak
- Department of Outcomes Research, Maria Skłodowska-Curie Medical Academy in Warsaw, Warsaw, Poland
| | - Krzysztof J. Filipiak
- Institute of Clinical Sciences, Maria Skłodowska-Curie Medical Academy in Warsaw, Warsaw, Poland
| | - Marcin Kurzyna
- Department of Pulmonary Circulation, Thromboembolic Diseases and Cardiology, Centre of Postgraduate Medical Education, European Health Centre Otwock, Otwock, Poland
| | - Miłosz Jaguszewski
- 1st Department of Cardiology, Medical University of Gdańsk, Gdańsk, Poland
| | - Tomasz Mazurek
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Warsaw, Poland
| | - Marcin Grabowski
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Warsaw, Poland
| | - Aleksandra Gąsecka
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
6
|
Gager GM, Eyileten C, Postula M, Gasecka A, Jarosz-Popek J, Gelbenegger G, Jilma B, Lang I, Siller-Matula J. Association Between the Expression of MicroRNA-125b and Survival in Patients With Acute Coronary Syndrome and Coronary Multivessel Disease. Front Cardiovasc Med 2022; 9:948006. [PMID: 35872885 PMCID: PMC9304571 DOI: 10.3389/fcvm.2022.948006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/22/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundMicroRNAs (miRNA, miR) have an undeniable physiological and pathophysiological significance and act as promising novel biomarkers. The aim of the study was to investigate blood-derived miRNAs and their association with long-term all-cause mortality in patients with multivessel disease (MVD) suffering from acute coronary syndrome (ACS).Materials and MethodsThis study was an observational prospective study, which included 90 patients with MVD and ACS. Expression of miR-125a, miR-125b, and miR-223 was analysed by polymerase chain reaction (PCR). Patients were followed-up for a median of 7.5 years. All-cause mortality was considered as the primary endpoint. Adjusted Cox-regression analysis was performed for prediction of events.ResultsElevated expression of miR-125b (>4.6) at the time-point of ACS was associated with increased long-term all-cause mortality (adjusted [adj.] hazard ratio [HR] = 11.26, 95% confidence interval [95% CI]: 1.15–110.38; p = 0.038). The receiver operating characteristic (ROC) analysis showed a satisfactory c-statistics for miR-125b for the prediction of long-term all-cause mortality (area under the curve [AUC] = 0.76, 95% CI: 0.61–0.91; p = 0.034; the negative predictive value of 98%). Kaplan–Meier time to event analysis confirmed an early separation of the survival curves between patients with high vs low expression of miR-125b (p = 0.003). An increased expression of miR-125a and miR-223 was found in patients with non-ST-segment elevation ACS (NSTE-ACS) as compared to those with ST-segment elevation myocardial infarction (STEMI) (p = 0.043 and p = 0.049, respectively) with no difference in the expression of miR-125b between the type of ACS.ConclusionIn this hypothesis generating study, lower values of miR-125b were related to improved long-term survival in patients with ACS and MVD. Larger studies are needed to investigate whether miR-125b can be used as a suitable predictor for long-term all-cause mortality.
Collapse
Affiliation(s)
- Gloria M. Gager
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Ceren Eyileten
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology (CEPT), Medical University of Warsaw, Warsaw, Poland
- Genomics Core Facility, Center of New Technologies (CeNT), University of Warsaw, Warsaw, Poland
| | - Marek Postula
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology (CEPT), Medical University of Warsaw, Warsaw, Poland
| | - Aleksandra Gasecka
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Warsaw, Poland
| | - Joanna Jarosz-Popek
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology (CEPT), Medical University of Warsaw, Warsaw, Poland
- Doctoral School, Medical University of Warsaw, Warsaw, Poland
| | - Georg Gelbenegger
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Bernd Jilma
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Irene Lang
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Jolanta Siller-Matula
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology (CEPT), Medical University of Warsaw, Warsaw, Poland
- *Correspondence: Jolanta Siller-Matula,
| |
Collapse
|
7
|
The role of non-coding RNAs in neuroinflammatory process in multiple sclerosis. Mol Neurobiol 2022; 59:4651-4668. [PMID: 35589919 DOI: 10.1007/s12035-022-02854-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 04/23/2022] [Indexed: 10/18/2022]
Abstract
Multiple sclerosis (MS) is a central nervous system chronic neuroinflammatory disease followed by neurodegeneration. The diagnosis is based on clinical presentation, cerebrospinal fluid testing and magnetic resonance imagining. There is still a lack of a diagnostic blood-based biomarker for MS. Due to the cost and difficulty of diagnosis, new and more easily accessible methods are being sought. New biomarkers should also allow for early diagnosis. Additionally, the treatment of MS should lead to the personalization of the therapy. MicroRNAs (miRNAs) and long non-coding RNAs (lncRNAs) as well as their target genes participate in pathophysiology processes in MS. Although the detailed mechanism of action of non-coding RNAs (ncRNAs, including miRNAs and lncRNAs) on neuroinflammation in MS has not been fully explained, several studies were conducted aiming to analyse their impact in MS. In this article, we review up-to-date knowledge on the latest research concerning the ncRNAs in MS and evaluate their role in neuroinflammation. We also point out the most promising ncRNAs which may be promising in MS as diagnostic and prognostic biomarkers.
Collapse
|
8
|
Eyileten C, Wicik Z, Fitas A, Marszalek M, Simon JE, De Rosa S, Wiecha S, Palatini J, Postula M, Malek LA. Altered Circulating MicroRNA Profiles After Endurance Training: A Cohort Study of Ultramarathon Runners. Front Physiol 2022; 12:792931. [PMID: 35145424 PMCID: PMC8824535 DOI: 10.3389/fphys.2021.792931] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/21/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Despite the positive effects of endurance training on the cardiovascular (CV) system, excessive exercise induces not only physiological adaptations but also adverse changes in CV system, including the heart. We aimed to evaluate the selected miRNAs expression based on bioinformatic analysis and their changes before and after an ultramarathon run. MATERIALS AND METHODS Cardiac tissue-specific targets were identified with the Tissue 2.0 database. Gene-gene interaction data were retrieved from the STRING app for Cytoscape. Twenty-three endurance athletes were recruited to the study. Athletes ran to completion (100 km) or exhaustion (52-91 km, median 74 km). All participants completed pre- and post-run testing. miRNAs expressions were measured both before and after the race. RESULTS Enrichment analysis of the signaling pathways associated with the genes targeted by miRNAs selected for qRT-PCR validation (miR-1-3p, miR-126, miR-223, miR-125a-5p, miR-106a-5p, and miR-15a/b). All selected miRNAs showed overlap in regulation in pathways associated with cancer, IL-2 signaling, TGF-β signaling as well as BDNF signaling pathway. Analysis of metabolites revealed significant regulation of magnesium and guanosine triphosphate across analyzed miRNA targets. MiR-1-3p, miR-125a-5p, miR-126, and miR-223 expressions were measured in 23 experienced endurance athletes, before and after an ultramarathon wherein athletes ran to completion (100 km) or exhaustion (52-91 km, median 74 km). The expressions of miR-125a-5p, miR-126, and miR-223 were significantly increased after the race (p = 0.007, p = 0.001, p = 0.014, respectively). MiR-1-3p expression post-run showed a negative correlation with the post-run levels of high-sensitivity C-reactive protein (hs-CRP) (r = -0.632, p = 0.003). Higher miR-1-3p expression was found in runners, who finished the race under 10 h compared to runners who finished over 10 h (p = 0.001). Post-run miR-125a-5p expression showed a negative correlation with the peak lactate during the run (r = -0.576, p = 0.019). CONCLUSION Extreme physical activity, as exemplified by an ultramarathon, is associated with changes in circulating miRNAs' expression related to inflammation, fibrosis, and cardiac muscle function. In particular, the negative correlations between miR-125a-5p and lactate concentrations, and miR-1-3p and hs-CRP, support their role in specific exercise-induced adaptation. Further studies are essential to validate the long-term effect of these observations.
Collapse
Affiliation(s)
- Ceren Eyileten
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology, Medical University of Warsaw, Warsaw, Poland
- Genomics Core Facility, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Zofia Wicik
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology, Medical University of Warsaw, Warsaw, Poland
| | - Alex Fitas
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology, Medical University of Warsaw, Warsaw, Poland
| | - Mikolaj Marszalek
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology, Medical University of Warsaw, Warsaw, Poland
| | - Jenny E. Simon
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology, Medical University of Warsaw, Warsaw, Poland
| | - Salvatore De Rosa
- Division of Cardiology, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Szczepan Wiecha
- Department of Physical Education and Health in Biala Podlaska, Józef Pilsudski University of Physical Education in Warsaw, Biala Podlaska, Poland
| | - Jeffrey Palatini
- Genomics Core Facility, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Marek Postula
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology, Medical University of Warsaw, Warsaw, Poland
| | - Lukasz A. Malek
- Department of Epidemiology, Cardiovascular Disease Prevention and Health Promotion, National Institute of Cardiology, Warsaw, Poland
| |
Collapse
|
9
|
De Rosa S, Iaconetti C, Eyileten C, Yasuda M, Albanese M, Polimeni A, Sabatino J, Sorrentino S, Postula M, Indolfi C. Flow-Responsive Noncoding RNAs in the Vascular System: Basic Mechanisms for the Clinician. J Clin Med 2022; 11:jcm11020459. [PMID: 35054151 PMCID: PMC8777617 DOI: 10.3390/jcm11020459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/11/2022] [Accepted: 01/14/2022] [Indexed: 12/10/2022] Open
Abstract
The vascular system is largely exposed to the effect of changing flow conditions. Vascular cells can sense flow and its changes. Flow sensing is of pivotal importance for vascular remodeling. In fact, it influences the development and progression of atherosclerosis, controls its location and has a major influx on the development of local complications. Despite its importance, the research community has traditionally paid scarce attention to studying the association between different flow conditions and vascular biology. More recently, a growing body of evidence has been accumulating, revealing that ncRNAs play a key role in the modulation of several biological processes linking flow-sensing to vascular pathophysiology. This review summarizes the most relevant evidence on ncRNAs that are directly or indirectly responsive to flow conditions to the benefit of the clinician, with a focus on the underpinning mechanisms and their potential application as disease biomarkers.
Collapse
Affiliation(s)
- Salvatore De Rosa
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (C.I.); (M.Y.); (M.A.); (A.P.); (J.S.); (S.S.)
- Correspondence: (S.D.R.); (C.I.)
| | - Claudio Iaconetti
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (C.I.); (M.Y.); (M.A.); (A.P.); (J.S.); (S.S.)
| | - Ceren Eyileten
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology CePT, Medical University of Warsaw, 02-097 Warsaw, Poland; (C.E.); (M.P.)
| | - Masakazu Yasuda
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (C.I.); (M.Y.); (M.A.); (A.P.); (J.S.); (S.S.)
| | - Michele Albanese
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (C.I.); (M.Y.); (M.A.); (A.P.); (J.S.); (S.S.)
| | - Alberto Polimeni
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (C.I.); (M.Y.); (M.A.); (A.P.); (J.S.); (S.S.)
| | - Jolanda Sabatino
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (C.I.); (M.Y.); (M.A.); (A.P.); (J.S.); (S.S.)
| | - Sabato Sorrentino
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (C.I.); (M.Y.); (M.A.); (A.P.); (J.S.); (S.S.)
| | - Marek Postula
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology CePT, Medical University of Warsaw, 02-097 Warsaw, Poland; (C.E.); (M.P.)
| | - Ciro Indolfi
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (C.I.); (M.Y.); (M.A.); (A.P.); (J.S.); (S.S.)
- Mediterranea Cardiocentro, 80122 Naples, Italy
- Correspondence: (S.D.R.); (C.I.)
| |
Collapse
|
10
|
Eyileten C, Wicik Z, Simões SN, Martins-Jr DC, Klos K, Wlodarczyk W, Assinger A, Soldacki D, Chcialowski A, Siller-Matula JM, Postula M. Thrombosis-related circulating miR-16-5p is associated with disease severity in patients hospitalised for COVID-19. RNA Biol 2022; 19:963-979. [PMID: 35938548 PMCID: PMC9361765 DOI: 10.1080/15476286.2022.2100629] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 07/06/2022] [Indexed: 11/21/2022] Open
Abstract
SARS-CoV-2 tropism for the ACE2 receptor, along with the multifaceted inflammatory reaction, is likely to drive the generalized hypercoagulable and thrombotic state seen in patients with COVID-19. Using the original bioinformatic workflow and network medicine approaches we reanalysed four coronavirus-related expression datasets and performed co-expression analysis focused on thrombosis and ACE2 related genes. We identified microRNAs (miRNAs) which play role in ACE2-related thrombosis in coronavirus infection and further, we validated the expressions of precisely selected miRNAs-related to thrombosis (miR-16-5p, miR-27a-3p, let-7b-5p and miR-155-5p) in 79 hospitalized COVID-19 patients and 32 healthy volunteers by qRT-PCR. Consequently, we aimed to unravel whether bioinformatic prioritization could guide selection of miRNAs with a potential of diagnostic and prognostic biomarkers associated with disease severity in patients hospitalized for COVID-19. In bioinformatic analysis, we identified EGFR, HSP90AA1, APP, TP53, PTEN, UBC, FN1, ELAVL1 and CALM1 as regulatory genes which could play a pivotal role in COVID-19 related thrombosis. We also found miR-16-5p, miR-27a-3p, let-7b-5p and miR-155-5p as regulators in the coagulation and thrombosis process. In silico predictions were further confirmed in patients hospitalized for COVID-19. The expression levels of miR-16-5p and let-7b in COVID-19 patients were lower at baseline, 7-days and 21-day after admission compared to the healthy controls (p < 0.0001 for all time points for both miRNAs). The expression levels of miR-27a-3p and miR-155-5p in COVID-19 patients were higher at day 21 compared to the healthy controls (p = 0.007 and p < 0.001, respectively). A low baseline miR-16-5p expression presents predictive utility in assessment of the hospital length of stay or death in follow-up as a composite endpoint (AUC:0.810, 95% CI, 0.71-0.91, p < 0.0001) and low baseline expression of miR-16-5p and diabetes mellitus are independent predictors of increased length of stay or death according to a multivariate analysis (OR: 9.417; 95% CI, 2.647-33.506; p = 0.0005 and OR: 6.257; 95% CI, 1.049-37.316; p = 0.044, respectively). This study enabled us to better characterize changes in gene expression and signalling pathways related to hypercoagulable and thrombotic conditions in COVID-19. In this study we identified and validated miRNAs which could serve as novel, thrombosis-related predictive biomarkers of the COVID-19 complications, and can be used for early stratification of patients and prediction of severity of infection development in an individual.Abbreviations: ACE2, angiotensin-converting enzyme 2AF, atrial fibrillationAPP, Amyloid Beta Precursor ProteinaPTT, activated partial thromboplastin timeAUC, Area under the curveAβ, amyloid betaBMI, body mass indexCAD, coronary artery diseaseCALM1, Calmodulin 1 geneCaM, calmodulinCCND1, Cyclin D1CI, confidence intervalCOPD, chronic obstructive pulmonary diseaseCOVID-19, Coronavirus disease 2019CRP, C-reactive proteinCV, CardiovascularCVDs, cardiovascular diseasesDE, differentially expressedDM, diabetes mellitusEGFR, Epithelial growth factor receptorELAVL1, ELAV Like RNA Binding Protein 1FLNA, Filamin AFN1, Fibronectin 1GEO, Gene Expression OmnibushiPSC-CMs, Human induced pluripotent stem cell-derived cardiomyocytesHSP90AA1, Heat Shock Protein 90 Alpha Family Class A Member 1Hsp90α, heat shock protein 90αICU, intensive care unitIL, interleukinIQR, interquartile rangelncRNAs, long non-coding RNAsMI, myocardial infarctionMiRNA, MiR, microRNAmRNA, messenger RNAncRNA, non-coding RNANERI, network-medicine based integrative approachNF-kB, nuclear factor kappa-light-chain-enhancer of activated B cellsNPV, negative predictive valueNXF, nuclear export factorPBMCs, Peripheral blood mononuclear cellsPCT, procalcitoninPPI, Protein-protein interactionsPPV, positive predictive valuePTEN, phosphatase and tensin homologqPCR, quantitative polymerase chain reactionROC, receiver operating characteristicSARS-CoV-2, severe acute respiratory syndrome coronavirus 2SD, standard deviationTLR4, Toll-like receptor 4TM, thrombomodulinTP53, Tumour protein P53UBC, Ubiquitin CWBC, white blood cells.
Collapse
Affiliation(s)
- Ceren Eyileten
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Warsaw, Poland
- Genomics Core Facility, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Zofia Wicik
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Warsaw, Poland
- Center for Mathematics, Computing and Cognition, Federal University of ABC, Santo AndréBrazil
| | - Sérgio N. Simões
- Department of Informatics, Federal Institute of Espírito Santo, Serra, Brazil
| | - David C. Martins-Jr
- Center for Mathematics, Computing and Cognition, Federal University of ABC, Santo AndréBrazil
| | - Krzysztof Klos
- Department of Infectious Diseases and Allergology - Military Institute of Medicine, Warsaw, Poland
| | - Wojciech Wlodarczyk
- Department of Infectious Diseases and Allergology - Military Institute of Medicine, Warsaw, Poland
| | - Alice Assinger
- Department of Vascular Biology and Thrombosis Research, Center of Physiology and Pharmacology, Medical University of Vienna, Austria
| | - Dariusz Soldacki
- Department of Clinical Immunology, Medical University of Warsaw, Warsaw, Poland
| | - Andrzej Chcialowski
- Department of Infectious Diseases and Allergology - Military Institute of Medicine, Warsaw, Poland
| | - Jolanta M. Siller-Matula
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Warsaw, Poland
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Marek Postula
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Warsaw, Poland
| |
Collapse
|
11
|
Alterations in Circulating MicroRNAs and the Relation of MicroRNAs to Maximal Oxygen Consumption and Intima-Media Thickness in Ultra-Marathon Runners. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18147234. [PMID: 34299680 PMCID: PMC8307599 DOI: 10.3390/ijerph18147234] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/24/2021] [Accepted: 06/29/2021] [Indexed: 12/12/2022]
Abstract
The impact of long-term training on cardiovascular disease (CVD) is not clear. Carotid intima-media thickness (CIMT) test is recommended as a useful measure to diagnose the early stages of atherosclerosis. MicroRNAs (miRNAs) are altered due to endurance exercise and can be promising biomarkers of pathophysiological changes. We aimed to evaluate the association of circulating miRNAs with physical fitness and markers of atherosclerosis in ultra-marathon runners. Ultra-marathon runners had 28-fold upregulation of miR-125a-5p expressions compared to control individuals (p = 0.002), whereas let-7e and miR-126 did not differ statistically between ultra-marathon runners and controls. In the ultra-marathon runners' group, negative correlations were observed between VO2max/kg and relative expression of miR-125a-5p and miR-126 (r = -0.402, p = 0.028; r = -0.438, p = 0.032, respectively). Positive correlations were observed between CIMT and miR-125a-5p and miR-126 (r = 0.388, p = 0.050; r = 0.504, p = 0.023, respectively) in ultra-marathon runners. Individuals with the highest quartile of VO2max/kg had 23-fold lower miR-126 expression in comparison to subgroups with lower VO2max/kg (p = 0.017). Our results may indicate that both miRNAs may serve as a biomarker for early pathological changes leading to atherosclerosis burden in athletes. Furthermore, the association between miRNAs and traditional risk factors for CVD indicate a possible use of these molecules as early biomarkers of future cardiovascular health.
Collapse
|
12
|
The Regulating Effect of Autophagy-Related MiRNAs in Kidney, Bladder, and Prostate Cancer. JOURNAL OF ONCOLOGY 2021; 2021:5510318. [PMID: 33976697 PMCID: PMC8084683 DOI: 10.1155/2021/5510318] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/26/2021] [Accepted: 03/31/2021] [Indexed: 12/17/2022]
Abstract
Autophagy is a treatment target for many disorders, including cancer, and its specific role is becoming increasingly well known. In tumors, researchers pay attention to microribonucleic acids (miRNAs) with regulatory effects to develop more effective therapeutic drugs for autophagy and find new therapeutic targets. Various studies have shown that autophagy-related miRNAs play an irreplaceable role in different tumors, such as miR-495, miR-30, and miR-101. These miRNAs are associated with autophagy resistance in gastric cancer, non-small cell lung cancer, and cervical cancer. In recent years, autophagy-related miRNAs have also been reported to play a role in autophagy in urinary system tumors. This article reviews the regulatory effects of autophagy-related miRNAs in kidney, bladder, and prostate cancer and provides new ideas for targeted therapy of the three major tumors of the urinary system.
Collapse
|
13
|
Czajka P, Fitas A, Jakubik D, Eyileten C, Gasecka A, Wicik Z, Siller-Matula JM, Filipiak KJ, Postula M. MicroRNA as Potential Biomarkers of Platelet Function on Antiplatelet Therapy: A Review. Front Physiol 2021; 12:652579. [PMID: 33935804 PMCID: PMC8081881 DOI: 10.3389/fphys.2021.652579] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/22/2021] [Indexed: 11/25/2022] Open
Abstract
MicroRNAs (miRNAs) are small, non-coding RNAs, able to regulate cellular functions by specific gene modifications. Platelets are the major source for circulating miRNAs, with significant regulatory potential on cardiovascular pathophysiology. MiRNAs have been shown to modify the expression of platelet proteins influencing platelet reactivity. Circulating miRNAs can be determined from plasma, serum, or whole blood, and they can be used as diagnostic and prognostic biomarkers of platelet reactivity during antiplatelet therapy as well as novel therapeutic targets in cardiovascular diseases (CVDs). Herein, we review diagnostic and prognostic value of miRNAs levels related to platelet reactivity based on human studies, presenting its interindividual variability as well as the substantial role of genetics. Furthermore, we discuss antiplatelet treatment in the context of miRNAs alterations related to pathways associated with drug response.
Collapse
Affiliation(s)
- Pamela Czajka
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology, Warsaw, Poland
| | - Alex Fitas
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology, Warsaw, Poland
| | - Daniel Jakubik
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology, Warsaw, Poland
| | - Ceren Eyileten
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology, Warsaw, Poland
| | - Aleksandra Gasecka
- First Chair and Department of Cardiology, Medical University of Warsaw, Warsaw, Poland
| | - Zofia Wicik
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology, Warsaw, Poland.,Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, São Paulo, Brazil
| | - Jolanta M Siller-Matula
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology, Warsaw, Poland.,Department of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Krzysztof J Filipiak
- First Chair and Department of Cardiology, Medical University of Warsaw, Warsaw, Poland
| | - Marek Postula
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology, Warsaw, Poland
| |
Collapse
|