1
|
Li Y, Tang L, Zhu C, Liu X, Wang X, Liu Y. Fluorescent and colorimetric assay for determination of Cu(II) and Hg(II) using AuNPs reduced and wrapped by carbon dots. Mikrochim Acta 2021; 189:10. [PMID: 34865194 DOI: 10.1007/s00604-021-05111-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 11/14/2021] [Indexed: 12/16/2022]
Abstract
To improve the accuracy and specificity of visual sensors for detecting Cu(II) and Hg(II), a fluorescent and colorimetric dual-modal sensor based on Au nanoparticles (AuNPs) prepared by using carbon dots (CDs) was designed. If a sensor is to be applied for the detection of targets in different environmental backgrounds, it needs to have high stability against heat, pH, and salt. To this end, CD-wrapped AuNP probes were fabricated by the in situ reaction of chloroauric acid and reductive CDs. The reductive CDs were prepared with hyperbranched polyethyleneimine (HPEI) as a carbon source. HPEI-CDs not only acted as a reducing agent but also as an excellent stabilizer in the preparation and detection application of the AuNPs. Based on multiple signal responses, including color, UV-Vis absorption, and fluorescence intensity, the HPEI-CD/AuNP nanosensor was used to realize the detection of Cu2+ and Hg2+ in the linear range 9.0×10-10-9.0×10-4 M and 9.0×10-7-9.0×10-5 M with low detection limits of 75.6 nM and 281 nM, respectively. In tap water analysis, the recovery of Cu2+ and Hg2+ by fluorescent range from 109.98-113.31% and 100.65-100.81%, and the RSD values were 0.1159-1.6317% and 3.2-5.4%, respectively. The recovery of Cu2+ and Hg2+ by colorimetric detection were 99.72-100.14% and 99.88-100.12%, and RSD values were 0.6527-0.6842% and 0.4400-0.8386%, respectively. Importantly, this sensor was applied to the accurate and sensitive detection of Cu2+ and Hg2+ in tap water and sea water. The multimode readout nanosensor exhibited strong potential for achieving simultaneous detection of two different heavy metal ions in practical applications. The novel multi-mode readout carbon dots/AuNPs sensor for Cu2+ and Hg2+ detectionshowed high sensitivity and selectivity.
Collapse
Affiliation(s)
- Yuxi Li
- School of Chemistry and Materials Science, Ludong University, 264025, Yantai, Shandong Province, People's Republic of China
| | - Lu Tang
- School of Chemistry and Materials Science, Ludong University, 264025, Yantai, Shandong Province, People's Republic of China
| | - Chenxue Zhu
- School of Chemistry and Materials Science, Ludong University, 264025, Yantai, Shandong Province, People's Republic of China
| | - Xunyong Liu
- School of Chemistry and Materials Science, Ludong University, 264025, Yantai, Shandong Province, People's Republic of China.
| | - Xing Wang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, People's Republic of China. .,University of Chinese Academy of Sciences, Beijing, 100190, China.
| | - Yi Liu
- School of Chemistry and Materials Science, Ludong University, 264025, Yantai, Shandong Province, People's Republic of China.
| |
Collapse
|
2
|
Ocak Ü, Ocak M, Başoğlu A, Parlayan S, Alp H, Kantekin H. Complexation of metal ions with the novel diazadithia crown ethers carrying two pyrene pendants in acetonitrile-tetrahydrofuran. J INCL PHENOM MACRO 2009. [DOI: 10.1007/s10847-009-9663-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|