1
|
Liu C, Cao Y, Zuo Y, Zhang C, Ren S, Zhang X, Wang C, Zeng Y, Ling J, Liu Y, Chen Z, Cao X, Wu Z, Zhang C, Lu J. Hybridization-based discovery of novel quinazoline-2-indolinone derivatives as potent and selective PI3Kα inhibitors. J Adv Res 2025; 68:459-475. [PMID: 38471647 DOI: 10.1016/j.jare.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 03/14/2024] Open
Abstract
INTRODUCTION Phosphatidylinositol 3-kinases (PI3Ks) overexpression can elicit cellular homeostatic dysregulation, which further contributes to tumorigenesis, with PI3Kα emerging as the most prevalent mutant isoform kinase among PI3Ks. Therefore, selective inhibitors targeting PI3Kα have attracted considerable interest in recent years. Molecular hybridization, with the advantage of simplified pharmacokinetics and drug-drug interactions, emerged as one of the important avenues for discovering potential drugs. OBJECTIVES This study aimed to construct PI3Kα inhibitors by hybridization and investigate their antitumor activity and mechanism. METHODS 26 quinazoline-2-indolinone derivatives were obtained by molecular hybridization, and their structure-activity relationship was analyzed by MTT, in vitro kinase activity and molecular docking. The biological evaluation of compound 8 was performed by transwell, flow cytometry, laser scanning confocal microscopy, Western blot, CTESA and immunohistochemistry. RESULTS Here, we employed molecular hybridization methods to construct a series of quinazoline-2-indolinone derivatives as PI3Kα selective inhibitors. Encouragingly, representative compound 8 exhibited a PI3Kα enzymatic IC50 value of 9.11 nM and 10.41/16.99/37.53-fold relative to the biochemical selectivity for PI3Kβ/γ/δ, respectively. Moreover, compound 8 effectively suppressed the viability of B16, HCT116, MCF-7, H22, PC-3, and A549 cells (IC50 values: 0.2 μM ∼ 0.98 μM), and dramatically inhibited the proliferation and migration of NSCLC cells, as well as induced mitochondrial apoptosis through the PI3K/Akt/mTOR pathway. Importantly, compound 8 demonstrated potent in vivo anti-tumor activity in non-small cell lung cancer mouse models without visible toxicity. CONCLUSIONS This study presented a new avenue for the development of PI3Kα inhibitors and provided a solid foundation for novel QHIDs as potential future therapies for the treatment of NSCLC.
Collapse
Affiliation(s)
- Changqun Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yuening Cao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yi Zuo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Chaozheng Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Senmiao Ren
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xin Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Chuanqi Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yingjie Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jie Ling
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yilan Liu
- Hematology Department, The General Hospital of the Western Theater Command PLA, Chengdu 610081, China
| | - Zixian Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiujun Cao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Zhengzhi Wu
- The First Affiliated Hospital of Shenzhen University, Shenzhen 518035, China.
| | - Chuantao Zhang
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Jun Lu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
2
|
Raman APS, Aslam M, Awasthi A, Ansari A, Jain P, Lal K, Bahadur I, Singh P, Kumari K. An updated review on 1,2,3-/1,2,4-triazoles: synthesis and diverse range of biological potential. Mol Divers 2025; 29:899-964. [PMID: 39066993 DOI: 10.1007/s11030-024-10858-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/22/2024] [Indexed: 07/30/2024]
Abstract
The synthesis of triazoles has attracted a lot of interest in the field of organic chemistry because of its versatile chemical characteristics and possible biological uses. This review offers an extensive overview of the different pathways used in the production of triazoles. A detailed analysis of recent research indicates that triazole compounds have a potential range of pharmacological activities, including the ability to inhibit enzymes, and have antibacterial, anticancer, and antifungal activities. The integration of computational and experimental methods provides a thorough understanding of the structure-activity connection, promoting sensible drug design and optimization. By including triazoles as essential components in drug discovery, researchers can further explore and innovate in the synthesis, biological assessment, and computational studies of triazoles as drugs, exploring the potential therapeutic significance of triazoles.
Collapse
Affiliation(s)
- Anirudh Pratap Singh Raman
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, Dhaula Kuan, New Delhi, India
- Department of Chemistry, SRM Institute of Science & Technology, Delhi-NCR Campus, Ghaziabad, Modinagar, India
| | - Mohd Aslam
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, Dhaula Kuan, New Delhi, India
- Department of Chemistry, SRM Institute of Science & Technology, Delhi-NCR Campus, Ghaziabad, Modinagar, India
| | - Amardeep Awasthi
- Department of Chemistry, North western University, Evanston, IL, USA
| | - Anas Ansari
- Department of Chemistry, North western University, Evanston, IL, USA
| | - Pallavi Jain
- Department of Chemistry, SRM Institute of Science & Technology, Delhi-NCR Campus, Ghaziabad, Modinagar, India
| | - Kashmiri Lal
- Department of Chemistry, Guru Jambheshwar of Science and Technology, Hisar, India
| | - Indra Bahadur
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, North-West University, Mafikeng Campus, Mmabatho, 2745, South Africa
| | - Prashant Singh
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, Dhaula Kuan, New Delhi, India.
| | - Kamlesh Kumari
- Department of Zoology, University of Delhi, Delhi, India.
| |
Collapse
|
3
|
Hegde V, Bhat RM, Budagumpi S, Adimule V, Keri RS. Quinoline hybrid derivatives as effective structural motifs in the treatment of tuberculosis: Emphasis on structure-activity relationships. Tuberculosis (Edinb) 2024; 149:102573. [PMID: 39504873 DOI: 10.1016/j.tube.2024.102573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 11/08/2024]
Abstract
Mycobacterium tuberculosis (MTB/Mtb) is the causative agent of tuberculosis (TB), a highly infectious serious airborne illness. TB usually affects the lungs, in 25 % of patients (children or immune impaired adults), mycobacteria can enter the blood stream and infect other bodily areas such the meninges, pleura, lymphatic system, genitourinary system, bones, and joints. Currently, the most challenging aspect of treating this illness is the ineffectiveness of the most potent first-line anti-TB medications, isoniazid, rifampin, pyrazinamide, and ethambutol, which can result in multidrug-resistant TB (MDR-TB), extensively drug-resistant TB (XDR-TB), and in rare instances, completely drug-resistant TB (TDR-TB). As a result, finding new pharmaceutical compounds to treat these diseases is a significant challenge for the scientific community. A number of bio-active molecules have been investigated in this quest, including quinoline, which is considered a promising candidate for the development of TB drugs. It is known that quinoline are low in toxicity and have a wide range of pharmacological properties. Researchers have investigated quinoline scaffolds as anti-TB drugs based on their biological spectrum. The objective of this review is to examine the recent development of quinoline and its structural characteristics crucial to its antitubercular (anti-TB) activity. A molecular analog of the TB treatment can be designed and identified with this information. As a result, future generation quinoline-based anti-TB agents with greater potency and safety can also be explored.
Collapse
Affiliation(s)
- Venkatraman Hegde
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University), Jain Global Campus, Kanakapura, Bangalore, Karnataka, 562112, India; Aurigene Pharmaceutical Services, KIADB Industrial area, Electronics City Phase-2, Hosur Road, Bangalore, Karnataka, 560100, India
| | - Raveendra Madhukar Bhat
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University), Jain Global Campus, Kanakapura, Bangalore, Karnataka, 562112, India; Aurigene Pharmaceutical Services, KIADB Industrial area, Electronics City Phase-2, Hosur Road, Bangalore, Karnataka, 560100, India
| | - Srinivasa Budagumpi
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University), Jain Global Campus, Kanakapura, Bangalore, Karnataka, 562112, India
| | - Vinayak Adimule
- Angadi Institute of Technology and Management (AITM), Savagaon Road, Belagavi, 590009, Karnataka, India
| | - Rangappa S Keri
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University), Jain Global Campus, Kanakapura, Bangalore, Karnataka, 562112, India.
| |
Collapse
|
4
|
Da Costa GP, Sacramento M, Barcellos AM, Alves D. Comprehensive Review on the Synthesis of [1,2,3]Triazolo[1,5-a]Quinolines. CHEM REC 2024; 24:e202400107. [PMID: 39413121 DOI: 10.1002/tcr.202400107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/01/2024] [Indexed: 10/18/2024]
Abstract
This report outlines the evolution and recent progress about the different protocols to synthesize the N-heterocycles fused hybrids, specifically [1,2,3]triazolo[1,5-a]quinoline. This review encompasses a broad range of approaches, describing several reactions for obtaining this since, such as dehydrogenative cyclization, oxidative N-N coupling, Dieckmann condensation, intramolecular Heck, (3+2)-cycloaddition, Ullman-type coupling and direct intramolecular arylation reactions. We divided this review in three section based in the starting materials to synthesize the target [1,2,3]triazolo[1,5-a]quinolines. Starting materials containing quinoline or triazole units previously formed, as well as starting materials which both quinoline and triazole units are formed in situ. Different methods of obtaining are described, such as metal-free or catalyzed conditions, azide-free, using conventional heating or alternative energy sources, such as electrochemical and photochemical methods. Mechanistic insights underlying the reported reactions were also described in this comprehensive review.
Collapse
Affiliation(s)
- Gabriel P Da Costa
- Laboratório de Síntese Orgânica Limpa-LASOL, CCQFA, Universidade Federal de Pelotas-UFPel, P.O. Box 354, 96010-900, Pelotas, RS, Brazil
| | - Manoela Sacramento
- Laboratório de Síntese Orgânica Limpa-LASOL, CCQFA, Universidade Federal de Pelotas-UFPel, P.O. Box 354, 96010-900, Pelotas, RS, Brazil
| | - Angelita M Barcellos
- Pesquisa em Síntese Orgânica Sustentável-PSOS, Universidade Federal do Rio Grande-FURG, Escola de Química e Alimentos-EQA, Av. Itália km 8, s/n-Campus Carreiros, 96.203-900, Rio Grande, RS
| | - Diego Alves
- Laboratório de Síntese Orgânica Limpa-LASOL, CCQFA, Universidade Federal de Pelotas-UFPel, P.O. Box 354, 96010-900, Pelotas, RS, Brazil
| |
Collapse
|
5
|
Xu C, Yang N, Yu H, Wang X. Synthesis of new triazole derivatives and their potential applications for removal of heavy metals from aqueous solution and antibacterial activities. Front Chem 2024; 12:1473097. [PMID: 39508035 PMCID: PMC11537928 DOI: 10.3389/fchem.2024.1473097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/11/2024] [Indexed: 11/08/2024] Open
Abstract
In this paper, triazole derivatives were prepared by a three-step mild reaction using carbon disulfide as starting material. In face of microbial threats, we found that compound 3-cyclopropyl-[1,2,4]triazolo [3,4-b][1,3,4]thiadiazole-6-thiol (C2) has good antibacterial activity, inhibition and clearance ability against biofilms, low hemolytic activity and toxicity, good anti-inflammatory activity. At the same time, we found that B and C series compounds have good metal ion scavenging ability, with removal rates of C series ranging from 47% to 67% and B series ranging from 67% to 87%.
Collapse
Affiliation(s)
- Chunyun Xu
- Department of Dermatology, Maternity and Child Health Hospital of Qinhuangdao, Qinhuangdao, China
| | | | | | | |
Collapse
|
6
|
Murashkina AV, Bogdanov AV, Voloshina AD, Lyubina AP, Samorodov AV, Mitrofanov AY, Beletskaya IP, Smolyarchuk EA, Zavadich KA, Valiullina ZA, Nazmieva KA, Korunas VI, Krylova ID. Base-Catalyzed Reaction of Isatins and (3-Hydroxyprop-1-yn-1-yl)phosphonates as a Tool for the Synthesis of Spiro-1,3-dioxolane Oxindoles with Anticancer and Anti-Platelet Properties. Molecules 2024; 29:4764. [PMID: 39407692 PMCID: PMC11477635 DOI: 10.3390/molecules29194764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/01/2024] [Accepted: 10/07/2024] [Indexed: 10/20/2024] Open
Abstract
An approach to the synthesis of phosphoryl substituted spiro-1,3-dioxolane oxindoles was developed from the base-catalyzed reaction of various isatins with (3-hydroxyprop-1-yn-1-yl)phosphonates. It was found that various aryl-substituted and N-functionalized isatins with the formation of appropriate products with high yields and stereoselectivity when using t-BuOLi are able to react. Cytotoxic activity evaluation suggests that the most significant results in relation to the HuTu 80 cell line were shown by N-benzylated spirodioxolanes. 5-Cloro-N-unsubstituted spirooxindoles exhibit antiaggregational activity exceeding the values of acetylsalicylic acid.
Collapse
Affiliation(s)
- Arina V. Murashkina
- Department of Chemistry, M. V. Lomonosov Moscow State University, 119991 Moscow, Russia; (A.V.M.); (I.P.B.)
| | - Andrei V. Bogdanov
- A. M. Butlerov Institute of Chemistry, Kazan Federal University, 420008 Kazan, Russia
| | - Alexandra D. Voloshina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 420088 Kazan, Russia; (A.D.V.); (A.P.L.)
| | - Anna P. Lyubina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 420088 Kazan, Russia; (A.D.V.); (A.P.L.)
| | - Alexandr V. Samorodov
- Department of Pharmacology, Bashkir State Medical University, 450008 Ufa, Russia; (A.V.S.); (Z.A.V.); (K.A.N.); (V.I.K.); (I.D.K.)
| | - Alexander Y. Mitrofanov
- Department of Chemistry, M. V. Lomonosov Moscow State University, 119991 Moscow, Russia; (A.V.M.); (I.P.B.)
| | - Irina P. Beletskaya
- Department of Chemistry, M. V. Lomonosov Moscow State University, 119991 Moscow, Russia; (A.V.M.); (I.P.B.)
| | - Elena A. Smolyarchuk
- The A.P. Nelyubin Institute of Pharmacy, Sechenov First Moscow State Medical University (Sechenov University), 119571 Moscow, Russia; (E.A.S.); (K.A.Z.)
| | - Kseniya A. Zavadich
- The A.P. Nelyubin Institute of Pharmacy, Sechenov First Moscow State Medical University (Sechenov University), 119571 Moscow, Russia; (E.A.S.); (K.A.Z.)
| | - Zulfiya A. Valiullina
- Department of Pharmacology, Bashkir State Medical University, 450008 Ufa, Russia; (A.V.S.); (Z.A.V.); (K.A.N.); (V.I.K.); (I.D.K.)
| | - Kseniya A. Nazmieva
- Department of Pharmacology, Bashkir State Medical University, 450008 Ufa, Russia; (A.V.S.); (Z.A.V.); (K.A.N.); (V.I.K.); (I.D.K.)
| | - Vladislav I. Korunas
- Department of Pharmacology, Bashkir State Medical University, 450008 Ufa, Russia; (A.V.S.); (Z.A.V.); (K.A.N.); (V.I.K.); (I.D.K.)
| | - Irina D. Krylova
- Department of Pharmacology, Bashkir State Medical University, 450008 Ufa, Russia; (A.V.S.); (Z.A.V.); (K.A.N.); (V.I.K.); (I.D.K.)
| |
Collapse
|
7
|
Gavadia R, Rasgania J, Sahu N, Varma-Basil M, Chauhan V, Kumar S, Mor S, Singh D, Jakhar K. Design and Synthesis of Isatin-Tagged Isoniazid Conjugates with Cogent Antituberculosis and Radical Quenching Competence: In-vitro and In-silico Evaluations. Chem Biodivers 2024; 21:e202400765. [PMID: 39024129 DOI: 10.1002/cbdv.202400765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/07/2024] [Accepted: 07/18/2024] [Indexed: 07/20/2024]
Abstract
In pursuit of potential chemotherapeutic alternates to combat severe tuberculosis infections, novel heterocyclic templates derived from clinically approved anti-TB drug isoniazid and isatin have been synthesized that demonstrate potent inhibitory action against Mycobacterium tuberculosis, and compound 4i with nitrophenyl motif exhibited the highest anti-TB efficacy with a MIC value of 2.54 μM/ml. Notably, the same nitro analog 4i shows the best antioxidant efficacy among all the synthesized compounds with an IC50 value of 37.37 μg/ml, suggesting a synergistic influence of antioxidant proficiency on the anti-TB action. The titled compounds exhibit explicit binding affinity with the InhA receptor. The befitting biochemical reactivity and near-appropriate pharmacokinetic proficiency of the isoniazid conjugates is reflected in the density functional theory (DFT) studies and ADMET screening. The remarkable anti-TB action of the isoniazid cognates with marked radical quenching ability may serve as a base for developing multi-target medications to confront drug-resistant TB pathogens.
Collapse
Affiliation(s)
- Renu Gavadia
- Department of Chemistry, M. D. University, Rohtak, Haryana, 124001, India
| | - Jyoti Rasgania
- Department of Chemistry, M. D. University, Rohtak, Haryana, 124001, India
| | - Neetu Sahu
- Department of Chemistry, M. D. University, Rohtak, Haryana, 124001, India
| | - Mandira Varma-Basil
- Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, 110007, India
| | - Varsha Chauhan
- Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, 110007, India
- Department of Microbiology, M. D. University, Rohtak, Haryana, 124001, India
| | - Sanjay Kumar
- Department of Microbiology, M. D. University, Rohtak, Haryana, 124001, India
| | - Satbir Mor
- Department of Chemistry, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, 125001, India
| | - Devender Singh
- Department of Chemistry, M. D. University, Rohtak, Haryana, 124001, India
| | - Komal Jakhar
- Department of Chemistry, M. D. University, Rohtak, Haryana, 124001, India
| |
Collapse
|
8
|
Singh VK, Kumari P, Som A, Rai S, Mishra R, Singh RK. Design, synthesis and antimicrobial activity of novel quinoline derivatives: an in silico and in vitro study. J Biomol Struct Dyn 2024; 42:6904-6924. [PMID: 37477261 DOI: 10.1080/07391102.2023.2236716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/10/2023] [Indexed: 07/22/2023]
Abstract
A series of new quinoline derivatives has been designed, synthesized and evaluated as antibacterial and antifungal agents functioning as peptide deformylase enzyme (PDF) inhibitors and fungal cell wall disruptors on the basis of computational and experimental methods. The molecular docking and ADMET assessment aided in the synthesis of quinoline derivatives starting from 6-amino-4-methyl-1H-quinoline-2-one substituted with different types of sulfonyl/benzoyl/propargyl moieties. These newly synthesized compounds were evaluated for their in vitro antibacterial and antifungal activity. Antibacterial screening of all compounds showed excellent MIC value (MIC, 50 - 3.12 µg/mL) against bacterial strains, viz. Bacillus cerus, Staphylococcus, Pseudomonas and Escherichia coli. Compounds 2 and 6 showed better activity. Fractional inhibitory concentration (FIC) values of compounds were lowered by 1/2 to 1/128 of the original MIC values when a combinatorial screening with reference drugs was performed. Further, antifungal screening against fungal strains, viz. A. flavus, A. niger, F. oxysporum and C. albicans also showed that all compounds were potentially active and compound 6 being the most potent. Further, the cytotoxicity experiments revealed that compound 6 was the least toxic molecule. The molecular dynamics (MD) simulation investigations elucidated the conformational stability of compound 6-PDF complex with flexible binding pocket residues. The highest number of stable hydrogen bonds with the PDF residues during the entire simulation time illustrated strong binding affinity of compound 6 with PDF.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Vishal K Singh
- Bioorganic Research Laboratory, Department of Chemistry, University of Allahabad, Prayagraj, India
| | - Priyanka Kumari
- Centre of Bioinformatics, Institute of Interdisciplinary Studies, University of Allahabad, Prayagraj, India
| | - Anup Som
- Centre of Bioinformatics, Institute of Interdisciplinary Studies, University of Allahabad, Prayagraj, India
| | - Shivangi Rai
- Bioorganic Research Laboratory, Department of Chemistry, University of Allahabad, Prayagraj, India
| | - Richa Mishra
- Bioorganic Research Laboratory, Department of Chemistry, University of Allahabad, Prayagraj, India
| | - Ramendra K Singh
- Bioorganic Research Laboratory, Department of Chemistry, University of Allahabad, Prayagraj, India
| |
Collapse
|
9
|
Swati, Raza A, Chowdhary S, Anand A, Shaveta, Sharma AK, Kumar K, Kumar V. Rational Design and Synthesis of Isatin-Chalcone Hybrids Integrated with 1H-1,2,3-Triazole: Anti-Proliferative Profiling and Molecular Docking Insights. ChemMedChem 2024; 19:e202400015. [PMID: 38638026 DOI: 10.1002/cmdc.202400015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 04/20/2024]
Abstract
In this study, a series of isatin-chalcone linked triazoles were synthesized using Cu-promoted Azide-Alkyne Cycloaddition (CuAAC) reaction and evaluated for their cytotoxicity against various cancer cell lines. The most potent compound displayed approximately 2.5 times greater activity compared to both reference compounds against ovarian cancer cell lines. These findings were supported by caspase-mediated apoptosis and molecular docking analyses. Docking revealed comparable VEGFR-2 affinities for 5 b and 5-FU but highlighted stronger interaction of 5 b with EGFR, evident from its lower docking score. Overall, these results signify the notable anti-proliferative potential of most synthesized hybrids, notably emphasizing the efficacy of compound 5 b in suppressing cancer cell growth.
Collapse
Affiliation(s)
- Swati
- Department of Chemistry, Maharaja Ranjit Singh Punjab Technical University, Dabwali Road, Bathinda, India
| | - Asif Raza
- Department of Pharmacology, Penn State Cancer Institute, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | | | - Amit Anand
- Department of Chemistry, Khalsa College, Amritsar, India
| | - Shaveta
- Department of Chemistry, Baba Farid College, Muktsar Road, Bathinda, India
| | - Arun K Sharma
- Department of Pharmacology, Penn State Cancer Institute, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Kewal Kumar
- Department of Chemistry, Maharaja Ranjit Singh Punjab Technical University, Dabwali Road, Bathinda, India
| | - Vipan Kumar
- Department of Chemistry, Guru Nanak Dev University, Amritsar, India
| |
Collapse
|
10
|
Dong YX, Gao LX, Cao Q, Cao ZT, Gan SY, Li J, Zhu YL, Zhou YB, Zhang C, Wang WL. Synthesis, Fluorescence, and Bioactivity of Novel Isatin Derivatives. J Phys Chem B 2024; 128:6123-6133. [PMID: 38875519 DOI: 10.1021/acs.jpcb.4c02561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
The isatin group is widespread in nature and is considered to be a privileged building block for drug discovery. In order to develop novel SHP1 inhibitors with fluorescent properties as tools for SHP1 biology research, this work designed and synthesized a series of isatin derivatives. The presentive compound 5a showed good inhibitory activity against SHP1PTP with IC50 of 11 ± 3 μM, displayed about 92% inhibitory rate against MV-4-11 cell proliferation at the concentration of 20 μM, exhibited suitable fluorescent properties with a long emission wavelength and a large Stokes shift, and presented blue fluorescent imaging in HeLa cells with low cytotoxicity. This study could offer chemical tool to further understand SHP1 biology and develop novel SHP1 inhibitors in therapy.
Collapse
Affiliation(s)
- Yi-Xin Dong
- School of Life Sciences and Health Engineering, Jiangnan University, Jiangsu 214122, China
| | - Li-Xin Gao
- School of Life Sciences and Health Engineering, Jiangnan University, Jiangsu 214122, China
- National Center for Drug Screening, State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Qing Cao
- School of Life Sciences and Health Engineering, Jiangnan University, Jiangsu 214122, China
| | - Zi-Tong Cao
- National Center for Drug Screening, State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Institute of Pharmaceutical Science, China Pharmaceutical University, Nanjing 210009, China
| | - Su-Ya Gan
- School of Life Sciences and Health Engineering, Jiangnan University, Jiangsu 214122, China
| | - Jia Li
- National Center for Drug Screening, State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, SSIP Healthcare and Medicine Demonstration Zone, Zhongshan 528400, China
| | - Yun-Long Zhu
- Wuxi Maternal and Child Health Hospital, Wuxi School of Medicine, Jiangnan University, Jiangsu 214002, China
| | - Yu-Bo Zhou
- National Center for Drug Screening, State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, SSIP Healthcare and Medicine Demonstration Zone, Zhongshan 528400, China
| | - Chun Zhang
- School of Life Sciences and Health Engineering, Jiangnan University, Jiangsu 214122, China
| | - Wen-Long Wang
- School of Life Sciences and Health Engineering, Jiangnan University, Jiangsu 214122, China
| |
Collapse
|
11
|
Al Maqbali AS, Al Rasbi NK, Zoghaib WM, Sivakumar N, Robertson CC, Shongwe MS, Grzegorzek N, Abdel-Jalil RJ. Stereoselective Asymmetric Syntheses of Molecules with a 4,5-Dihydro-1 H-[1,2,4]-Triazoline Core Possessing an Acetylated Carbohydrate Appendage: Crystal Structure, Spectroscopy, and Pharmacology. Molecules 2024; 29:2839. [PMID: 38930904 PMCID: PMC11206253 DOI: 10.3390/molecules29122839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/03/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
A new series of chiral 4,5-dihydro-1H-[1,2,4]-triazoline molecules, featuring a β-ᴅ-glucopyranoside appendage, were synthesized via a 1,3-dipolar cycloaddition reaction between various hydrazonyl chlorides and carbohydrate Schiff bases. The isolated enantiopure triazolines (8a-j) were identified through high-resolution mass spectrometry (HRMS) and vibrational spectroscopy. Subsequently, their solution structures were elucidated through NMR spectroscopic techniques. Single-crystal X-ray analysis of derivative 8b provided definitive evidence for the 3-D structure of this compound and revealed important intermolecular forces in the crystal lattice. Moreover, it confirmed the (S)-configuration at the newly generated stereo-center. Selected target compounds were investigated for anti-tumor activity in 60 cancer cell lines, with derivative 8c showing the highest potency, particularly against leukemia. Additionally, substituent-dependent anti-fungal and anti-bacterial behavior was observed.
Collapse
Affiliation(s)
- Anwaar S. Al Maqbali
- Department of Chemistry, College of Science, Sultan Qaboos University, Al-Khod 123, Muscat P.O. Box 36, Oman; (A.S.A.M.); (N.K.A.R.); (W.M.Z.); (M.S.S.)
| | - Nawal K. Al Rasbi
- Department of Chemistry, College of Science, Sultan Qaboos University, Al-Khod 123, Muscat P.O. Box 36, Oman; (A.S.A.M.); (N.K.A.R.); (W.M.Z.); (M.S.S.)
| | - Wajdi M. Zoghaib
- Department of Chemistry, College of Science, Sultan Qaboos University, Al-Khod 123, Muscat P.O. Box 36, Oman; (A.S.A.M.); (N.K.A.R.); (W.M.Z.); (M.S.S.)
| | - Nallusamy Sivakumar
- Department of Biology, College of Science, Sultan Qaboos University, Al-Khod 123, Muscat P.O. Box 36, Oman;
| | | | - Musa S. Shongwe
- Department of Chemistry, College of Science, Sultan Qaboos University, Al-Khod 123, Muscat P.O. Box 36, Oman; (A.S.A.M.); (N.K.A.R.); (W.M.Z.); (M.S.S.)
| | - Norbert Grzegorzek
- Institute of Organic Chemistry, University of Tübingen, Auf Der Morgenstelle 18, A-Bau, 72076 Tübingen, Germany;
| | - Raid J. Abdel-Jalil
- Department of Chemistry, College of Science, Sultan Qaboos University, Al-Khod 123, Muscat P.O. Box 36, Oman; (A.S.A.M.); (N.K.A.R.); (W.M.Z.); (M.S.S.)
| |
Collapse
|
12
|
Shu VA, Eni DB, Ntie-Kang F. A survey of isatin hybrids and their biological properties. Mol Divers 2024:10.1007/s11030-024-10883-z. [PMID: 38833124 DOI: 10.1007/s11030-024-10883-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/15/2024] [Indexed: 06/06/2024]
Abstract
The emergence of diverse infections worldwide, which is a serious global threat to human existence, necessitates the urgent development of novel therapeutic candidates that can combat these diseases with efficacy. Molecular hybridization has been established as an efficient technique in designing bioactive molecules capable of fighting infections. Isatin, a core nucleus of an array of compounds with diverse biological properties can be modified at different positions leading to the creation of novel drug targets, is an active area of medicinal chemistry. This review containing published articles from 2005 to 2022 highlights isatin hybrids which have been synthesized and reported in the literature alongside a discussion on their biological properties. The enriched structure-activity relationship studies discussed provides insights for the rational design of novel isatin hybrids with tailored biological properties as effective therapeutic candidates inspired by nature.
Collapse
Affiliation(s)
- Vanessa Asoh Shu
- Center for Drug Discovery, Faculty of Science, University of Buea, Buea, Cameroon
| | - Donatus Bekindaka Eni
- Center for Drug Discovery, Faculty of Science, University of Buea, Buea, Cameroon.
- Department of Chemistry, Faculty of Science, University of Buea, Buea, Cameroon.
| | - Fidele Ntie-Kang
- Center for Drug Discovery, Faculty of Science, University of Buea, Buea, Cameroon.
- Department of Chemistry, Faculty of Science, University of Buea, Buea, Cameroon.
- Institute of Pharmacy, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany.
| |
Collapse
|
13
|
Ghannay S, Aldhafeeri BS, Ahmad I, E.A.E. Albadri A, Patel H, Kadri A, Aouadi K. Identification of dual-target isoxazolidine-isatin hybrids with antidiabetic potential: Design, synthesis, in vitro and multiscale molecular modeling approaches. Heliyon 2024; 10:e25911. [PMID: 38380049 PMCID: PMC10877290 DOI: 10.1016/j.heliyon.2024.e25911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/08/2024] [Accepted: 02/05/2024] [Indexed: 02/22/2024] Open
Abstract
In the development of novel antidiabetic agents, a novel series of isoxazolidine-isatin hybrids were designed, synthesized, and evaluated as dual α-amylase and α-glucosidase inhibitors. The precise structures of the synthesized scaffolds were characterized using different spectroscopic techniques and elemental analysis. The obtained results were compared to those of the reference drug, acarbose (IC50 = 296.6 ± 0.825 μM for α-amylase & IC50 = 780.4 ± 0.346 μM for α-glucosidase). Among the title compounds, 5d exhibited impressive α-amylase and α-glucosidase inhibitory activity with IC50 values of 30.39 ± 1.52 μM and 65.1 ± 3.11 μM, respectively, followed by 5h (IC50 = 46.65 ± 2.3 μM; IC50 = 85.16 ± 4.25 μM) and 5f (IC50 = 55.71 ± 2.78 μM; IC50 = 106.77 ± 5.31 μM). Mechanistic studies revealed that the most potent derivative 5d bearing the chloro substituent attached to the oxoindolin-3-ylidene core, and acarbose, are a competitive inhibitors of α-amylase and α-glucosidase, respectively. Structure activity relationship (SAR) was examined to guide further structural optimization of the most appropriate substituent(s). Moreover, drug-likeness qualities and ADMET prediction of the most active analogue, 5d was also performed. Subsequently, 5d was subjected to molecular docking and dynamic simulation during the progression of 120 ns analysis to check the essential ligand-receptor patterns, and to estimate its stability. In silico studies were found in good agreement with the in vitro enzymatic inhibitions results. In conclusion, we demonstrated that most potent compound 5d could be exploited as dual potential inhibitor of α-amylase and α-glucosidase for possible management of diabetes.
Collapse
Affiliation(s)
- Siwar Ghannay
- Department of Chemistry, College of Science, Qassim University, Buraidah, 51452, Saudi Arabia
| | - Budur Saleh Aldhafeeri
- Department of Chemistry, College of Science, Qassim University, Buraidah, 51452, Saudi Arabia
| | - Iqrar Ahmad
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, 425405, Maharashtra, India
| | - Abuzar E.A.E. Albadri
- Department of Chemistry, College of Science, Qassim University, Buraidah, 51452, Saudi Arabia
| | - Harun Patel
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, 425405, Maharashtra, India
| | - Adel Kadri
- Faculty of Science and Arts in Baljurashi, Al-Baha University, P.O. Box (1988), Al-Baha, 65527, Saudi Arabia
- Faculty of Science of Sfax, Department of Chemistry, University of Sfax, B.P. 1171, 3000, Sfax, Tunisia
| | - Kaiss Aouadi
- Department of Chemistry, College of Science, Qassim University, Buraidah, 51452, Saudi Arabia
- Department of Chemistry, Laboratory of Heterocyclic Chemistry Natural Product and Reactivity/CHPNR, Faculty of Science of Monastir, University of Monastir, Avenue of the Environment, Monastir, 5019, Tunisia
| |
Collapse
|
14
|
Eldehna WM, Mahmoud ST, Elshnawey ER, Elsayed ZM, Majrashi TA, El-Ashrey MK, Rashed M, Hemeda LR, Shoun AA, Elkaeed EB, El Hassab MA, Abdel-Aziz MM, Shahin MI. Novel indolinone-tethered benzothiophenes as anti-tubercular agents against MDR/XDR M. tuberculosis: Design, synthesis, biological evaluation and in vivo pharmacokinetic study. Bioorg Chem 2024; 143:107009. [PMID: 38070474 DOI: 10.1016/j.bioorg.2023.107009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/04/2023] [Accepted: 11/27/2023] [Indexed: 01/24/2024]
Abstract
Joining the global effort to eradicate tuberculosis, one of the deadliest infectious killers in the world, we disclose in this paper the design and synthesis of new indolinone-tethered benzothiophene hybrids 6a-i and 7a-i as potential anti-tubercular agents. The MICs were determined in vitro for the synthesized compounds against the sensitive M. tuberculosis strain ATCC 25177. Potent compounds 6b, 6d, 6f, 6h, 7a, 7b, 7d, 7f, 7h and 7i were furtherly assessed versus resistant MDR-TB and XDR-TB. Structure activity relationship investigation of the synthesized compounds was illustrated, accordingly. Superlative potency was unveiled for compound 6h (MIC = 0.48, 1.95 and 7.81 µg/mL for ATCC 25177 sensitive TB strain, resistant MDR-TB and XDR-TB, respectively). Moreover, validated in vivo pharmacokinetic study was performed for the most potent derivative 6h revealing superior pharmacokinetic profile over the reference drug. For further exploration of the anti-tubercular mechanism of action, molecular docking was carried out for the former compound in DprE1 active site as one of the important biological targets of TB. The binding mode and the docking score uncovered exceptional binding when compared to the co-crystallized ligand suggesting that it maybe the underlying target for its outstanding anti-tubercular potency.
Collapse
Affiliation(s)
- Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt; Scientific Research and Innovation Support Unit, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt.
| | - Sally Tarek Mahmoud
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr Elini St., Cairo, 11562, Egypt
| | - Esraa R Elshnawey
- Scientific Research and Innovation Support Unit, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Zainab M Elsayed
- Scientific Research and Innovation Support Unit, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Taghreed A Majrashi
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Asir 61421, Saudi Arabia
| | - Mohamed K El-Ashrey
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr Elini St., Cairo, 11562, Egypt; Medicinal Chemistry Department, Faculty of Pharmacy, King Salman International University, Ras-Sedr, South Sinai, 46612, Egypt
| | - Mahmoud Rashed
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Loah R Hemeda
- Department of Medicinal Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Aly A Shoun
- Microbiology and Immunology Department, Faculty of Pharmacy, El Saleheya El Gadida University, El Saleheya El Gadida, 44813, Egypt
| | - Eslam B Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh 13713, Saudi Arabia
| | - Mahmoud A El Hassab
- Medicinal Chemistry Department, Faculty of Pharmacy, King Salman International University, Ras-Sedr, South Sinai, 46612, Egypt
| | - Marwa M Abdel-Aziz
- The Regional Center for Mycology and Biotechnology, Al-Azhar University, Cairo 11651, Egypt
| | - Mai I Shahin
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ain Shams University, Abassia, Cairo 11566, Egypt
| |
Collapse
|
15
|
Li Z, Ma J, Tian M, Xia P, Lv X, Hou R, Jiang Y, Xu X, Jia Z, Wang J, Li Z. Synthesis, biological activity evaluation and mechanism of action of novel bis-isatin derivatives as potential anti-liver cancer agents. Bioorg Med Chem Lett 2024; 99:129613. [PMID: 38224754 DOI: 10.1016/j.bmcl.2024.129613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/27/2023] [Accepted: 01/06/2024] [Indexed: 01/17/2024]
Abstract
A series of bis-isatin conjugates with lysine linker were synthesized with the aim of probing their antiproliferative potential. All the newly synthesized derivatives (0-100 μM) were first screened against liver cancer cell lines(Huh1, H22, Huh7, Hepa1-6, HepG2, Huh6 and 97H) using CCK-8 assay. Results indicated that the derivative 4d exhibited the most potent activity against Huh1 (IC50 = 17.13 µM) and Huh7(IC50 = 8.265 µM). In vivo anti-tumor study showed that compound 4d effectively inhibited tumor growth in Huh1-induced xenograft mouse model; the anti-tumor effect of compound 4d (15 mg/kg) was comparable with sorafenib (20 mg/kg). H&E staining analysis and routine blood test and blood serum biochemistry examination was performed to confirm the safety of compound 4d in xenograft models. The mechanism of action of 4d on tumor growth inhibition was further investigated by RNA-Seq analysis, which indicates a positive regulation of autophagy signaling pathway, which was further confirmed with key biomarker expression of autophagy after 4d treatment. Our results suggest that the bis-isatin conjugate compound 4d is a promising tumor inhibitory agent for some liver cancer.
Collapse
Affiliation(s)
- Zhifen Li
- School of Chemistry and Chemical Engineering, Shanxi Datong University, Xing Yun Street, Pingcheng District, Datong, Shanxi Province 037009, PR China
| | - Jingbo Ma
- Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology) Shenzhen, Guangdong 518020, PR China
| | - Ming Tian
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430072, PR China
| | - Peng Xia
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430072, PR China
| | - Xiannian Lv
- Department of Geriatrics, Fifth People's Hospital of Datong City, Shanxi Province 2669 Wenxing Road North, Pingcheng District, Datong City 037006, Shanxi, PR China
| | - Rui Hou
- Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology) Shenzhen, Guangdong 518020, PR China; Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Nedlands, WA 6009, Australia
| | - Yuke Jiang
- Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology) Shenzhen, Guangdong 518020, PR China
| | - Xiaolong Xu
- Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology) Shenzhen, Guangdong 518020, PR China
| | - Zhifang Jia
- School of Chemistry and Chemical Engineering, Shanxi Datong University, Xing Yun Street, Pingcheng District, Datong, Shanxi Province 037009, PR China
| | - Jigang Wang
- Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology) Shenzhen, Guangdong 518020, PR China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, PR China.
| | - Zhijie Li
- Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology) Shenzhen, Guangdong 518020, PR China.
| |
Collapse
|
16
|
Al-Warhi T, Rashad NM, Almahli H, Abdel-Aziz MM, Elsayed ZM, Shahin MI, Eldehna WM. Design and synthesis of benzo[b]thiophene-based hybrids as novel antitubercular agents against MDR/XDR Mycobacterium tuberculosis. Arch Pharm (Weinheim) 2024; 357:e2300529. [PMID: 37946574 DOI: 10.1002/ardp.202300529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 11/12/2023]
Abstract
In an effort to support the global fight against tuberculosis (TB), which is widely recognized as the most lethal infectious disease worldwide, we present the design and synthesis of new benzo[b]thiophene-based hybrids as promising candidates for the management of multidrug-resistant (MDR)/extensively drug-resistant (XDR) Mycobacterium tuberculosis. The isatin motif was incorporated into the target hybrids as it represents a privileged scaffold in antitubercular drug discovery. Since lipophilicity plays a pivotal role in the anti-TB agents' activity, the lipophilicity of the target hybrids was manipulated via the development of two series of N-1 methyl and N-1 benzyl substituted isatins (6a-h and 9a-h, respectively). Screening of the target hybrids was first performed against drug-sensitive M. tuberculosis (ATCC 25177). The structure-activity relationship outputs highlighted that incorporation of 3-unsubstituted benzo[b]thiophene and 5-methoxy isatin moieties was favorable for the antimycobacterial activity. Thereafter, the most potent molecules (6b-h, 9c-e, and 9h) were evaluated against the resistant strains MDR-TB (ATCC 35822) as well as against XDR-TB (RCMB 2674) where they displayed promising activity. To evaluate the safety of the target hybrids, an sulforhodamine B assay was conducted to determine their possible cytotoxic effects on VERO cells.
Collapse
Affiliation(s)
- Tarfah Al-Warhi
- Department of Chemistry, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Nermeen M Rashad
- Scientific Research and Innovation Support Unit, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Hadia Almahli
- Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Marwa M Abdel-Aziz
- The Regional Center for Mycology and Biotechnology, Al-Azhar University, Cairo, Egypt
| | - Zainab M Elsayed
- Scientific Research and Innovation Support Unit, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Mai I Shahin
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| |
Collapse
|
17
|
Koley M, Han J, Soloshonok VA, Mojumder S, Javahershenas R, Makarem A. Latest developments in coumarin-based anticancer agents: mechanism of action and structure-activity relationship studies. RSC Med Chem 2024; 15:10-54. [PMID: 38283214 PMCID: PMC10809357 DOI: 10.1039/d3md00511a] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 10/20/2023] [Indexed: 01/30/2024] Open
Abstract
Many researchers around the world are working on the development of novel anticancer drugs with different mechanisms of action. In this case, coumarin is a highly promising pharmacophore for the development of novel anticancer drugs. Besides, the hybridization of this moiety with other anticancer pharmacophores has emerged as a potent breakthrough in the treatment of cancer to decrease its side effects and increase its efficiency. This review aims to provide a comprehensive overview of the recent development of coumarin derivatives and their application as novel anticancer drugs. Herein, we highlight and describe the largest number of research works reported in this field from 2015 to August 2023, along with their mechanisms of action and structure-activity relationship studies, making this review different from the other review articles published on this topic to date.
Collapse
Affiliation(s)
- Manankar Koley
- CSIR-Central Glass & Ceramic Research Institute Kolkata India
| | - Jianlin Han
- College of Chemical Engineering, Nanjing Forestry University Nanjing China
| | - Vadim A Soloshonok
- Department of Organic Chemistry I, University of the Basque Country San Sebastián Spain
- IKERBASQUE, Basque Foundation for Science Bilbao Spain
| | | | - Ramin Javahershenas
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University Urmia Iran
| | - Ata Makarem
- Institute of Pharmacy, University of Hamburg Hamburg Germany
| |
Collapse
|
18
|
ElNaggar MH, Elgazar AA, Gamal G, Hamed SM, Elsayed ZM, El-Ashrey MK, Abood A, El Hassab MA, Soliman AM, El-Domany RA, Badria FA, Supuran CT, Eldehna WM. Identification of sulphonamide-tethered N-((triazol-4-yl)methyl)isatin derivatives as inhibitors of SARS-CoV-2 main protease. J Enzyme Inhib Med Chem 2023; 38:2234665. [PMID: 37434404 PMCID: PMC10405867 DOI: 10.1080/14756366.2023.2234665] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/09/2023] [Accepted: 07/03/2023] [Indexed: 07/13/2023] Open
Abstract
SARS-CoV-2 pandemic in the end of 2019 led to profound consequences on global health and economy. Till producing successful vaccination strategies, the healthcare sectors suffered from the lack of effective therapeutic agents that could control the spread of infection. Thus, academia and the pharmaceutical sector prioritise SARS-CoV-2 antiviral drug discovery. Here, we exploited previous reports highlighting the anti-SARS-CoV-2 activities of isatin-based molecules to develop novel triazolo-isatins for inhibiting main protease (Mpro) of the virus, a crucial enzyme for its replication in the host cells. Particularly, sulphonamide 6b showed promising inhibitory activity with an IC50= 0.249 µM. Additionally, 6b inhibited viral cell proliferation with an IC50 of 4.33 µg/ml, and was non-toxic to VERO-E6 cells (CC50 = 564.74 µg/ml) displaying a selectivity index of 130.4. In silico analysis of 6b disclosed its ability to interact with key residues in the enzyme active site, supporting the obtained in vitro findings.
Collapse
Affiliation(s)
- Mai H. ElNaggar
- Department of Pharmacognosy, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Abdullah A. Elgazar
- Department of Pharmacognosy, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Ghada Gamal
- Department of Pharmacognosy, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Shimaa M. Hamed
- Scientific Research and Innovation Support Unit, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Zainab M. Elsayed
- Scientific Research and Innovation Support Unit, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Mohamed K. El-Ashrey
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Amira Abood
- Chemistry of Natural and microbial products, National Research center, Egypt
- Department of Bioscience, University of Kent, Canterbury, UK
| | - Mahmoud A. El Hassab
- Department of Medicinal Chemistry, Faculty of Pharmacy, King Salman International University (KSIU), Egypt
| | - Ahmed M. Soliman
- Department of Microbiology and Immunology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Ramadan A. El-Domany
- Department of Microbiology and Immunology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Farid A. Badria
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Claudiu T. Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Firenze, Italy
| | - Wagdy M. Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
- School of Biotechnology, Badr University in Cairo, Badr City, Egypt
| |
Collapse
|
19
|
Bogdanov AV, Neganova M, Voloshina A, Lyubina A, Amerhanova S, Litvinov IA, Tsivileva O, Akylbekov N, Zhapparbergenov R, Valiullina Z, Samorodov AV, Alabugin I. Anticancer and Antiphytopathogenic Activity of Fluorinated Isatins and Their Water-Soluble Hydrazone Derivatives. Int J Mol Sci 2023; 24:15119. [PMID: 37894799 PMCID: PMC10607100 DOI: 10.3390/ijms242015119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
A series of new fluorinated 1-benzylisatins was synthesized in high yields via a simple one-pot procedure in order to explore the possible effect of ortho-fluoro (3a), chloro (3b), or bis-fluoro (3d) substitution on the biological activity of this pharmacophore. Furthermore, the new isatins could be converted into water-soluble isatin-3-hydrazones using their acid-catalyzed reaction with Girard's reagent P and its dimethyl analog. The cytotoxic action of these substances is associated with the induction of apoptosis caused by mitochondrial membrane dissipation and stimulated reactive oxygen species production in tumor cells. In addition, compounds 3a and 3b exhibit platelet antiaggregation activity at the level of acetylsalicylic acid, and the whole series of fluorine-containing isatins does not adversely affect the hemostasis system as a whole. Among the new water-soluble pyridinium isatin-3-acylhydrazones, compounds 7c and 5c,e exhibit the highest antagonistic effect against phytopathogens of bacterial and fungal origin and can be considered useful leads for combating plant diseases.
Collapse
Affiliation(s)
- Andrei V. Bogdanov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Akad. Arbuzov St. 8, Kazan 420088, Russia; (M.N.); (A.V.); (A.L.); (S.A.); (I.A.L.); (I.A.)
| | - Margarita Neganova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Akad. Arbuzov St. 8, Kazan 420088, Russia; (M.N.); (A.V.); (A.L.); (S.A.); (I.A.L.); (I.A.)
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Severnij Pr. 1, Chernogolovka 142432, Russia
| | - Alexandra Voloshina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Akad. Arbuzov St. 8, Kazan 420088, Russia; (M.N.); (A.V.); (A.L.); (S.A.); (I.A.L.); (I.A.)
| | - Anna Lyubina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Akad. Arbuzov St. 8, Kazan 420088, Russia; (M.N.); (A.V.); (A.L.); (S.A.); (I.A.L.); (I.A.)
| | - Syumbelya Amerhanova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Akad. Arbuzov St. 8, Kazan 420088, Russia; (M.N.); (A.V.); (A.L.); (S.A.); (I.A.L.); (I.A.)
| | - Igor A. Litvinov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Akad. Arbuzov St. 8, Kazan 420088, Russia; (M.N.); (A.V.); (A.L.); (S.A.); (I.A.L.); (I.A.)
| | - Olga Tsivileva
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences, Entuziastov Ave. 13, Saratov 410049, Russia;
| | - Nurgali Akylbekov
- Laboratory of Engineering Profile “Physical and Chemical Methods of Analysis”, Korkyt Ata Kyzylorda University, Aitekebie Str. 29A, Kyzylorda 120014, Kazakhstan;
| | - Rakhmetulla Zhapparbergenov
- Laboratory of Engineering Profile “Physical and Chemical Methods of Analysis”, Korkyt Ata Kyzylorda University, Aitekebie Str. 29A, Kyzylorda 120014, Kazakhstan;
| | - Zulfiia Valiullina
- Department of Pharmacology, Bashkir State Medical University, Lenin St. 8, Ufa 450008, Russia; (Z.V.); (A.V.S.)
| | - Alexandr V. Samorodov
- Department of Pharmacology, Bashkir State Medical University, Lenin St. 8, Ufa 450008, Russia; (Z.V.); (A.V.S.)
| | - Igor Alabugin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Akad. Arbuzov St. 8, Kazan 420088, Russia; (M.N.); (A.V.); (A.L.); (S.A.); (I.A.L.); (I.A.)
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, FL 32306-4390, USA
| |
Collapse
|
20
|
Riyahi Z, Asadi P, Hassanzadeh F, Khodamoradi E, Gonzalez A, Karimi Abdolmaleki M. Synthesis of novel conjugated benzofuran-triazine derivatives: Antimicrobial and in-silico molecular docking studies. Heliyon 2023; 9:e18759. [PMID: 37576200 PMCID: PMC10412834 DOI: 10.1016/j.heliyon.2023.e18759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/15/2023] Open
Abstract
Two new developments of antibacterial agents, a series of benzofuran-triazine based compounds (8a-8h) were designed and synthesized. The derivatives were prepared through conventional chemical reactions and structurally characterized with FT-IR, 1H and 13C NMR techniques. The antibacterial activity of the synthesized derivatives was assessed against gram-positive bacterial strains (Bacillus subtilis, and Staphylococcus aureus) and gram-negative bacterial strains (Salmonella entritidis and Escherichia coli). Compound 8e, with the MIC value of 125-32 μg/μl against all the examined strains of bacteria, was the most active antibacterial compound. The synthesized derivatives were also studied for docking to the binding sites of dihydrofolate reductase (DHFR) receptor which has a key role in drug resistance associated with bacterial infections. The synthesized compounds showed good interaction with the targets through hydrogen bonding and hydrophobic interactions. According to antibacterial and docking studies, compound 8e could be introduced as a candidate for development of antibacterial compounds.
Collapse
Affiliation(s)
- Zahra Riyahi
- Department of Chemistry, Shahreza Branch, Islamic Azad University, P.O. Box 311-86145, Shahreza, Isfahan, Iran
| | - Parvin Asadi
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, 81746-73461, Iran
- Isfahan Pharmaceutical Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Farshid Hassanzadeh
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, 81746-73461, Iran
| | - Elahe Khodamoradi
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Alexa Gonzalez
- Department of Nursing, Texas A&M International University, Laredo, TX 78041, USA
| | - Mahmood Karimi Abdolmaleki
- Department of Physical and Environmental Sciences, Texas A&M University-Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA
| |
Collapse
|
21
|
Dotsenko VV, Jassim NT, Temerdashev AZ, Abdul-Hussein ZR, Aksenov NA, Aksenova IV. New 6′-Amino-5′-cyano-2-oxo-1,2-dihydro-1′H-spiro[indole-3,4′-pyridine]-3′-carboxamides: Synthesis, Reactions, Molecular Docking Studies and Biological Activity. Molecules 2023; 28:molecules28073161. [PMID: 37049923 PMCID: PMC10096136 DOI: 10.3390/molecules28073161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/31/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
The purpose of this work was to prepare new isatin- and monothiomalondiamide-based indole derivatives, as well as to study the properties of the new compounds. The four-component reaction of 5-R-isatins (R = H, CH3), malononitrile, monothiomalonamide (3-amino-3-thioxo- propanamide) and triethylamine in hot EtOH yields a mixture of isomeric triethylammonium 6′-amino-3′-(aminocarbonyl)-5′-cyano-2-oxo-1,2-dihydro-1′H- and 6′-amino-3′-(aminocarbonyl)- 5′-cyano-2-oxo-1,2-dihydro-3′H-spiro[indole-3,4′-pyridine]-2′-thiolates. The reactivity and structure of the products was studied. We found that oxidation of spiro[indole-3,4′-pyridine]-2′-thiolates with DMSO-HCl system produced only acidification products, diastereomeric 6′-amino-5′-cyano-5-methyl-2-oxo-2′-thioxo-1,2,2′,3′-tetrahydro-1′H-spiro-[indole-3,4′-pyridine]- 3′-carboxamides, instead of the expected isothiazolopyridines. The alkylation of the prepared spiro[indole-3,4′-pyridine]-2′-thiolates upon treatment with N-aryl α-chloroacetamides and α-bromoacetophenones proceeds in a regioselective way at the sulfur atom. In the case of α-bromoacetophenones, ring-chain tautomerism was observed for the S-alkylation products. According to NMR data, the compounds consist of a mixture of stereoisomers of 2′-amino-6′-[(2-aryl-2-oxoethyl)thio]-3′-cyano-2-oxo-1′H-spiro[indoline-3,4′-pyridine]-5′-carboxamides and 5′-amino-3′-aryl-6′-cyano-3′-hydroxy-2-oxo-2′,3′-dihydrospiro[indoline-3,7′-thiazolo[3,2-a]pyridine]-8′-carboxamides in various ratios. The structure of the synthesized compounds was confirmed by IR spectroscopy, HRMS, 1H and 13C DEPTQ NMR studies and the results of 2D NMR experiments (1H-13C HSQC, 1H-13C HMBC). Molecular docking studies were performed to investigate suitable binding modes of some new compounds with respect to the transcriptional regulator protein PqsR of Pseudomonas aeruginosa. The docking studies revealed that the compounds have affinity for the bacterial regulator protein PqsR of Pseudomonas aeruginosa with a binding energy in the range of −5.8 to −8.2 kcal/mol. In addition, one of the new compounds, 2′-amino-3′-cyano-5-methyl-2-oxo-6′-{[2-oxo-2-(p-tolylamino)ethyl]thio}-1′H-spiro-[indoline-3,4′-pyridine]-5′-carboxamide, showed in vitro moderate antibacterial effect against Pseudomonas aeruginosa and good antioxidant properties in a test with 1,1-diphenyl-2-picrylhydrazyl radical. Finally, three of the new compounds were recognized as moderately active herbicide safeners with respect to herbicide 2,4-D in the laboratory experiments on sunflower seedlings.
Collapse
Affiliation(s)
- Victor V. Dotsenko
- Department of Organic Chemistry and Technologies, Kuban State University, 149 Stavropolskaya St., 350040 Krasnodar, Russia
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., 355017 Stavropol, Russia
| | - Nawras T. Jassim
- Department of Organic Chemistry and Technologies, Kuban State University, 149 Stavropolskaya St., 350040 Krasnodar, Russia
| | - Azamat Z. Temerdashev
- Department of Analytical Chemistry, Kuban State University, 149 Stavropolskaya St., 350040 Krasnodar, Russia
| | - Zainab R. Abdul-Hussein
- Department of Pathological Analyses, College of Science, University of Basra, P.O. Box 49, Basrah 61004, Iraq
| | - Nicolai A. Aksenov
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., 355017 Stavropol, Russia
| | - Inna V. Aksenova
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., 355017 Stavropol, Russia
| |
Collapse
|
22
|
Shreedhar Reddy T, Rai S, Kumar Koppula S. One‐Pot Synthesis of Isatin‐Pyrazole Hybrids as VEGFR‐2 Inhibitors and Molecular Docking Studies. ChemistrySelect 2023. [DOI: 10.1002/slct.202204327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- T. Shreedhar Reddy
- Department of Chemistry GITAM Deemed to be University, Hyderabad campus, Rudraram, Sangareddy Hyderabad 502329 Telangana India
- Medicinal Chemistry Division Aragen Life Sciences Pvt. Ltd., IDA Nachram Hyderabad 500076 India
| | - Sanjay Rai
- Medicinal Chemistry Division Aragen Life Sciences Pvt. Ltd., IDA Nachram Hyderabad 500076 India
| | - Shiva Kumar Koppula
- Department of Chemistry GITAM Deemed to be University, Hyderabad campus, Rudraram, Sangareddy Hyderabad 502329 Telangana India
| |
Collapse
|
23
|
A Computational Study of the Immobilization of New 5-Nitroisatine Derivatives with the Use of C60-Based Functionalized Nanocarriers. Symmetry (Basel) 2023. [DOI: 10.3390/sym15010226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Isatin-based compounds are a large group of drugs used as competitive inhibitors of ATP. The 5-nitroisatin derivatives studied in this work are inhibitors of the CDK2 enzyme, which can be used in the development of new anti-cancer therapies. One of the basic activities that often allows for an increase in biological activity while reducing the undesirable effects associated with the toxicity of medicinal substances is immobilization based on carriers. In this work, fifty nanocarriers derived from C60 fullerene, containing a bound phenyl ring on their surfaces, were used in the process of the immobilization of isatin derivatives. Based on flexible docking methods, the binding capacities of the drugs under consideration were determined using a wide range of nanocarriers containing symmetric and asymmetric modifications of the phenyl ring, providing various types of interactions. Based on the data collected for each of the tested drugs, including the binding affinity and the structure and stability of complexes, the best candidates were selected in terms of the type of substituent that modified the nanoparticle and its location. Among the systems with the highest affinity are the dominant complexes created by functionalized fullerenes containing substituents with a symmetrical location, such as R2-R6 and R3-R5. Based on the collected data, nanocarriers with a high potential for immobilization and use in the development of targeted therapies were selected for each of the tested drugs.
Collapse
|
24
|
Kannekanti PK, Nukala SK, Bangaru M, Sirassu N, Manchal R, Thirukovela NS. Synthesis of Amide Derivatives as Tubulin Polymerization Inhibiting Antiproliferative Agents. ChemistrySelect 2023. [DOI: 10.1002/slct.202204010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Praveen kumar Kannekanti
- Department of Chemistry Chaitanya Deemed to be University Hanumakonda 506 001 Warangal, Telangana India
| | - Satheesh Kumar Nukala
- Department of Chemistry Chaitanya Deemed to be University Hanumakonda 506 001 Warangal, Telangana India
| | - Mallikarjuna Bangaru
- Department of Chemistry Chaitanya Deemed to be University Hanumakonda 506 001 Warangal, Telangana India
| | - Narsimha Sirassu
- Department of Chemistry Chaitanya Deemed to be University Hanumakonda 506 001 Warangal, Telangana India
| | - Ravinder Manchal
- Department of Chemistry Chaitanya Deemed to be University Hanumakonda 506 001 Warangal, Telangana India
| | | |
Collapse
|
25
|
Kumar V, Lal K, Kumar A, Tittal RK, Singh MB, Singh P. Efficient synthesis, antimicrobial and molecular modelling studies of 3-sulfenylated oxindole linked 1,2,3-triazole hybrids. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04933-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
26
|
Abdelrahman MA, Almahli H, Al-Warhi T, Majrashi TA, Abdel-Aziz MM, Eldehna WM, Said MA. Development of Novel Isatin-Tethered Quinolines as Anti-Tubercular Agents against Multi and Extensively Drug-Resistant Mycobacterium tuberculosis. Molecules 2022; 27:molecules27248807. [PMID: 36557937 PMCID: PMC9781264 DOI: 10.3390/molecules27248807] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
We describe the design and synthesis of two isatin-tethered quinolines series (Q6a-h and Q8a-h), in connection with our research interest in developing novel isatin-bearing anti-tubercular candidates. In a previous study, a series of small molecules bearing a quinoline-3-carbohydrazone moiety was developed as anti-tubercular agents, and compound IV disclosed the highest potency with MIC value equal to 6.24 µg/mL. In the current work, we adopted the bioisosteric replacement approach to replace the 3,4,5-trimethoxy-benzylidene moiety in the lead compound IV with the isatin motif, a privileged scaffold in the TB drug discovery, to furnish the first series of target molecules Q6a-h. Thereafter, the isatin motif was N-substituted with either a methyl or benzyl group to furnish the second series Q8a-h. All of the designed quinoilne-isatin conjugates Q6a-h and Q8a-h were synthesized and then biologically assessed for anti-tubercular actions towards drug-susceptible, MDR, and XDR strains. Superiorly, the N-benzyl-bearing compound Q8b possessed the best activities against the examined M. tuberculosis strains with MICs equal 0.06, 0.24, and 1.95 µg/mL, respectively.
Collapse
Affiliation(s)
- Mohamed A. Abdelrahman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City 11829, Egypt
- Correspondence: (M.A.A.); (W.M.E.)
| | - Hadia Almahli
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Tarfah Al-Warhi
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Taghreed A. Majrashi
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 61441, Saudi Arabia
| | - Marwa M. Abdel-Aziz
- The Regional Center for Mycology and Biotechnology, Al-Azhar University, Cairo 11651, Egypt
| | - Wagdy M. Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
- School of Biotechnology, Badr University in Cairo, Cairo 11829, Egypt
- Correspondence: (M.A.A.); (W.M.E.)
| | - Mohamed A. Said
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City 11829, Egypt
| |
Collapse
|
27
|
Synthesis of indole-tetrazole coupled aromatic amides; In vitro anticancer activity, in vitro tubulin polymerization inhibition assay and in silico studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
28
|
El-Qaliei MI, Mousa SA, Mahross M, Hassane A, Gad-Elkareem MA, Anouar EH, Snoussi M, Aouadi K, Kadri A. Novel (2-Oxoindolin-3-ylidene)methyl)-1H-pyrazole and their fused derivatives: Design, synthesis, antimicrobial evaluation, DFT, chemical approach, in silico ADME and molecular docking studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
29
|
DPPH and Nitric Oxide Free Radical Scavenging Potential of Phenyl Quinoline Derivatives and Their Transition Metal Complexes. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
30
|
Shirvani P, Fayyazi N, Van Belle S, Debyser Z, Christ F, Saghaie L, Fassihi A. Design, synthesis, in silico studies, and antiproliferative evaluations of novel indolin-2-one derivatives containing 3-hydroxy-4-pyridinone fragment. Bioorg Med Chem Lett 2022; 70:128784. [PMID: 35569690 DOI: 10.1016/j.bmcl.2022.128784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 04/30/2022] [Accepted: 05/09/2022] [Indexed: 11/25/2022]
Abstract
Keeping in view the pharmacological properties of indolinones as promising scaffold as kinase inhibitors, herein, a novel series of 3-hydrazonoindolin-2-one derivatives bearing 3-hydroxy-4-pyridinone moiety were synthesized, studied by molecular docking, and fully characterized by spectroscopic techniques. All the prepared compounds were evaluated for their cytotoxicity attributes against a panel of tumor cell lines, including non-small cell lung cancer (A549), breast carcinoma (MCF-7), acute myeloid leukemia (AML), and chronic myeloid leukemia (CML). They displayed moderate to promising antiproliferative effects toward A549 and MCF-7 cells but remarkable results against AML and CML. Especially, compound 10k was found to be more potent against AML (EC50 = 0.69 μM) compare to the other halogen-substituted derivatives. FMS-like tyrosine kinase 3 (FLT3) is known to be expressed in AML cancer cells. The molecular docking studies demonstrated that our prepared compounds were potentially bound to AML active site through essential H-bond and other vital interactions with critical binding residues.
Collapse
Affiliation(s)
- Pouria Shirvani
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Science, Hezar Jerib, 817416-73461, Isfahan, Iran
| | - Neda Fayyazi
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Science, Hezar Jerib, 817416-73461, Isfahan, Iran; Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Siska Van Belle
- Department of Pharmacological and Pharmaceutical Sciences, Laboratory of Molecular Virology and Gene Therapy, KU Leuven, Belgium
| | - Zeger Debyser
- Department of Pharmacological and Pharmaceutical Sciences, Laboratory of Molecular Virology and Gene Therapy, KU Leuven, Belgium
| | - Frauke Christ
- Department of Pharmacological and Pharmaceutical Sciences, Laboratory of Molecular Virology and Gene Therapy, KU Leuven, Belgium
| | - Lotfollah Saghaie
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Science, Hezar Jerib, 817416-73461, Isfahan, Iran
| | - Afshin Fassihi
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Science, Hezar Jerib, 817416-73461, Isfahan, Iran.
| |
Collapse
|
31
|
Veeranna D, Ramdas L, Ravi G, Bujji S, Thumma V, Ramchander J. Synthesis of 1,2,3‐Triazole Tethered Indole Derivatives: Evaluation of Anticancer Activity and Molecular Docking Studies. ChemistrySelect 2022. [DOI: 10.1002/slct.202201758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Dharmasothu Veeranna
- Dharmasothu Veeranna, Department of Chemistry University College of Science, Osmania University Hyderabad, Telangana 500007 India
| | - Lakavath Ramdas
- Dharmasothu Veeranna, Department of Chemistry University College of Science, Osmania University Hyderabad, Telangana 500007 India
| | - Guguloth Ravi
- Dharmasothu Veeranna, Department of Chemistry University College of Science, Osmania University Hyderabad, Telangana 500007 India
| | - Sushmitha Bujji
- Department of Pharmacy University College of Technology Osmania University Hyderabad, Telangana 500007 India
| | - Vishnu Thumma
- Department of Sciences and Humanities Matrusri Engineering College, Saidabad Hyderabad 500059 India
| | - Jadav Ramchander
- Dharmasothu Veeranna, Department of Chemistry University College of Science, Osmania University Hyderabad, Telangana 500007 India
| |
Collapse
|
32
|
Valderrama Negrón AC, Ramirez Panti RI, Aliaga Paucar CM, Grandez Arias F, Sheen Cortovaria P, Zimic Peralta MJ, Cauna Orocollo Y. Pyrazinamide–isoniazid hybrid: synthesis optimisation, characterisation, and antituberculous activity. REVISTA COLOMBIANA DE QUÍMICA 2022. [DOI: 10.15446/rev.colomb.quim.v50n3.96424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Over time, the effective resistance mechanisms to various first- and second-line drugs against the disease of tuberculosis make its treatment extremely difficult. This work presents a new approach to synthesizing a hybrid of antituberculosis medications: isoniazid (INH) and pyrazinamide (PZA). The synthesis was performed using ultrasound-assisted synthesis to obtain an overall yield of 70%, minimizing the reaction time from 7 to 1 h. The evaluation of the biological activity of the hybrid (compound 2) was tested using the tetrazolium microplate assay (TEMA), showing inhibition in the growth of Mycobacterium tuberculosis H37Rv at a concentration of 0.025 mM at pH 6.0 and 6.7.
Collapse
|
33
|
Insighting isatin derivatives as potential antiviral agents against NSP3 of COVID-19. CHEMICAL PAPERS 2022; 76:6271-6285. [PMID: 35757111 PMCID: PMC9216297 DOI: 10.1007/s11696-022-02298-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 05/23/2022] [Indexed: 12/18/2022]
Abstract
The world is now facing intolerable damage in all sectors of life because of the deadly COVID-19 pandemic caused by the severe acute respiratory syndrome coronavirus 2. The discovery and development of anti-SARS-CoV-2 drugs have become pragmatic in the time needed to fight against this pandemic. The non-structural protein 3 is essential for the replication of transcriptase complex (RTC) and may be regarded as a possible target against SARS-CoV-2. Here, we have used a comprehensive in silico technique to find potent drug molecules against the NSP3 receptor of SARS-CoV-2. Virtual screening of 150 Isatin derivatives taken from PubChem was performed based on their binding affinity estimated by docking simulations, resulting in the selection of 46 ligands having binding energy greater than -7.1 kcal/mol. Moreover, the molecular interactions of the nine best-docked ligands having a binding energy of ≥ -8.5 kcal/mol were analyzed. The molecular interactions showed that the three ligands (S5, S16, and S42) were stabilized by forming hydrogen bonds and other significant interactions. Molecular dynamic simulations were performed to mimic an in vitro protein-like aqueous environment and to check the stability of the best three ligands and NSP3 complexes in an aqueous environment. The binding energy of the S5, S16, and S42 systems obtained from the molecular mechanics Poisson-Boltzmann surface area also favor the system's stability. The MD and MM/PBSA results explore that S5, S16, and S42 are more stable and can be considered more potent drug candidates against COVID-19 disease. Supplementary Information The online version contains supplementary material available at 10.1007/s11696-022-02298-7.
Collapse
|
34
|
Li FF, Zhao WH, Tangadanchu VKR, Meng JP, Zhou CH. Discovery of novel phenylhydrazone-based oxindole-thiolazoles as potent antibacterial agents toward Pseudomonas aeruginosa. Eur J Med Chem 2022; 239:114521. [PMID: 35716514 DOI: 10.1016/j.ejmech.2022.114521] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/01/2022] [Accepted: 06/04/2022] [Indexed: 11/24/2022]
Abstract
With the soaring of bacterial infection and drug resistance, it is imperative to exploit new efficient antibacterial agents. This work constructed a series of unique phenylhydrazone-based oxindole-thiolazoles to combat monstrous bacterial resistance. Some target molecules showed potent antibacterial activity, among which oxindole-thiolimidazole derived carboxyphenylhydrazone 4e exhibited an 8-fold stronger inhibitory ability than norfloxacin on the growth of P. aeruginosa, with MIC value of 1 μg/mL. Compound 4e with imperceptible hemolysis could hamper bacterial biofilm formation and significantly impede the development of bacterial resistance. Subsequent mechanism studies demonstrated that 4e could destruct bacterial cytoplasmic membrane, causing the leakage of cellular contents (protein and nucleic acid). Moreover, metabolic stagnation and intracellular oxidative stress caused by 4e expedited the death of bacteria. Furthermore, molecule 4e existed supramolecular interactions with DNA to block DNA proliferation. These research results provided a promising light for phenylhydrazone-based oxindole-thiolazoles as novel potential antibacterial agents.
Collapse
Affiliation(s)
- Fen-Fen Li
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Wen-Hao Zhao
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Vijai Kumar Reddy Tangadanchu
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Jiang-Ping Meng
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators As Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing, 402160, China.
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
35
|
Mohamed GG, Ali SA, Abd El‐Halim HF. Antimicrobial and Bioinformatic Modelling Studies of Isatin Mixed Ligand and Some Ternary Chelates. ChemistrySelect 2022. [DOI: 10.1002/slct.202200602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Gehad G. Mohamed
- Chemistry Department Faculty of Science Cairo University Giza l26l3 Egypt
- Nanoscience Department Basic and Applied Sciences Institute Egypt-Japan University of Science and Technology New Borg El Arab Alexandria 21934 Egypt
| | - Samir A. Ali
- Chemistry Department Faculty of Science Cairo University Giza l26l3 Egypt
| | - Hanan F. Abd El‐Halim
- Pharmaceutical Chemistry Department Faculty of Pharmacy Misr International University Cairo Egypt
| |
Collapse
|
36
|
Kumar S, Nair AS, Abdelgawad MA, Mathew B. Exploration of the Detailed Structure-Activity Relationships of Isatin and Their Isomers As Monoamine Oxidase Inhibitors. ACS OMEGA 2022; 7:16244-16259. [PMID: 35601305 PMCID: PMC9118264 DOI: 10.1021/acsomega.2c01470] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/19/2022] [Indexed: 05/14/2023]
Abstract
Monoamine oxidase (MAO) is a protein with a key function in the catabolism of neuroamines in both central and peripheral parts of the body. MAO-A and -B are two isozymes of this enzyme which have emerged to be considered as a drug target for the treatment of neurodenerative disorders such as Alzheimer's disease (AD) and Parkinson's disease (PD). Isatin is an endogenous small fragment, reversible inhibitor for MAO enzymes and is more selective for MAO-B than -A. Isatin is responsible for increasing the dopamine level in the brain by the inhibition of an MAO enzyme. The very few selective and reversible inhibitors existing for MAO proteins and the intensity of neurological diseases in humanity have opened a new door for researchers. Isatin has a polypharmacological profile in medicinal chemistry, is a reversible inhibitor for both the MAOs, and shows high selectivity potent inhibition for MAO-B. In this review, we discuss isatins and their analogues phthalide and phthalimide with structure-activity relationships (SARs), and this comprehensive information accelerates the ideas for design and development of a new class of MAO inhibitors for neurodegenerative diseases.
Collapse
Affiliation(s)
- Sunil Kumar
- Department
of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa
Vidyapeetham, AIMS Health Sciences Campus, Kochi 682 041, India
| | - Aathira Sujathan Nair
- Department
of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa
Vidyapeetham, AIMS Health Sciences Campus, Kochi 682 041, India
| | - Mohamed A. Abdelgawad
- Department
of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Al Jouf 72341, Saudi Arabia
| | - Bijo Mathew
- Department
of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa
Vidyapeetham, AIMS Health Sciences Campus, Kochi 682 041, India
| |
Collapse
|
37
|
Tan Z, Zhu S, Liu Y, Feng X. Photoinduced Chemo‐, Site‐ and Stereoselective α‐C(sp
3
)−H Functionalization of Sulfides. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Zhenda Tan
- Key Laboratory of Chemical Genomics School of Chemical Biology and Biotechnology Peking University Shenzhen Graduate School Shenzhen 518055 China
- Institute of Chemical Biology Shenzhen Bay Laboratory Shenzhen 518132 China
| | - Shibo Zhu
- Institute of Chemical Biology Shenzhen Bay Laboratory Shenzhen 518132 China
| | - Yangbin Liu
- Institute of Chemical Biology Shenzhen Bay Laboratory Shenzhen 518132 China
| | - Xiaoming Feng
- Institute of Chemical Biology Shenzhen Bay Laboratory Shenzhen 518132 China
- Key Laboratory of Green Chemistry & Technology Ministry of Education College of Chemistry Sichuan University Chengdu 610064 China
| |
Collapse
|
38
|
Novel metronidazole-derived three-component hybrids as promising broad-spectrum agents to combat oppressive bacterial resistance. Bioorg Chem 2022; 122:105718. [DOI: 10.1016/j.bioorg.2022.105718] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/21/2022] [Accepted: 03/01/2022] [Indexed: 12/11/2022]
|
39
|
Tan Z, Zhu S, Liu Y, Feng X. Photoinduced Chemo-, Site- and Stereoselective α-C(sp 3 )-H Functionalization of Sulfides. Angew Chem Int Ed Engl 2022; 61:e202203374. [PMID: 35445505 DOI: 10.1002/anie.202203374] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Indexed: 11/06/2022]
Abstract
The ubiquity of sulfur-containing molecules in biologically active natural products and pharmaceuticals has long attracted synthetic chemists to develop efficient strategies towards their synthesis. The strategy of direct α-C(sp3 )-H modification of sulfides provides a streamlining access to complex sulfur-containing molecules. Herein, we report a photoinduced chemo-, site- and stereoselective α-C(sp3 )-H functionalization of sulfides using isatins as the photoredox reagent and coupling partner catalyzed by a chiral gallium(III)-N,N'-dioxide complex. The reaction proceeds through a verified single-electron transfer (SET) mechanism with high efficiency, excellent functional group tolerance, as well as a broad substrate scope. Importantly, this cross-coupling protocol is highly selective for the direct late-stage functionalization of methionine-related peptides, regardless of the inherent structural similarity and complexity of diverse residues.
Collapse
Affiliation(s)
- Zhenda Tan
- Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University, Shenzhen Graduate School, Shenzhen, 518055, China.,Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Shibo Zhu
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Yangbin Liu
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Xiaoming Feng
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, 518132, China.,Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
40
|
Dadlani VG, Chhabhaiya H, Somani RR, Tripathi PK. Synthesis, molecular docking, and biological evaluation of novel 1,2,4-triazole-isatin derivatives as potential Mycobacterium tuberculosis shikimate kinase inhibitors. Chem Biol Drug Des 2022; 100:230-244. [PMID: 35434882 DOI: 10.1111/cbdd.14060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/20/2022] [Accepted: 04/10/2022] [Indexed: 11/30/2022]
Abstract
The issue of emerging resistance to antitubercular drugs has created a formidable barrier in the effective prevention and cure of tuberculosis globally. In an effort to search for new antimycobacterial agents, possibly comprising new pharmacophore, novel triazole-isatin derivatives were designed as Mycobacterium tuberculosis shikimate kinase inhibitors and synthesized by microwave-assisted method. The synthesized molecules were evaluated for their antimycobacterial activity by MABA assay against M. tuberculosis H37Rv. The molecule 5h demonstrated MIC of 0.8 μg/ml and good safety profile with higher selectivity index with HEK293 cell line. The antimycobacterial activity was further substantiated with molecular docking studies. The triazole-isatin derivatives showed significant binding interactions with amino acid residues in the active site of the enzyme. These studies revealed that molecule 5h could act as a potential lead molecule for further studies to find new target-directed molecules.
Collapse
Affiliation(s)
- Vedika G Dadlani
- Department of Pharmaceutical Chemistry, Dr. L. H. Hiranandani College of Pharmacy, Ulhasnagar, India
| | - Heta Chhabhaiya
- Department of Pharmaceutical Chemistry, Dr. L. H. Hiranandani College of Pharmacy, Ulhasnagar, India
| | - Rakesh R Somani
- Department of Pharmaceutical Chemistry, D Y Patil University School of Pharmacy, Navi Mumbai, India
| | | |
Collapse
|
41
|
Ragab A, Ammar YA, Ezzat A, Mahmoud AM, Mohamed MBI, El-Tabl AS, Farag RS. Synthesis, characterization, thermal properties, antimicrobial evaluation, ADMET study, and molecular docking simulation of new mono Cu (II) and Zn (II) complexes with 2-oxoindole derivatives. Comput Biol Med 2022; 145:105473. [PMID: 35395516 DOI: 10.1016/j.compbiomed.2022.105473] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/10/2022] [Accepted: 03/29/2022] [Indexed: 12/14/2022]
Abstract
One of the interesting research fields is developing and assessing novel metal-containing medications. A new isatin-3-thiosemicarbazone derivative 4 was synthesized by two different methods based on hydrazone derivatives 2 and 3. Additionally, the chelation of thiosemicarbazone with copper (II) and zinc (II) forms a monobasic tridentate (ONS) complex with two five-member rings and a tetrahedral geometry structure. The structure of synthesized complexes was characterized using elemental analysis, FT-IR, mass spectra, and 1H/13C NMR. Thermogravimetric analysis revealed the upgrading of the thermal stability of metal complexes compared to their thiosemicarbazone ligand. The stoichiometric ratio of the coordination confirmed the formation of 1:1 (M: L) stoichiometry. In vitro antimicrobial activity was screened against two gram-positive, two gram-negative, and one fungal strain. Both ligand 4 and Zn complex 6 displayed high antimicrobial activity compared with copper complex 5 based on the zone of inhibition. Further, MIC and MBC were determined for both zinc and ligand. The zinc complex 6 displayed excellent antimicrobial activity with (MIC = 3.9-27.77 μg/mL) against bacterial strains and (MIC = 7.81 μg/mL) against C. albicans, as well as exhibited MBC values ranging between (MBC = 6.51-45.58 μg/mL) and (MFC = 13.58 μg/mL), respectively, and demonstrated bactericidal and fungicidal behavior. The in-silico ADMET study for ligand and two complexes were determined and showed non-AMES toxicity, non-carcinogenic, and obey the rule of five. A comparative docking study provided more insight into the binding mechanisms and suggested that antimicrobial activity may be due to inhibition of different targets.
Collapse
Affiliation(s)
- Ahmed Ragab
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City, Cairo, 11884, Egypt.
| | - Yousry A Ammar
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - Ahmed Ezzat
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - Ammar M Mahmoud
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - Mahmoud Basseem I Mohamed
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - Abdou S El-Tabl
- Department of Chemistry, Faculty of Science, El-Menoufia University, Shebin El-Kom, Egypt
| | - Rabie S Farag
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| |
Collapse
|
42
|
Synthesis of some novel isatin-thiazole conjugates and their computational and biological studies. Struct Chem 2022. [DOI: 10.1007/s11224-022-01892-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
43
|
Wong LW, Goh CBS, Tan JBL. A Systemic Review for Ethnopharmacological Studies on Isatis indigotica Fortune: Bioactive Compounds and their Therapeutic Insights. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2022; 50:161-207. [PMID: 35139772 DOI: 10.1142/s0192415x22500069] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Isatis indigotica Fortune is a biennial Chinese woad of the Cruciferae family. It is primarily cultivated in China, where it was a staple in indigo dye manufacture till the end of the 17th century. Today, I. indigotica is used primarily as a therapeutic herb in traditional Chinese medicine (TCM). The medicinal use of the plant is separated into its leaves (Da-Qing-Ye) and roots (Ban-Lan-Gen), whereas its aerial components can be processed into a dried bluish-spruce powder (Qing-Dai), following dehydration for long-term preservation. Over the past several decades, I. indigotica has been generally utilized for its heat-clearing effects and bodily detoxification in TCM, attributed to the presence of several classes of bioactive compounds, including organic acids, alkaloids, terpenoids, and flavonoids, as well as lignans, anthraquinones, glucosides, glucosinolates, sphingolipids, tetrapyrroles, and polysaccharides. This paper aims to delineate I. indigotica from its closely-related species (Isatis tinctoria and Isatis glauca) while highlighting the ethnomedicinal uses of I. indigotica from the perspectives of modern and traditional medicine. A systematic search of PubMed, Embase, PMC, Web of Science, and Google Scholar databases was done for articles on all aspects of the plant, emphasizing those analyzing the bioactivity of constituents of the plant. The various key bioactive compounds of I. indigotica that have been found to exhibit anti-inflammatory, antimicrobial, anticancer, and anti-allergic properties, along with the protective effects against neuronal injury and bone fracture, will be discussed. Collectively, the review hopes to draw attention to the therapeutic potential of I. indigotica not only as a TCM, but also as a potential source of bioactive compounds for disease management and treatment.
Collapse
Affiliation(s)
- Li Wen Wong
- School of Science, Tropical Medicine and Biology Multidisciplinary Platform, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya, 47500 Selangor, Malaysia
| | - Calvin Bok Sun Goh
- School of Science, Tropical Medicine and Biology Multidisciplinary Platform, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya, 47500 Selangor, Malaysia
| | - Joash Ban Lee Tan
- School of Science, Tropical Medicine and Biology Multidisciplinary Platform, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya, 47500 Selangor, Malaysia
| |
Collapse
|
44
|
Cheke RS, Patil VM, Firke SD, Ambhore JP, Ansari IA, Patel HM, Shinde SD, Pasupuleti VR, Hassan MI, Adnan M, Kadri A, Snoussi M. Therapeutic Outcomes of Isatin and Its Derivatives against Multiple Diseases: Recent Developments in Drug Discovery. Pharmaceuticals (Basel) 2022; 15:ph15030272. [PMID: 35337070 PMCID: PMC8950263 DOI: 10.3390/ph15030272] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/29/2022] [Accepted: 01/30/2022] [Indexed: 12/22/2022] Open
Abstract
Isatin (1H indole 2, 3-dione) is a heterocyclic, endogenous lead molecule recognized in humans and different plants. The isatin nucleus and its derivatives are owed the attention of researchers due to their diverse pharmacological activities such as anticancer, anti-TB, antifungal, antimicrobial, antioxidant, anti-inflammatory, anticonvulsant, anti-HIV, and so on. Many research chemists take advantage of the gentle structure of isatins, such as NH at position 1 and carbonyl functions at positions 2 and 3, for designing biologically active analogues via different approaches. Literature surveys based on reported preclinical, clinical, and patented details confirm the multitarget profile of isatin analogues and thus their importance in the field of medicinal chemistry as a potent chemotherapeutic agent. This review represents the recent development of isatin analogues possessing potential pharmacological action in the years 2016–2020. The structure–activity relationship is also discussed to provide a pharmacophoric pattern that may contribute in the future to the design and synthesis of potent and less toxic therapeutics.
Collapse
Affiliation(s)
- Rameshwar S. Cheke
- Department of Pharmaceutical Chemistry, Dr. Rajendra Gode College of Pharmacy, Malkapur 443101, Maharashtra, India;
- Correspondence: (R.S.C.); (V.R.P.)
| | - Vaishali M. Patil
- Department of Pharmaceutical Chemistry, KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad 201206, Uttar Pradesh, India;
| | - Sandip D. Firke
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur 425405, Maharashtra, India; (S.D.F.); (I.A.A.); (H.M.P.)
| | - Jaya P. Ambhore
- Department of Pharmaceutical Chemistry, Dr. Rajendra Gode College of Pharmacy, Malkapur 443101, Maharashtra, India;
| | - Iqrar A. Ansari
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur 425405, Maharashtra, India; (S.D.F.); (I.A.A.); (H.M.P.)
| | - Harun M. Patel
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur 425405, Maharashtra, India; (S.D.F.); (I.A.A.); (H.M.P.)
| | - Sachin D. Shinde
- Department of Pharmacology, Shri. R. D. Bhakt College of Pharmacy, Jalna 431213, Maharashtra, India;
| | - Visweswara Rao Pasupuleti
- Department of Biomedical Sciences and Therapeutics, Faculty of Medicine & Health Sciences, University Malaysia Sabah, Kota Kinabalu 44800, Sabah, Malaysia
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Abdurrab University, Pekanbaru 28291, Riau, Indonesia
- Centre for International Collaboration and Research, Reva University, Rukmini Knowledge Park, Kattigenahalli, Yelahanka, Bangalore 560064, Karnataka, India
- Correspondence: (R.S.C.); (V.R.P.)
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India;
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Ha′il 2440, Saudi Arabia; (M.A.); (M.S.)
| | - Adel Kadri
- Faculty of Science of Sfax, Department of Chemistry, University of Sfax, B.P. 1171, Sfax 3000, Tunisia;
- Faculty of Science and Arts in Baljurashi, Albaha University, P.O. Box 1988, Albaha 65527, Saudi Arabia
| | - Mejdi Snoussi
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Ha′il 2440, Saudi Arabia; (M.A.); (M.S.)
- Laboratory of Genetics, Biodiversity and Valorization of Bio-Resources (LR11ES41), University of Monastir, Higher Institute of Biotechnology of Monastir, Avenue Tahar Haddad, BP74, Monastir 5000, Tunisia
| |
Collapse
|
45
|
NOVEL FERROCENYLBISPHOSPHONATE HYBRID COMPOUNDS: SYNTHESIS, CHARACTERIZATION AND POTENT ACTIVITY AGAINST CANCER CELL LINES. Bioorg Med Chem 2022; 58:116652. [DOI: 10.1016/j.bmc.2022.116652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 12/29/2021] [Accepted: 01/28/2022] [Indexed: 11/19/2022]
|
46
|
Srinivas Reddy M, Swamy Thirukovela N, Narsimha S, Ravinder M, Kumar Nukala S. Synthesis of fused 1,2,3-triazoles of Clioquinol via sequential CuAAC and C H arylation; in vitro anticancer activity, in silico DNA topoisomerase II inhibitory activity and ADMET. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
47
|
Sharma V, Das R, Kumar Mehta D, Gupta S, Venugopala KN, Mailavaram R, Nair AB, Shakya AK, Kishore Deb P. Recent insight into the biological activities and SAR of quinolone derivatives as multifunctional scaffold. Bioorg Med Chem 2022; 59:116674. [DOI: 10.1016/j.bmc.2022.116674] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/07/2022] [Accepted: 02/13/2022] [Indexed: 01/09/2023]
|
48
|
Elsaman T, Mohamed MS, Eltayib EM, Abdel-aziz HA, Abdalla AE, Munir MU, Mohamed MA. Isatin derivatives as broad-spectrum antiviral agents: the current landscape. Med Chem Res 2022; 31:244-273. [PMID: 35039740 PMCID: PMC8754539 DOI: 10.1007/s00044-021-02832-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/02/2021] [Indexed: 01/09/2023]
Abstract
In recent decades, several viruses have resulted in large outbreaks with serious health, economic and social consequences. The current unprecedented outbreak of the new coronavirus, SARS-COV-2, necessitates intensive efforts for delivering effective therapies to eradicate such a deadly virus. Isatin is an opulent heterocycle that has been proven to provide tremendous opportunities in the area of drug discovery. Over the last fifty years, suitably functionalized isatin has shown remarkable and broad-spectrum antiviral properties. The review herein is an attempt to compile all of the reported information about the antiviral activity of isatin derivatives with an emphasis on their structure-activity relationships (SARs) along with mechanistic and molecular modeling studies. In this regard, we are confident that the review will afford the scientific community a valuable platform to generate more potent and cost-effective antiviral therapies based on isatin templates.
Collapse
Affiliation(s)
- Tilal Elsaman
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Malik Suliman Mohamed
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Eyman Mohamed Eltayib
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Hatem A. Abdel-aziz
- Department of Applied Organic Chemistry, National Research Center, Dokki, Cairo, 12622 Egypt
| | - Abualgasim Elgaili Abdalla
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
| | - Muhammad Usman Munir
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Magdi Awadalla Mohamed
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| |
Collapse
|
49
|
Arshad N, Mir MI, Perveen F, Javed A, Javaid M, Saeed A, Channar PA, Farooqi SI, Alkahtani S, Anwar J. Investigations on Anticancer Potentials by DNA Binding and Cytotoxicity Studies for Newly Synthesized and Characterized Imidazolidine and Thiazolidine-Based Isatin Derivatives. Molecules 2022; 27:354. [PMID: 35056668 PMCID: PMC8778244 DOI: 10.3390/molecules27020354] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 02/04/2023] Open
Abstract
Imidazolidine and thiazolidine-based isatin derivatives (IST-01-04) were synthesized, characterized, and tested for their interactions with ds-DNA. Theoretical and experimental findings showed good compatibility and indicated compound-DNA binding by mixed mode of interactions. The evaluated binding parameters, i.e., binding constant (Kb), free energy change (ΔG), and binding site sizes (n), inferred comparatively greater and more spontaneous binding interactions of IST-02 and then IST-04 with the DNA, among all compounds tested under physiological pH and temperature (7.4, 37 °C). The cytotoxic activity of all compounds was assessed against HeLa (cervical carcinoma), MCF-7 (breast carcinoma), and HuH-7 (liver carcinoma), as well as normal HEK-293 (human embryonic kidney) cell lines. Among all compounds, IST-02 and 04 were found to be cytotoxic against HuH-7 cell lines with percentage cell toxicity of 75% and 66%, respectively, at 500 ng/µL dosage. Moreover, HEK-293 cells exhibit tolerance to the increasing drug concentration, suggesting these two compounds are less cytotoxic against normal cell lines compared to cancer cell lines. Hence, both DNA binding and cytotoxicity studies proved imidazolidine (IST-02) and thiazolidine (IST-04)-based isatin derivatives as potent anticancer drug candidates among which imidazolidine (IST-02) is comparatively the more promising.
Collapse
Affiliation(s)
- Nasima Arshad
- Department of Chemistry, Faculty of Sciences, Allama Iqbal Open University, Islamabad 44000, Pakistan; (M.I.M.); (S.I.F.)
| | - Muhammad Ismail Mir
- Department of Chemistry, Faculty of Sciences, Allama Iqbal Open University, Islamabad 44000, Pakistan; (M.I.M.); (S.I.F.)
| | - Fouzia Perveen
- Research Center for Modeling and Simulations, National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan;
| | - Aneela Javed
- Healthcare Biotechnology Atta-ur-Rehman School of Applied Biosciences, National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan;
| | - Memona Javaid
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan; (M.J.); (P.A.C.)
| | - Aamer Saeed
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan; (M.J.); (P.A.C.)
| | - Pervaiz Ali Channar
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan; (M.J.); (P.A.C.)
| | - Shahid Iqbal Farooqi
- Department of Chemistry, Faculty of Sciences, Allama Iqbal Open University, Islamabad 44000, Pakistan; (M.I.M.); (S.I.F.)
| | - Saad Alkahtani
- Department of Zoology, College of Science, King Saud University, Riyadh 12546, Saudi Arabia;
| | - Jamshed Anwar
- Department of Chemistry, University of Lancaster, Lancaster LA1 4YB, UK;
| |
Collapse
|
50
|
Kancharla SK, Birudaraju S, Pal A, Krishnakanth Reddy L, Reddy ER, Vagolu SK, Sriram D, Bonige KB, Korupolu RB. Synthesis and biological evaluation of isatin oxime ether-tethered aryl 1 H-1,2,3-triazoles as inhibitors of Mycobacterium tuberculosis. NEW J CHEM 2022. [DOI: 10.1039/d1nj05171g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A series of isatin oxime ether-tethered aryl 1H-1,2,3-triazole hybrids were synthesized and screened for their in vitro antitubercular activity against the M. tuberculosis H37Rv strain.
Collapse
Affiliation(s)
- Sampath Kumar Kancharla
- Aragen Life Sciences (Formerly GVK Bioscience), Nacharam, Hyderabad, Telangana State-500076, India
- Department of Engineering Chemistry, Andhra University, Visakhapatnam, Andhra Pradesh-530003, India
| | - Saritha Birudaraju
- Aragen Life Sciences (Formerly GVK Bioscience), Nacharam, Hyderabad, Telangana State-500076, India
| | - Arani Pal
- Aragen Life Sciences (Formerly GVK Bioscience), Nacharam, Hyderabad, Telangana State-500076, India
| | - L. Krishnakanth Reddy
- Aragen Life Sciences (Formerly GVK Bioscience), Nacharam, Hyderabad, Telangana State-500076, India
| | - Eda Rami Reddy
- Department of Chemistry, Indian Institute of Technology, Indore, 453552, India
| | - Siva Krishna Vagolu
- Medicinal Chemistry & Antimycobacterial Research Laboratory, Pharmacy Group, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Telangana State-500078, India
| | - Dharmarajan Sriram
- Medicinal Chemistry & Antimycobacterial Research Laboratory, Pharmacy Group, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Telangana State-500078, India
| | - Kishore Babu Bonige
- Department of Engineering Chemistry, Andhra University, Visakhapatnam, Andhra Pradesh-530003, India
| | - Raghu Babu Korupolu
- Department of Engineering Chemistry, Andhra University, Visakhapatnam, Andhra Pradesh-530003, India
| |
Collapse
|