1
|
Deng H, Qu Y, Chu B, Luo T, Pan M, Yuan L, Mo D, Bei Z, Yang T, Li X, Lu Y, Qian Z. Macrophage membrane-biomimetic ROS-responsive platinum nanozyme clusters for acute kidney injury treatment. Biomaterials 2024; 317:123072. [PMID: 39798243 DOI: 10.1016/j.biomaterials.2024.123072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/26/2024] [Accepted: 12/29/2024] [Indexed: 01/15/2025]
Abstract
Acute kidney injury (AKI) is a common clinical syndrome characterized by the rapid loss of renal filtration function. No standard therapeutic agent option is currently available. The development and progression of AKI is a continuous and dynamical pathological process. Oxidative stress and inflammatory responses are the primary influencing factors. Here, we developed a biomimetic nano-system (MM-PtNCs) with reactive oxygen species (ROS)-responsive platinum nanozyme clusters (PtNCs) wrapped in macrophage membrane (MM) to alleviate AKI by modulating oxidative stress and inflammation. The inflammatory cytokines receptors retained on MM surface allowed the biomimetic nano-system to target renal inflammation and neutralize these pro-inflammatory cytokines to ameliorate inflammation. PtNCs exhibit free radical scavenging-ability and catalase (CAT)-like activity to scavenge ROS and regulate the oxidative stress situations both in injured cells and tissues. Meanwhile, it could responsively dissociate into ultrasmall platinum nanoparticles under AKI-specific ROS conditions to eliminate ROS and eventually excreted through the renal filtration system. In a mouse model of ischemia/reperfusion-induced AKI, systemic injection of MM-PtNCs significantly reduced renal damage and restored kidney function. Additionally, MM-PtNCs effectively prevented the progression of AKI to chronic kidney disease. In conclusion, MM-PtNCs may propose a multi-faceted regulatory approach for clinical AKI treatment.
Collapse
Affiliation(s)
- Hanzhi Deng
- Department of Biotherapy and Department of Hematology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Ying Qu
- Department of Biotherapy and Department of Hematology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Bingyang Chu
- Department of Biotherapy and Department of Hematology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Tianying Luo
- Department of Biotherapy and Department of Hematology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Meng Pan
- Department of Biotherapy and Department of Hematology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Liping Yuan
- Department of Biotherapy and Department of Hematology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Dong Mo
- Department of Biotherapy and Department of Hematology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Zhongwu Bei
- Department of Biotherapy and Department of Hematology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Tingyu Yang
- Department of Biotherapy and Department of Hematology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Xicheng Li
- Department of Biotherapy and Department of Hematology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Yi Lu
- Department of Biotherapy and Department of Hematology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Zhiyong Qian
- Department of Biotherapy and Department of Hematology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
2
|
Li S, Kuang Z, Li Y, Wang Z, Wan Y, Zhang XF, Song D, Xia A. Solvent Effects on Spin-Orbit Charge-Transfer Intersystem Crossing in Aryl-Substituted Boron-dipyrromethene Donor-Acceptor Dyads. J Phys Chem B 2024; 128:9224-9232. [PMID: 39264990 DOI: 10.1021/acs.jpcb.4c05498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
In heavy-atom-free organic molecules, the rate of triplet generation through charge recombination, as dictated by the El-Sayed rule, can be enhanced by 101-102 times compared with the rate of spontaneous spin flipping between π-π* orbitals. This mechanism is known as the spin-orbit charge-transfer intersystem crossing (SOCT-ISC). Within the framework of the SOCT-ISC mechanism, facilitating the generation of charge-separated (CS) states and suppressing the spin-allowed direct charge recombination to the ground state are pivotal for maximizing the efficiency of generating localized triplet states. Herein, a series of orthogonal aryl-substituted boron-dipyrromethene dyads were studied by time-resolved spectroscopy to unravel the multichannel competitive relationships in the SOCT-ISC mechanism. The energy level of the electron donor and the stabilization of the solvent effect to the charge-transfer state are reflected in the Gibbs free energy changes of the electron transfer and recombination reactions, leading to significantly different triplet quantum yields. Additionally, solvation-induced electronic coupling changes in excited states lead to the fact that the spin-allowed charge recombination rate cannot be well simply predicted by the Marcus inverted region but has to consider the specific excited-state dynamics in optimizing the proportion of triplet generation channels based on charge recombination.
Collapse
Affiliation(s)
- Shuhang Li
- State Key Laboratory of Information Photonic and Optical Communications, School of Science, Beijing University of Posts and Telecommunications (BUPT), Beijing 100876, P. R. China
| | - Zhuoran Kuang
- State Key Laboratory of Information Photonic and Optical Communications, School of Science, Beijing University of Posts and Telecommunications (BUPT), Beijing 100876, P. R. China
| | - Yang Li
- State Key Laboratory of Information Photonic and Optical Communications, School of Science, Beijing University of Posts and Telecommunications (BUPT), Beijing 100876, P. R. China
| | - Zeming Wang
- State Key Laboratory of Information Photonic and Optical Communications, School of Science, Beijing University of Posts and Telecommunications (BUPT), Beijing 100876, P. R. China
| | - Yan Wan
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Xian-Fu Zhang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong Province 518055, P. R. China
| | - Di Song
- State Key Laboratory of Information Photonic and Optical Communications, School of Science, Beijing University of Posts and Telecommunications (BUPT), Beijing 100876, P. R. China
| | - Andong Xia
- State Key Laboratory of Information Photonic and Optical Communications, School of Science, Beijing University of Posts and Telecommunications (BUPT), Beijing 100876, P. R. China
| |
Collapse
|
3
|
Mushtaq U, Ayoub I, Kumar V, Sharma V, Swart HC, Chamanehpour E, Rubahn HG, Mishra YK. Persistent luminescent nanophosphors for applications in cancer theranostics, biomedical, imaging and security. Mater Today Bio 2023; 23:100860. [PMID: 38179230 PMCID: PMC10765243 DOI: 10.1016/j.mtbio.2023.100860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/24/2023] [Accepted: 11/07/2023] [Indexed: 01/06/2024] Open
Abstract
The extraordinary and unique properties of persistent luminescent (PerLum) nanostructures like storage of charge carriers, extended afterglow, and some other fascinating characteristics like no need for in-situ excitation, and rechargeable luminescence make such materials a primary candidate in the fields of bio-imaging and therapeutics. Apart from this, due to their extraordinary properties they have also found their place in the fields of anti-counterfeiting, latent fingerprinting (LPF), luminescent markings, photocatalysis, solid-state lighting devices, glow-in-dark toys, etc. Over the past few years, persistent luminescent nanoparticles (PLNPs) have been extensively used for targeted drug delivery, bio-imaging guided photodynamic and photo-thermal therapy, biosensing for cancer detection and subsequent treatment, latent fingerprinting, and anti-counterfeiting owing to their enhanced charge storage ability, in-vitro excitation, increased duration of time between excitation and emission, low tissue absorption, high signal-to-noise ratio, etc. In this review, we have focused on most of the key aspects related to PLNPs, including the different mechanisms leading to such phenomena, key fabrication techniques, properties of hosts and different activators, emission, and excitation characteristics, and important properties of trap states. This review article focuses on recent advances in cancer theranostics with the help of PLNPs. Recent advances in using PLNPs for anti-counterfeiting and latent fingerprinting are also discussed in this review.
Collapse
Affiliation(s)
- Umer Mushtaq
- Department of Physics, National Institute of Technology Srinagar, Jammu and Kashmir, 190006, India
- Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein, ZA9300, South Africa
| | - Irfan Ayoub
- Department of Physics, National Institute of Technology Srinagar, Jammu and Kashmir, 190006, India
- Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein, ZA9300, South Africa
| | - Vijay Kumar
- Department of Physics, National Institute of Technology Srinagar, Jammu and Kashmir, 190006, India
- Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein, ZA9300, South Africa
| | - Vishal Sharma
- Institute of Forensic Science & Criminology, Panjab University, Chandigarh, 160014, India
| | - Hendrik C. Swart
- Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein, ZA9300, South Africa
| | - Elham Chamanehpour
- NanoSYD, Mads Clausen Institute, University of Southern Denmark, Alsion 2, Sønderborg, 6400, Denmark
| | - Horst-Günter Rubahn
- NanoSYD, Mads Clausen Institute, University of Southern Denmark, Alsion 2, Sønderborg, 6400, Denmark
| | - Yogendra Kumar Mishra
- NanoSYD, Mads Clausen Institute, University of Southern Denmark, Alsion 2, Sønderborg, 6400, Denmark
| |
Collapse
|
4
|
Malik S, Niazi M, Khan M, Rauff B, Anwar S, Amin F, Hanif R. Cytotoxicity Study of Gold Nanoparticle Synthesis Using Aloe vera, Honey, and Gymnema sylvestre Leaf Extract. ACS OMEGA 2023; 8:6325-6336. [PMID: 36844542 PMCID: PMC9947984 DOI: 10.1021/acsomega.2c06491] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 01/05/2023] [Indexed: 06/18/2023]
Abstract
Gold nanoparticles (AuNPs) have gained importance in the field of biomedical research and diagnostics due to their unique physicochemical properties. This study aimed to synthesize AuNPs using Aloe vera extract, honey, and Gymnema sylvestre leaf extract. Physicochemical parameters for the optimal synthesis of AuNPs were determined using 0.5, 1, 2, and 3 mM of gold salt at varying temperatures from 20 to 50 °C. X-ray diffraction was used to evaluate the crystal structure of AuNPs, which came out to be a face-centered cubic structure. Scanning electron microscopy and energy-dispersive X-ray spectroscopy analysis confirmed the size and shape of AuNPs between 20 and 50 nm from the Aloe vera, honey, and Gymnema sylvestre, as well as large-sized nanocubes in the case of honey, with 21-34 wt % of gold content. Furthermore, Fourier transform infrared spectroscopy confirmed the presence of a broadband of amine (N-H) and alcohol groups (O-H) on the surface of the synthesized AuNPs that prevents them from agglomeration and provides stability. Broad and weak bands of aliphatic ether (C-O), alkane (C-H), and other functional groups were also found on these AuNPs. DPPH antioxidant activity assay showed a high free radical scavenging potential. The most suited source was selected for further conjugation with three anticancer drugs including 4-hydroxy Tamoxifen, HIF1 alpha inhibitor, and the soluble Guanylyl Cyclase Inhibitor 1 H-[1,2,4] oxadiazolo [4,3-alpha]quinoxalin-1-one (ODQ). Evidence of the pegylated drug conjugation with AuNPs was reinforced by ultraviolet/visible spectroscopy. These drug-conjugated nanoparticles were further checked on MCF7 and MDA-MB-231 cells for their cytotoxicity. These AuNP-conjugated drugs can be a good candidate for breast cancer treatment that will lead toward safe, economical, biocompatible, and targeted drug delivery systems.
Collapse
Affiliation(s)
- Shiza Malik
- Atta-ur-Rahman
School of Applied Biosciences (ASAB), National
University of Sciences and Technology (NUST), Islamabad44000, Pakistan
| | - Maha Niazi
- Atta-ur-Rahman
School of Applied Biosciences (ASAB), National
University of Sciences and Technology (NUST), Islamabad44000, Pakistan
| | - Maham Khan
- Atta-ur-Rahman
School of Applied Biosciences (ASAB), National
University of Sciences and Technology (NUST), Islamabad44000, Pakistan
| | - Bisma Rauff
- Department
of Biomedical Engineering, University of
Engineering and Technology (UET), Lahore53400, Pakistan
| | - Sidra Anwar
- Atta-ur-Rahman
School of Applied Biosciences (ASAB), National
University of Sciences and Technology (NUST), Islamabad44000, Pakistan
| | - Faheem Amin
- Department
of Physics, School of Natural Sciences (SNS), National University of Sciences and Technology (NUST), Islamabad46000, Pakistan
| | - Rumeza Hanif
- Atta-ur-Rahman
School of Applied Biosciences (ASAB), National
University of Sciences and Technology (NUST), Islamabad44000, Pakistan
| |
Collapse
|
5
|
Yaraki MT, Zahed Nasab S, Zare I, Dahri M, Moein Sadeghi M, Koohi M, Tan YN. Biomimetic Metallic Nanostructures for Biomedical Applications, Catalysis, and Beyond. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | - Shima Zahed Nasab
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran 143951561, Iran
| | - Iman Zare
- Research and Development Department, Sina Medical Biochemistry Technologies Co. Ltd., Shiraz 7178795844, Iran
| | - Mohammad Dahri
- Student Research Committee, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71345, Iran
| | - Mohammad Moein Sadeghi
- Student Research Committee, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71345, Iran
| | - Maedeh Koohi
- Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan 45371-38791, Islamic Republic of Iran
| | - Yen Nee Tan
- Faculty of Science, Agriculture and Engineering, Newcastle University, Newcastle Upon Tyne NE1 7RU, U.K
- Newcastle Research and Innovation Institute, Newcastle University in Singapore, 80 Jurong East Street 21, No. 05-04, 609607, Singapore
| |
Collapse
|
6
|
Liu W, Zhang H, Dong X, Sun Y. Composite of gold nanoclusters and basified human serum albumin significantly boosts the inhibition of Alzheimer's β-amyloid by photo-oxygenation. Acta Biomater 2022; 144:157-167. [PMID: 35301147 DOI: 10.1016/j.actbio.2022.03.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/17/2022] [Accepted: 03/09/2022] [Indexed: 12/12/2022]
Abstract
Photo-oxygenation has become an effective way to inhibit Alzheimer's β-amyloid protein (Aβ) fibrillogenesis, which involves oxidative modification of Aβ by photo-oxidants. However, limitations of the current photo-oxidants, such as low biocompatibility and low affinity for Aβ, hinder the progression of the photo-oxygenation strategy. Herein, using human serum albumins (HSA) with binding affinity for Aβ as a platform, we have fabricated HSA-stabilized gold nanoclusters (AuNCs@HSA) and further modified the AuNCs@HSA with ethylenediamine to create basified HSA (HSA-B)-stabilized AuNCs. The basified composite, AuNCs@HSA-B, showed significantly higher potency on the inhibition of β-amyloid formation and capability of reactive oxidative species generation than AuNCs@HSA. In addition to the inhibition effect, under near-infrared (NIR) laser irradiation, AuNCs@HSA-B generated singlet oxygen to oxygenate Aβ monomers, distinctly alleviating Aβ-mediated neurotoxicity at a low concentration. In vivo studies demonstrated that NIR-activated AuNCs@HSA-B promoted the lifespan extension of transgenic C. elegans strain CL2006 by decreasing the Aβ burden. This well-designed AuNCs@HSA-B integrates inhibition, Aβ targeting, and photo-oxygenation, providing new insights into the development of protein-based photo-oxidant against Alzheimer's β-amyloid. STATEMENT OF SIGNIFICANCE: Alzheimer's disease (AD) has been threatening human health for more than 100 years. Recently, researchers have focused on inhibiting β-amyloid protein (Aβ) aggregation by exploring photo-excited biomaterials, which enable modulation of Aβ fibrillization with high spatiotemporal controllability. The present work demonstrates the fabrication of basified human serum albumins (HSA-B)-stabilized gold nanoclusters (AuNCs@HSA-B), and shows the potential of this near-infrared (NIR) laser-activated AuNCs@HSA-B as a photo-oxidant against Aβ aggregation by photo-oxygenation. Our work should open a new horizon in the design of protein-based photo-oxidant for treating AD in the future.
Collapse
|
7
|
Zhao H, Li L, Li F, Liu C, Huang M, Li J, Gao F, Ruan X, Yang D. An Energy-Storing DNA-Based Nanocomplex for Laser-Free Photodynamic Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109920. [PMID: 35060673 DOI: 10.1002/adma.202109920] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/19/2022] [Indexed: 06/14/2023]
Abstract
Photodynamic therapy (PDT) is a therapeutic strategy that is dependent on external light irradiation that faces a major challenge in cancer treatment due to the poor tissue-penetration depths of light irradiation. Herein, a DNA nanocomplex that integrates persistent-luminescence nanoparticles (PLNPs) is developed, which realizes tumor-site glutathione-activated PDT for breast cancer without exogenous laser excitation. The scaffold of the nanocomplex is AS1411-aptamer-encoded ultralong single-stranded DNA chain with two functions: i) providing sufficient intercalation sites for the photosensitizer, and ii) recognizing nucleolin that specifically overexpresses on the surface of cancer cells. The PLNPs in the nanocomplex are energy-charged to act as a self-illuminant and coated with a shell of MnO2 for blocking energy degradation. In response to the overexpressed glutathione in cancer cells, the MnO2 shell decomposes to provide Mn2+ to catalytically produce O2 , which is essential to PDT. Meanwhile, PLNPs are released and act as a self-illuminant to activate the photosensitizer to convert O2 into cytotoxic 1 O2 . Significant tumor inhibition effects are demonstrated in breast tumor xenograft models without exogenous laser excitation. It is envisioned that a laser-excitation-free PDT strategy enabled by the PLNP-DNA nanocomplex promotes the development of PDT and provides a new local therapeutic approach.
Collapse
Affiliation(s)
- Huaixin Zhao
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Institute of Biomolecular and Biomedical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China
| | - Linghui Li
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Institute of Biomolecular and Biomedical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China
| | - Feng Li
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Institute of Biomolecular and Biomedical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China
| | - Chunxia Liu
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Institute of Biomolecular and Biomedical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China
| | - Mengxue Huang
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Institute of Biomolecular and Biomedical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China
| | - Jiao Li
- School of Precision Instruments and Optoelectronics Engineering, China Tianjin Key Laboratory of Biomedical Detecting Techniques and Instruments, Tianjin University, Tianjin, 300072, P. R. China
| | - Feng Gao
- School of Precision Instruments and Optoelectronics Engineering, China Tianjin Key Laboratory of Biomedical Detecting Techniques and Instruments, Tianjin University, Tianjin, 300072, P. R. China
| | - Xinhua Ruan
- Department of Cardiac Surgery, Tianjin Union Medical Centre, Tianjin, 300121, P. R. China
| | - Dayong Yang
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Institute of Biomolecular and Biomedical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China
| |
Collapse
|
8
|
Mu J, Peng Y, Shi Z, Zhang D, Jia Q. Copper nanocluster composites for analytical (bio)-sensing and imaging: a review. Mikrochim Acta 2021; 188:384. [PMID: 34664135 DOI: 10.1007/s00604-021-05011-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 08/27/2021] [Indexed: 12/29/2022]
Abstract
As an ideal substitute for traditional organic fluorescent dyes or up-conversion nanomaterials, copper nanoclusters (CuNCs) have developed rapidly and have been involved in exciting achievements in versatile applications. The emergence of novel CuNCs composites improves the poor stability and fluorescence intensity of CuNCs. With this in mind, great efforts have been made to develop a wide variety of CuNCs composites, and impressive progress has been made in the past few years. In this review, we systematically summarize absorption, fluorescence, electrochemiluminescence, and catalytic properties and focus on the multiple factors that affect the fluorescence properties of CuNCs. The fluorescence properties of CuNCs are discussed from the point of view of core size, surface ligands, self-assembly, metal defects, pH, solvent, ions, metal doping, and confinement effect. Especially, we illustrate the research progress and representative applications of CuNCs composites in bio-related fields, which have received considerable interests in the past years. Additionally, the sensing mechanism of CuNCs composites is highlighted. Finally, we summarize current challenges and look forward to the future development of CuNCs composites. Schematic diagram of the categories, possible sensing mechanisms, and bio-related applications of copper nanoclusters composites.
Collapse
Affiliation(s)
- Jin Mu
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Yu Peng
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Zhan Shi
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Dawei Zhang
- College of Chemistry, Jilin University, Changchun, 130012, China.
| | - Qiong Jia
- College of Chemistry, Jilin University, Changchun, 130012, China.
| |
Collapse
|
9
|
Johnson KK, Koshy P, Yang J, Sorrell CC. Preclinical Cancer Theranostics—From Nanomaterials to Clinic: The Missing Link. ADVANCED FUNCTIONAL MATERIALS 2021; 31. [DOI: 10.1002/adfm.202104199] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Indexed: 01/06/2025]
Abstract
AbstractNanomaterials with cancer‐imaging and therapeutic properties have emerged as the principal focus of nanotheranostics. The past decade has experienced a significant increase in research in the design, formulation, and preclinical and clinical trials of theranostic nanosystems. However, current theranostic nanoformulations have yet to be approved by the FDA for clinical use. Consequently, the present review focuses on the importance of the careful examination of the in vivo preclinical status of specific nanotheranostic materials as a prerequisite for their clinical translation. The scope of coverage is structured according to all of the major organic, inorganic, 2D, and hybrid nanotheranostic materials and their in vivo preclinical status. The therapeutic advantages and limitations of these materials in animal models are considered and the various strategies to enhance the biocompatibility of theranostic nanoparticles are summarized.
Collapse
Affiliation(s)
- Kochurani K. Johnson
- School of Materials Science and Engineering Faculty of Science UNSW Sydney Sydney New South Wales 2052 Australia
| | - Pramod Koshy
- School of Materials Science and Engineering Faculty of Science UNSW Sydney Sydney New South Wales 2052 Australia
| | - Jia‐Lin Yang
- Prince of Wales Clinical School Faculty of Medicine UNSW Sydney Sydney New South Wales 2052 Australia
| | - Charles C. Sorrell
- School of Materials Science and Engineering Faculty of Science UNSW Sydney Sydney New South Wales 2052 Australia
| |
Collapse
|
10
|
Fu X, Lin X, Ren X, Cong H, Liu C, Huang J. Synthesis and structure of Au19Ag4(S-Adm)15 nanocluster: Polymorphs and optical properties. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.02.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
11
|
Xing J, Gong Q, Akakuru OU, Liu C, Zou R, Wu A. Research advances in integrated theranostic probes for tumor fluorescence visualization and treatment. NANOSCALE 2020; 12:24311-24330. [PMID: 33300527 DOI: 10.1039/d0nr06867e] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
At present, cancer is obviously a major threat to human health worldwide. Accurate diagnosis and treatment are in great demand and have become an effective method to alleviate the development of cancer and improve the survival rate of patients. A large number of theranostic probes that combine diagnosis and treatment methods have been developed as promising tools for tumor precision medicine. Among them, fluorescent theranostic probes have developed rapidly in the frontier research field of precision medicine with their real time, low toxicity, and high-resolution merit. Therefore, this review focuses on recent advances in the development of fluorescent theranostic probes, as well as their applications for cancer diagnosis and treatment. Initially, small-molecule fluorescent theranostic probes mainly including tumor microenvironment-responsive fluorescent prodrugs and phototherapeutic probes were introduced. Subsequently, nanocomposite probes are expounded based on four types of nano-fluorescent particles combining different therapies (chemotherapy, photothermal therapy, photodynamic therapy, gene therapy, etc.). Then, the capsule-type "all in one" probes, which occupy an important position in theranostic probes, are summarized according to the surface carrier type. This review aims to present a comprehensive guide for researchers in the field of tumor-related theranostic probe design and development.
Collapse
Affiliation(s)
- Jie Xing
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, PR China. and University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Qiuyu Gong
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, PR China.
| | - Ozioma Udochukwu Akakuru
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, PR China. and University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Chuang Liu
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, PR China. and University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Ruifen Zou
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, PR China.
| | - Aiguo Wu
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, PR China.
| |
Collapse
|
12
|
Han R, Zhao M, Wang Z, Liu H, Zhu S, Huang L, Wang Y, Wang L, Hong Y, Sha Y, Jiang Y. Super-efficient in Vivo Two-Photon Photodynamic Therapy with a Gold Nanocluster as a Type I Photosensitizer. ACS NANO 2020; 14:9532-9544. [PMID: 31670942 DOI: 10.1021/acsnano.9b05169] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Photodynamic therapy (PDT) is a clinically approved, minimally invasive therapeutic technique that can induce the regression of targeted lesions via generating excess cytotoxic reactive oxygen species. However, due to the limited penetration depth of visible excitation light and the intrinsic hypoxia microenvironment of solid tumors, the efficacy of PDT in the treatment of cancer, especially deep-seated or large tumors, is unsatisfactory. Herein, we developed an efficient in vivo PDT system based on a nanomaterial, dihydrolipoic acid coated gold nanocluster (AuNC@DHLA), that combined the advantages of large penetration depth in tissue, extremely high two-photon (TP) absorption cross section (σ2 ∼ 106 GM), efficient ROS generation, a type I photochemical mechanism, and negligible in vivo toxicity. With AuNC@DHLA as the photosensitizer, highly efficient in vivo TP-PDT has been achieved.
Collapse
Affiliation(s)
- Rongcheng Han
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Miao Zhao
- Single-Molecule and Nanobiology Laboratory, Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Zhiwei Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Helin Liu
- Single-Molecule and Nanobiology Laboratory, Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Shengcang Zhu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lu Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lijun Wang
- Single-Molecule and Nanobiology Laboratory, Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Yuankai Hong
- Single-Molecule and Nanobiology Laboratory, Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Yinlin Sha
- Single-Molecule and Nanobiology Laboratory, Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Yuqiang Jiang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
13
|
Lin Q, Li Z, Ji C, Yuan Q. Electronic structure engineering and biomedical applications of low energy-excited persistent luminescence nanoparticles. NANOSCALE ADVANCES 2020; 2:1380-1394. [PMID: 36132298 PMCID: PMC9417836 DOI: 10.1039/c9na00817a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 03/17/2020] [Indexed: 06/13/2023]
Abstract
Persistent luminescence nanoparticles (PLNPs) are new luminescent materials that can store the excitation energy quickly and persistently emit it after ceasing excitation sources. Due to the advantages of long-lasting luminescence without constant excitation, PLNPs have been widely used in biomedical applications. Visible light excitable PLNPs (VPLNPs) and near-infrared excitable PLNPs (NPLNPs) are two kinds of novel and promising PLNPs. Compared to conventional PLNPs, VPLNPs and NPLNPs have the characteristics of low tissue damage, deep tissue penetration, and high signal-to-noise ratio. With these special features, they have great potential in applications such as long-term tracing, deep-tissue bioimaging, and precise treatment. In this review, we introduce the common strategy of constructing VPLNPs and NPLNPs based on electronic structure engineering and the applications of VPLNPs and NPLNPs in biomedicine. This review article aims to offer valuable information about the progress and development direction of VPLNPs and NPLNPs, promoting more applications in biomedicine, materials science, energy engineering, and environmental technologies in the future.
Collapse
Affiliation(s)
- Qiaosong Lin
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| | - Zhihao Li
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| | - Chenhui Ji
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University Changsha 410082 China
| | - Quan Yuan
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University Changsha 410082 China
| |
Collapse
|
14
|
Oueslati MH, Tahar LB, Harrath AH. Catalytic, antioxidant and anticancer activities of gold nanoparticles synthesized by kaempferol glucoside from Lotus leguminosae. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2018.09.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
15
|
Wang B, Xing C, Gao D, Yuan H, Qiu L, Yang X, Huang Y, Zhan Y. Carbon dioxide-controlled assembly based on conjugated polymer and boron nitride. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.03.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
16
|
Liu F, Lin L, Zhang Y, Wang Y, Sheng S, Xu C, Tian H, Chen X. A Tumor-Microenvironment-Activated Nanozyme-Mediated Theranostic Nanoreactor for Imaging-Guided Combined Tumor Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1902885. [PMID: 31423690 DOI: 10.1002/adma.201902885] [Citation(s) in RCA: 200] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/20/2019] [Indexed: 06/10/2023]
Abstract
Activatable theranostic agents that can be activated by tumor microenvironment possess higher specificity and sensitivity. Here, activatable nanozyme-mediated 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) loaded ABTS@MIL-100/poly(vinylpyrrolidine) (AMP) nanoreactors (NRs) are developed for imaging-guided combined tumor therapy. The as-constructed AMP NRs can be specifically activated by the tumor microenvironment through a nanozyme-mediated "two-step rocket-launching-like" process to turn on its photoacoustic imaging signal and photothermal therapy (PTT) function. In addition, simultaneously producing hydroxyl radicals in response to the high H2 O2 level of the tumor microenvironment and disrupting intracellular glutathione (GSH) endows the AMP NRs with the ability of enhanced chemodynamic therapy (ECDT), thereby leading to more efficient therapeutic outcome in combination with tumor-triggered PTT. More importantly, the H2 O2 -activated and acid-enhanced properties enable the AMP NRs to be specific to tumors, leaving the normal tissues unharmed. These remarkable features of AMP NRs may open a new avenue to explore nanozyme-involved nanoreactors for intelligent, accurate, and noninvasive cancer theranostics.
Collapse
Affiliation(s)
- Feng Liu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun, 130022, China
| | - Lin Lin
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun, 130022, China
| | - Ying Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun, 130022, China
| | - Yanbing Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun, 130022, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Shu Sheng
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun, 130022, China
| | - Caina Xu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun, 130022, China
| | - Huayu Tian
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun, 130022, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun, 130022, China
- University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
17
|
Lin Q, Li Z, Yuan Q. Recent advances in autofluorescence-free biosensing and bioimaging based on persistent luminescence nanoparticles. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2019.06.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
18
|
Liao J, Jia Y, Wu Y, Shi K, Yang D, Li P, Qian Z. Physical‐, chemical‐, and biological‐responsive nanomedicine for cancer therapy. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 12:e1581. [PMID: 31429208 DOI: 10.1002/wnan.1581] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 07/03/2019] [Accepted: 07/17/2019] [Indexed: 02/05/2023]
Affiliation(s)
- Jinfeng Liao
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Centre for Biotherapy, West China Hospital Sichuan University Chengdu P.R. China
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology Sichuan University Chengdu P.R. China
- Department of Applied Biology and Chemical Technology Hong Kong Polytechnic University Kowloon Hong Kong
| | - Yanpeng Jia
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Centre for Biotherapy, West China Hospital Sichuan University Chengdu P.R. China
| | - Yongzhi Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology Sichuan University Chengdu P.R. China
| | - Kun Shi
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Centre for Biotherapy, West China Hospital Sichuan University Chengdu P.R. China
| | - Dawei Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology Sichuan University Chengdu P.R. China
| | - Pei Li
- Department of Applied Biology and Chemical Technology Hong Kong Polytechnic University Kowloon Hong Kong
| | - Zhiyong Qian
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Centre for Biotherapy, West China Hospital Sichuan University Chengdu P.R. China
| |
Collapse
|
19
|
Yu W, He X, Yang Z, Yang X, Xiao W, Liu R, Xie R, Qin L, Gao H. Sequentially responsive biomimetic nanoparticles with optimal size in combination with checkpoint blockade for cascade synergetic treatment of breast cancer and lung metastasis. Biomaterials 2019; 217:119309. [PMID: 31271855 DOI: 10.1016/j.biomaterials.2019.119309] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 06/15/2019] [Accepted: 06/25/2019] [Indexed: 12/30/2022]
Abstract
Recently, photodynamic therapy (PDT) emerges as a promising way to initiate immune response and being used in combination with chemotherapy. However, the antitumor effect is restricted due to the poor tumor penetration and retention, premature drug release and immunosuppressive environment of tumor sites. And as the size of nanoparticles plays a key role in drug delivery, series of hyaluronidase-responsive size-reducible biomimetic nanoparticles (mCAuNCs@HA) with different initial sizes are synthesized, and the optimal size of 150 nm is screened out because of the best blood circulation, tumor penetration and retention. Then the photosensitizer pheophorbide A and ROS-responsive paclitaxel dimer prodrug (PXTK) are co-loaded to facilitate on-demand drug release. The hydrolysis byproduct cinnamaldehyde in turn stimulates the ROS production by mitochondria, which compensates for the ROS consumed in the hydrolysis process. Anti-PD-L1 peptide (dPPA) is furthered loaded to alleviate the immunosuppressive environment of tumor and enhance the function of cytotoxic T lymphocytes activated by PDT-induced immunogenic cell death. The combination therapy activates CD4+, CD8+ T cells and NK cells and enhances secretion of cytokines (TNF-α and IL-12) with tumor inhibition rate increased to 84.2% and no metastasis is observed, providing a viable combination therapy for better anti-tumor and anti-metastasis efficacy.
Collapse
Affiliation(s)
- Wenqi Yu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610064, PR China
| | - Xueqin He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610064, PR China
| | - Zhihang Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610064, PR China
| | - Xiaotong Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610064, PR China
| | - Wei Xiao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610064, PR China
| | - Rui Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610064, PR China
| | - Rou Xie
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610064, PR China
| | - Lin Qin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610064, PR China
| | - Huile Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610064, PR China.
| |
Collapse
|
20
|
Huang X, Yin Y, Wu M, Zan W, Yang Q. LyP-1 peptide-functionalized gold nanoprisms for SERRS imaging and tumor growth suppressing by PTT induced-hyperthermia. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2019.02.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
21
|
Wang J, Lin X, Shu T, Su L, Liang F, Zhang X. Self-Assembly of Metal Nanoclusters for Aggregation-Induced Emission. Int J Mol Sci 2019; 20:E1891. [PMID: 30999556 PMCID: PMC6515624 DOI: 10.3390/ijms20081891] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/01/2019] [Accepted: 04/03/2019] [Indexed: 01/01/2023] Open
Abstract
Aggregation-induced emission (AIE) is an intriguing strategy to enhance the luminescence of metal nanoclusters (NCs). However, the morphologies of aggregated NCs are often irregular and inhomogeneous, leading to instability and poor color purity of the aggregations, which greatly limit their further potential in optical applications. Inspired by self-assembly techniques, manipulating metal NCs into well-defined architectures has achieved success. The self-assembled metal NCs often exhibit enhancing emission stability and intensity compared to the individually or randomly aggregated ones. Meanwhile, the emission color of metal NCs becomes tunable. In this review, we summarize the synthetic strategies involved in self-assembly of metal NCs for the first time. For each synthetic strategy, we describe the self-assembly mechanisms involved and the dependence of optical properties on the self-assembly. Finally, we outline the current challenges to and perspectives on the development of this area.
Collapse
Affiliation(s)
- Jianxing Wang
- Beijing Advanced Innovation Center of Materials Genome Engineering, Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Xiangfang Lin
- Beijing Advanced Innovation Center of Materials Genome Engineering, Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Tong Shu
- Beijing Advanced Innovation Center of Materials Genome Engineering, Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Lei Su
- Beijing Advanced Innovation Center of Materials Genome Engineering, Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China.
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China.
| | - Feng Liang
- The State Key Laboratory for Refractories and Metallurgy, Institute of Advanced Materials and Nanotechnology, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.
| | - Xueji Zhang
- Beijing Advanced Innovation Center of Materials Genome Engineering, Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
22
|
Navyatha B, Nara S. Gold nanostructures as cancer theranostic probe: promises and hurdles. Nanomedicine (Lond) 2019; 14:766-796. [DOI: 10.2217/nnm-2018-0170] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Gold nanostructures (GNSts) have emerged as substitute for conventional contrast agents in imaging techniques and therapeutic probes due to their tunable surface plasmon resonance and optical properties in near-infrared region. Thus GNSts provide platform for the amalgamation of diagnosis and treatment (theranostics) into a single molecule for a more precise treatment. Hence, the article talks about the application of GNSts in imaging techniques and provide a holistic view on differently shaped GNSts in cancer theranostics. However, with promises GNSts also face various hurdles for their use as theranostic probe which are primarily associated with toxicity. Finally, the article attempts to discuss the challenges faced by GNSts and the way ahead that need to be traversed to place them in nanomedicine.
Collapse
Affiliation(s)
- Bankuru Navyatha
- Department of Biotechnology, Motilal Nehru National Institute of Technology Prayagraj, Uttar Pradesh, 211004, India
| | - Seema Nara
- Department of Biotechnology, Motilal Nehru National Institute of Technology Prayagraj, Uttar Pradesh, 211004, India
| |
Collapse
|
23
|
Theranostic nanoparticles with tumor-specific enzyme-triggered size reduction and drug release to perform photothermal therapy for breast cancer treatment. Acta Pharm Sin B 2019; 9:410-420. [PMID: 30976492 PMCID: PMC6438824 DOI: 10.1016/j.apsb.2018.09.001] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 08/02/2018] [Accepted: 08/14/2018] [Indexed: 12/22/2022] Open
Abstract
Although progress has been indeed made by nanomedicines, their efficacies for cancer treatment remain low, consequently leading to failures in translation to clinic. To improve the drug delivery efficiency, nanoparticles need to change size so as to fully utilize the enhanced permeability and retention (EPR) effect of solid tumor, which is the golden principle of nanoparticles used for cancer treatment. Herein, we employed cationic small-sized red emission bovine serum albumin (BSA) protected gold nanocluster (AuNC@CBSA, 21.06 nm) to both load indocyanine green (ICG) and act as imaging probe to realize theranostic. Then AuNC@CBSA-ICG was fabricated with negatively charged hyaluronic acid (HA) to form AuNC@CBSA-ICG@HA, which was about 200 nm to easily retain at tumor site and could be degraded by tumor-specific hyaluronidase into small nanoparticles for deep tumor penetration. The HA shell also endowed AuNC@CBSA-ICG@HA with actively targeting ability and hyaluronidase-dependent drug release. Furthermore, the quenching and recovery of fluorescence revealed the interaction between ICG and carrier, which was essential for the investigation of pharmacokinetic profiles. No matter in vitro or in vivo, AuNC@CBSA-ICG@HA showed markedly anti-tumor effect, and could suppress 95.0% of tumor growth on mice breast cancer model. All results demonstrated AuNC@CBSA-ICG@HA was potential for breast cancer therapy.
Collapse
|
24
|
Yu H, Man T, Ji W, Shi L, Wu C, Pei H, Zhang C. Controllable self-assembly of parallel gold nanorod clusters by DNA origami. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2018.04.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
25
|
Ultrasensitive electrochemical immunosensor of carcinoembryonic antigen based on gold-label silver-stain signal amplification. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2018.11.030] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
26
|
Zhou X, Hao Y, Yuan L, Pradhan S, Shrestha K, Pradhan O, Liu H, Li W. Nano-formulations for transdermal drug delivery: A review. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2018.10.037] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
27
|
Gold-nanobranched-shell based drug vehicles with ultrahigh photothermal efficiency for chemo-photothermal therapy. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 18:303-314. [PMID: 30326275 DOI: 10.1016/j.nano.2018.09.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 09/11/2018] [Accepted: 09/24/2018] [Indexed: 12/22/2022]
Abstract
Development of combined chemo-photothermal nanoplatform is of great interest for enhancing antitumor efficacy. Herein, a multifunctional drug delivery system was synthesized based on gold-nanobranched coated betulinic acid liposomes (GNBS-BA-Lips) for chemo-photothermal synergistic therapy. In this system, GNBS-BA-Lips exhibited broad near-infrared (NIR) absorption, preferable photothermal response and good photostability under NIR irradiation. Importantly, the gold-nanobranched nanostructure possessed high photothermal conversion efficiency (η = 55.7%), and the temperature change (ΔT) reached 43.2 °C after laser irradiation for 5 min. Upon NIR irradiation, the nanocarriers apparently endowed higher cell uptake, resulting in an enhanced intracellular drug accumulation. Furthermore, the tumor growth inhibition ratio achieved from chemo-photothermal therapy of GNBS-BA-Lips was 86.9 ± 1.1%, which was higher than that of the chemotherapy or photothermal therapy alone, showing an outstanding synergistic anticancer effect. Our data suggested that the nanoplatform should be considered as a critical platform in the development of cancer multi-mode therapies.
Collapse
|
28
|
Xu J, Shang L. Emerging applications of near-infrared fluorescent metal nanoclusters for biological imaging. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2017.12.020] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
29
|
Yang Z, Han X, Lee HK, Phan-Quang GC, Koh CSL, Lay CL, Lee YH, Miao YE, Liu T, Phang IY, Ling XY. Shape-dependent thermo-plasmonic effect of nanoporous gold at the nanoscale for ultrasensitive heat-mediated remote actuation. NANOSCALE 2018; 10:16005-16012. [PMID: 30113061 DOI: 10.1039/c8nr04053b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Nanoporous gold (NPG) promises efficient light-to-heat transformation, yet suffers limited photothermal conversion efficiency owing to the difficulty in controlling its morphology for the direct modulation of thermo-plasmonic properties. Herein, we showcase a series of shape-controlled NPG nanoparticles with distinct bowl- (NPG-B), tube- (NPG-T) and plate-like (NPG-P) structures for quantitative temperature regulation up to 140 °C in <1 s using laser irradiation. Notably, NPG-B exhibits the highest photothermal efficiency of 68%, which is >12 and 39 percentage points better than those of other NPG shapes (NPG-T, 56%; NPG-P, 49%) and Au nanoparticles (29%), respectively. We attribute NPG-B's superior photothermal performance to its >13% enhanced light absorption cross-section compared to other Au nanostructures. We further realize an ultrasensitive heat-mediated light-to-mechanical "kill switch" by integrating NPG-B with a heat-responsive shape-memory polymer (SMP/NPG-B). This SMP/NPG-B hybrid is analogous to a photo-triggered mechanical arm, and can be activated swiftly in <4 s simply by remote laser irradiation. Achieving remotely-activated "kill switch" is critical in case of emergencies such as gas leaks, where physical access is usually prohibited or dangerous. Our work offers valuable insights into the structural design of NPG for optimal light-to-heat conversion, and creates opportunities to formulate next-generation smart materials for on-demand and multi-directional responsiveness.
Collapse
Affiliation(s)
- Zhe Yang
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
García Calavia P, Bruce G, Pérez-García L, Russell DA. Photosensitiser-gold nanoparticle conjugates for photodynamic therapy of cancer. Photochem Photobiol Sci 2018; 17:1534-1552. [PMID: 30118115 DOI: 10.1039/c8pp00271a] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Gold nanoparticles (AuNPs) have been extensively studied within biomedicine due to their biocompatibility and low toxicity. In particular, AuNPs have been widely used to deliver photosensitiser agents for photodynamic therapy (PDT) of cancer. Here we review the state-of-the-art for the functionalisation of the gold nanoparticle surface with both photosensitisers and targeting ligands for the active targeting of cancer cell surface receptors. From the initial use of the AuNPs as a simple carrier of the photosensitiser for PDT, the field has significantly advanced to include: the use of PEGylated modification to provide aqueous compatibility and stealth properties for in vivo use; gold metal-surface enhanced singlet oxygen generation; functionalisation of the AuNP surface with biological ligands to specifically target over-expressed receptors on the surface of cancer cells and; the creation of nanorods and nanostars to enable combined PDT and photothermal therapies. These versatile AuNPs have significantly enhanced the efficacy of traditional photosensitisers for both in vitro and in vivo cancer therapy. From this review it is apparent that AuNPs have an important future in the treatment of cancer.
Collapse
Affiliation(s)
- Paula García Calavia
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
| | - Gordon Bruce
- School of Pharmacy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Lluïsa Pérez-García
- School of Pharmacy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - David A Russell
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
| |
Collapse
|
31
|
Xu Y, Tian M, Zhang H, Xiao Y, Hong X, Sun Y. Recent development on peptide-based probes for multifunctional biomedical imaging. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2018.03.032] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
32
|
Tang X, Tan L, Shi K, Peng J, Xiao Y, Li W, Chen L, Yang Q, Qian Z. Gold nanorods together with HSP inhibitor-VER-155008 micelles for colon cancer mild-temperature photothermal therapy. Acta Pharm Sin B 2018; 8:587-601. [PMID: 30109183 PMCID: PMC6089863 DOI: 10.1016/j.apsb.2018.05.011] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 05/18/2018] [Accepted: 05/18/2018] [Indexed: 02/05/2023] Open
Abstract
Enhancing the heat-sensitivity of tumor cells provides an alternative solution to maintaining the therapeutic outcome of photothermal therapy (PTT). In this study, we constructed a therapeutic system, which was composed of methoxy-polyethylene-glycol-coated-gold-nanorods (MPEG-AuNR) and VER-155008-micelles, to evaluate the effect of VER-155008 on the sensitivity of tumor cells to heat, and further investigate the therapeutic outcome of MPEG-AuNR mediated PTT combined with VER-155008- micelles. VER-155008- micelles down-regulate the expression of heat shock proteins and attenuate the heat-resistance of tumor cell. The survival of HCT116 cells treated with VER-155008- micelles under 45 °C is equal to that treated with high temperature hyperthermia (55 °C) in vitro. Furthermore, we proved either the MPEG-AuNR or VER-155008- micelles can be accumulate in the tumor site by photoacoustic imaging and fluorescent imaging. In vivo anti-cancer evaluation showed that tumor size remarkably decreased (smaller than 100 mm3 or vanished) when treated with combing 45 °C mild PTT system, which contrasted to the tumor size when treated with individual 45 °C mild PTT (around 500 nm3) or normal saline as control (larger than 2000 nm3). These results proved that the VER-155008- micelles can attenuate the heat-resistance of tumor cells and enhance the therapeutic outcome of mild-temperature photothermal therapy.
Collapse
Affiliation(s)
- Xichuan Tang
- State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center, Chengdu 610041, China
| | - Liwei Tan
- College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
| | - Kun Shi
- State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center, Chengdu 610041, China
| | - Jinrong Peng
- State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center, Chengdu 610041, China
| | - Yao Xiao
- State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center, Chengdu 610041, China
| | - Wenting Li
- Department of Pharmacy, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Lijuan Chen
- State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center, Chengdu 610041, China
| | - Qian Yang
- School of Pharmacy, Key College Laboratory of Sichuan Province for Specific Structure of Small Molecule Drugs, Chengdu Medical College, Chengdu 610500, China
| | - Zhiyong Qian
- State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center, Chengdu 610041, China
- Correspondence address. Tel./fax: +86 28 85501986.
| |
Collapse
|
33
|
Chen Y, Qiao J, Liu Q, Qi L. Ovalbumin-stabilized gold nanoclusters with ascorbic acid as reducing agent for detection of serum copper. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2017.10.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
34
|
Chakraborty D, Tripathi S, Ethiraj KR, Chandrasekaran N, Mukherjee A. Human serum albumin corona on functionalized gold nanorods modulates doxorubicin loading and release. NEW J CHEM 2018; 42:16555-16563. [DOI: 10.1039/c8nj03673j] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Human serum albumin corona around functionalized gold nanorods can modulate doxorubicin loading and release.
Collapse
Affiliation(s)
| | | | - K. R. Ethiraj
- School of Advanced Sciences
- Vellore Institute of Technology
- Vellore
- India
| | - N. Chandrasekaran
- Centre for Nanobiotechnology
- Vellore Institute of Technology
- Vellore
- India
| | - Amitava Mukherjee
- Centre for Nanobiotechnology
- Vellore Institute of Technology
- Vellore
- India
| |
Collapse
|