1
|
Wang J, Ye J, Lv W, Liu S, Zhang Z, Xu J, Xu M, Zhao C, Yang P, Fu Y. Biomimetic Nanoarchitectonics of Hollow Mesoporous Copper Oxide-Based Nanozymes with Cascade Catalytic Reaction for Near Infrared-II Reinforced Photothermal-Catalytic Therapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:40645-40658. [PMID: 36040363 DOI: 10.1021/acsami.2c11634] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Biomimetic nanozyme with natural enzyme-like activities has drawn extensive attention in cancer therapy, while its application was hindered by the limited catalytic efficacy in the complicated tumor microenvironment (TME). Herein, a hybrid biomimetic nanozyme combines polydopamine-decorated CuO with a natural enzyme of glucose oxidase (GOD), among which CuO is endowed with a high loading rate (47.1%) of GOD due to the elaborately designed hollow mesoporous structure that is constructed to maximize the cascade catalytic efficacy. In the TME, CuO could catalyze endogenous H2O2 into O2 for relieving tumor hypoxia and improving the catalytic efficacy of GOD. Whereafter, the amplified glucose oxidation induces starvation therapy, and the generated H2O2 and H+ enhance the catalytic activity of CuO. Significantly, the tumor-specific chemodynamic therapy (CDT) could be realized when CuO degraded into Cu2+ in acidic and reductive TME. Furthermore, the photothermal therapy with high photothermal conversion efficiency (30.2%) is achieved under NIR-II laser (1064 nm) excitation, which could reinforce the generation of reactive oxygen species (•OH and •O2-). The TME initiates the biochemical reaction cycle of CuO, O2, and GOD, which couples with an NIR-II-induced thermal effect to realize O2-promoted starvation and photothermal-chemodynamic combined therapy. This hybrid biomimetic nanozyme enlightens the further development of nanozymes in multimodal cancer therapy.
Collapse
Affiliation(s)
- Jun Wang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China
| | - Jin Ye
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China
| | - Wubin Lv
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China
| | - Shuang Liu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China
| | - Zhiyong Zhang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China
| | - Jiating Xu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China
- Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Northeast Forestry University, Harbin 150040, P. R. China
| | - Miaojun Xu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China
| | - Chunjian Zhao
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China
- Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Northeast Forestry University, Harbin 150040, P. R. China
| | - Piaoping Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| | - Yujie Fu
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P. R. China
| |
Collapse
|
2
|
Zhang X, Gao Z, Xia Y, Dong Q, Cao Y, Jia Q, Sun F, Li Z, Tang C, Yu J. Insight into the spatial interaction of D-π-A bridge derived cyanines and nitroreductase for fluorescent cancer hypoxia detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 273:121031. [PMID: 35189489 DOI: 10.1016/j.saa.2022.121031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 02/07/2022] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
Nitroreductase (NTR) detection in tumor is critical because NTR level is correlated with hypoxia degree and cancer prognosis. With the feature of high sensitivity and selectivity, fluorescence organic probes for NTR detection exhibited a promising future for tumor hypoxia detection. However, the discovery and design of such probes have been impeded due to the lack of the understanding of spatial match and mismatch of these probes with NTR. Here, we have developed two new nitrophenyl-functionalized trimethincyanine (Cy3) probes with para- or meta- positions of nitro-group in phenyl ring. Para-nitrophenyl substituted Cy3 (pNP-Cy3) exhibited a remarkable response to NTR (20-fold fluorescence enhancement) with good selectivity and sensitivity. Experimental and theoretical analysis verified that the substituent position of nitro group on phenyl ring of dyes altered the spatial arrangement of nitro-substituent group, thereby modulated the spatial match and mismatch between Cy3 dyes and binding domain of NTR, and consequently led to a different fluorescent turn-on response. In tumor-bearing mice model, hypoxia status of A549 xenografted tumor of mice was successfully delineated by using pNP-Cy3. These results may provide a clue for designing new cyanine-derived NTR probe to monitor NTR-overexpressed hypoxia cancer cells.
Collapse
Affiliation(s)
- Xianghan Zhang
- Engineering Research Center of Molecular-Imaging and Neuro-Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710026, China
| | - Zhiqing Gao
- Engineering Research Center of Molecular-Imaging and Neuro-Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710026, China
| | - Yuqiong Xia
- Engineering Research Center of Molecular-Imaging and Neuro-Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710026, China
| | - Qunyan Dong
- Engineering Research Center of Molecular-Imaging and Neuro-Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710026, China
| | - Yutian Cao
- Engineering Research Center of Molecular-Imaging and Neuro-Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710026, China
| | - Qian Jia
- Engineering Research Center of Molecular-Imaging and Neuro-Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710026, China
| | - Fang Sun
- Engineering Research Center of Molecular-Imaging and Neuro-Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710026, China
| | - Zheng Li
- Engineering Research Center of Molecular-Imaging and Neuro-Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710026, China
| | - Chu Tang
- Engineering Research Center of Molecular-Imaging and Neuro-Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710026, China
| | - Jie Yu
- Engineering Research Center of Molecular-Imaging and Neuro-Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710026, China.
| |
Collapse
|
3
|
Chen Y, Xue C, Wang J, Xu M, Li Y, Ding Y, Song H, Xu W, Xie H. High-contrast and real-time visualization of membrane proteins in live cells with malachite green-based fluorogenic probes. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.09.088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
4
|
Li H, Kim Y, Jung H, Hyun JY, Shin I. Near-infrared (NIR) fluorescence-emitting small organic molecules for cancer imaging and therapy. Chem Soc Rev 2022; 51:8957-9008. [DOI: 10.1039/d2cs00722c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We discuss recent advances made in the development of NIR fluorescence-emitting small organic molecules for tumor imaging and therapy.
Collapse
Affiliation(s)
- Hui Li
- Department of Chemistry, Yonsei University, 03722 Seoul, Republic of Korea
| | - Yujun Kim
- Department of Chemistry, Yonsei University, 03722 Seoul, Republic of Korea
| | - Hyoje Jung
- Department of Chemistry, Yonsei University, 03722 Seoul, Republic of Korea
| | - Ji Young Hyun
- Department of Drug Discovery, Data Convergence Drug Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
| | - Injae Shin
- Department of Chemistry, Yonsei University, 03722 Seoul, Republic of Korea
| |
Collapse
|
5
|
Recent progress in the design principles, sensing mechanisms, and applications of small-molecule probes for nitroreductases. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213460] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
6
|
Lu N, Luo Y, Zhang Q, Zhang P. Microenvironment-sensitive iridium(iii) complexes for disease theranostics. Dalton Trans 2020; 49:9182-9190. [PMID: 32542302 DOI: 10.1039/d0dt01444c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Microenvironmental parameters, including hypoxia, pH, polarity, viscosity and temperature, play pivotal roles in controlling the biological, physical or chemical behaviors of local molecules. Abnormal changes in these parameters would cause cellular malfunction or become a hallmark of the occurrence of severe diseases. Recently, a number of phosphorescent Ir(iii) complexes have been designed to respond to such parameters due to their attractive properties such as high photostability, long emission lifetimes, and environment-sensitive emission profiles. This review aims to provide a summary of the progress achieved in developing iridium-based probes responding to microenvironmental parameters in biological systems in recent years for diagnosis and treatment of diseases such as cancer and diabetes.
Collapse
Affiliation(s)
- Nong Lu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, P. R. China.
| | - Yuheng Luo
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, P. R. China.
| | - Qianling Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, P. R. China.
| | - Pingyu Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, P. R. China.
| |
Collapse
|
7
|
Zheng J, Liu Y, Song F, Jiao L, Wu Y, Peng X. A nitroreductase-activatable near-infrared theranostic photosensitizer for photodynamic therapy under mild hypoxia. Chem Commun (Camb) 2020; 56:5819-5822. [PMID: 32329480 DOI: 10.1039/d0cc02019b] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In this study, a near-infrared (NIR) theranostic photosensitizer was developed based on a heptamethine aminocyanine dye with a long-lived triplet state. This theranostic molecule can be activated by nitroreductase under mild hypoxia to be used in fluorescence imaging and highly efficient photodynamic therapy (PDT) both in 2D and 3D (spheroids) HeLa cell culture models.
Collapse
Affiliation(s)
- Jing Zheng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, No. 2 Linggong Road, High-tech District, Dalian, 116024, China.
| | | | | | | | | | | |
Collapse
|
8
|
Xu F, Li H, Yao Q, Ge H, Fan J, Sun W, Wang J, Peng X. Hypoxia-activated NIR photosensitizer anchoring in the mitochondria for photodynamic therapy. Chem Sci 2019; 10:10586-10594. [PMID: 32110344 PMCID: PMC7020795 DOI: 10.1039/c9sc03355f] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 10/01/2019] [Indexed: 12/16/2022] Open
Abstract
Photodynamic therapy is considered as a promising treatment for cancer, but still faces several challenges. The hypoxic environment in solid tumors, imprecise tumor recognition and the lack of selectivity between normal and cancer cells extremely hinder the applications of photodynamic therapy in clinics. Moreover, the "always on" property of photosensitizers also increases the toxicity to normal tissues when exposed to light irradiation. In this study, a hypoxia-activated NIR photosensitizer ICy-N was synthesized and successfully applied for in vivo cancer treatment. ICy-N is in the inactivated state with low fluorescence whereas its NIR emission (λ em = 716 nm) was induced via reduction caused by nitroreductase at the tumor site. In addition, the reduced product ICy-OH was specially located in the mitochondria and demonstrated a high singlet oxygen production under 660 nm light irradiation, which efficiently induced cell apoptosis (IC50 = 0.63 μM). The in vivo studies carried out in Balb/c mice indicated that ICy-N was suitable for precise tumor hypoxia imaging and can work as an efficient photosensitizer for restraining tumor growth through the PDT process.
Collapse
Affiliation(s)
- Feng Xu
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , 2 Linggong Road , Dalian 116024 , P. R. China .
| | - Haidong Li
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , 2 Linggong Road , Dalian 116024 , P. R. China .
| | - Qichao Yao
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , 2 Linggong Road , Dalian 116024 , P. R. China .
| | - Haoying Ge
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , 2 Linggong Road , Dalian 116024 , P. R. China .
| | - Jiangli Fan
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , 2 Linggong Road , Dalian 116024 , P. R. China .
| | - Wen Sun
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , 2 Linggong Road , Dalian 116024 , P. R. China .
| | - Jingyun Wang
- School of Life Science and Biotechnology , Dalian University of Technology , 2 Linggong Road , Dalian 116024 , P. R. China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , 2 Linggong Road , Dalian 116024 , P. R. China .
- Shenzhen Research Institute , Dalian University of Technology , Nanshan District , Shenzhen 518057 , P. R. China
| |
Collapse
|
9
|
Chen D, Qin W, Fang H, Wang L, Peng B, Li L, Huang W. Recent progress in two-photon small molecule fluorescent probes for enzymes. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2019.08.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
10
|
Liu Z, Song F, Shi W, Gurzadyan G, Yin H, Song B, Liang R, Peng X. Nitroreductase-Activatable Theranostic Molecules with High PDT Efficiency under Mild Hypoxia Based on a TADF Fluorescein Derivative. ACS APPLIED MATERIALS & INTERFACES 2019; 11:15426-15435. [PMID: 30945838 DOI: 10.1021/acsami.9b04488] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
High specificity detection and site-specific therapy are still the main challenges for theranostic anticancer prodrugs. In this work, we reported two smart activatable theranostic molecules based on a thermally activated delayed fluorescence fluorescein derivative. Nitroreductase induced by a mild hypoxia microenvironment of a solid tumor was used to activate the fluorescence and photodynamic therapy (PDT) efficiency by employing the intramolecular photoinduced electron transfer mechanism. A high PDT efficiency under 10% oxygen concentration was achieved, which is better than that of porphyrin (PpIX), a traditional photosensitizer. Such an excellent PDT efficiency can be attributed to lysosome disruption because the theranostic molecule can specifically enter the lysosomes of cells. Importantly, the strategy of targeting the mild hypoxic cells in the edge of tumor tissue could heal the "Achilles' heel" of traditional PDT. We believe that this theranostic molecule has a high potential to be applied in clinical investigation as a theranostic anticancer prodrug.
Collapse
Affiliation(s)
| | - Fengling Song
- Institute of Molecular Sciences and Engineering , Shandong University , Qingdao 266237 , P. R. China
| | | | | | | | | | | | | |
Collapse
|
11
|
Luo X, Li J, Zhao J, Gu L, Qian X, Yang Y. A general approach to the design of high-performance near-infrared (NIR) D-π-A type fluorescent dyes. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2019.03.012] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
12
|
Guan Q, Shi L, Li C, Gao X, Wang K, Liang X, Li P, Zhu X. A Fluorescent Cocktail Strategy for Differentiating Tumor, Inflammation, and Normal Cells by Detecting mRNA and H 2O 2. ACS Biomater Sci Eng 2019; 5:1023-1033. [PMID: 33405793 DOI: 10.1021/acsbiomaterials.8b01470] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Accurately distinguishing tumors from noncancerous inflammation and normal tissues is hugely significent for tumor diagnosis and therapy. However, tumor and inflammatory tissues have similar pathologic characteristics in their microenvironment, making differentiation very difficult. Here, a fluorescent cocktail nanoparticle capable of simultaneously detecting intracellular mRNA and H2O2 was designed to differentiate tumors from nontumor cells. To detect targeted mRNA in living cells, a DNA probe was generated using the fluorescence resonance energy transfer (FRET) principle. A pH-responsive amphiphilic polymer was synthesized to realize the transportation of the DNA probe. In addition, the polymer was conjugated with a coumarin-boronic acid ester (Cou-BE) H2O2 probe. According to the change in the fluorescence of Cou-BE, tumor and inflammatory cells could be distinguished from normal cells owing to their high concentration of H2O2. Because of the different concentrations of tumor-related mRNA in tumor and nontumor cells, the fluorescence intensity of the DNA probe-loaded nanoparticles inside tumor cells was different from that inside inflammatory cells. Therefore, our fluorescent cocktail strategy could discriminate simultaneously tumor, inflammation, and normal cells through the cooperative detection of intracellular mRNA and H2O2, which demonstrated potential application value in biomedical research and clinical diagnosis.
Collapse
Affiliation(s)
- Qinghua Guan
- School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.,Department of Nuclear Medicine, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Leilei Shi
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Chunting Li
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xihui Gao
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Kai Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China
| | - Xiaofei Liang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China
| | - Peiyong Li
- Department of Nuclear Medicine, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
13
|
Chen W, Pan Y, Chen J, Ye F, Liu SH, Yin J. Stimuli-responsive organic chromic materials with near-infrared emission. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2018.08.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
14
|
Vinylpyridine- and vinylnitrobenzene-coating tetraphenylethenes: Aggregation-induced emission (AIE) behavior and mechanochromic property. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2018.06.022] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
15
|
|
16
|
Xu J, Shang L. Emerging applications of near-infrared fluorescent metal nanoclusters for biological imaging. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2017.12.020] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
17
|
Chen J, Li D, Chi W, Liu G, Liu SH, Liu X, Zhang C, Yin J. A Highly Reversible Mechanochromic Difluorobenzothiadiazole Dye with Near-Infrared Emission. Chemistry 2018; 24:3671-3676. [DOI: 10.1002/chem.201705780] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Indexed: 01/04/2023]
Affiliation(s)
- Jianhua Chen
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry; Central China Normal University; Wuhan 430079 P. R. China
| | - Dongyang Li
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry; Central China Normal University; Wuhan 430079 P. R. China
| | - Weijie Chi
- Singapore University of Technology and Design; 8 Somapah Road 487372 Singapore Singapore
| | - Guotao Liu
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry; Central China Normal University; Wuhan 430079 P. R. China
| | - Sheng Hua Liu
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry; Central China Normal University; Wuhan 430079 P. R. China
| | - Xiaogang Liu
- Singapore University of Technology and Design; 8 Somapah Road 487372 Singapore Singapore
| | - Chun Zhang
- College of Life Science and Technology, National Engineering Research Center for Nanomedicine; Huazhong University of Science and Technology; 1037 Luoyu Road Wuhan 430074 P. R. China
| | - Jun Yin
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry; Central China Normal University; Wuhan 430079 P. R. China
| |
Collapse
|