1
|
Yao W, Ye XS. Donor Preactivation-Based Glycan Assembly: from Manual to Automated Synthesis. Acc Chem Res 2024; 57:1577-1594. [PMID: 38623919 DOI: 10.1021/acs.accounts.4c00072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Carbohydrates are called the third chain of life. Carbohydrates participate in many important biochemical functions in living species, and the biological information carried by them is several orders of magnitude larger than that of nucleic acids and proteins. However, due to the intrinsic complexity and heterogeneity of carbohydrate structures, furnishing pure and structurally well-defined glycans for functional studies is a formidable task, especially for homogeneous large-size glycans. To address this issue, we have developed a donor preactivation-based one-pot glycosylation strategy enabling multiple sequential glycosylations in a single reaction vessel.The donor preactivation-based one-pot glycosylation refers to the strategy in which the glycosyl donor is activated in the absence of a glycosyl acceptor to generate a reactive intermediate. Subsequently, the glycosyl acceptor with the same anomeric leaving group is added, leading to a glycosyl coupling reaction, which is then iterated to rapidly achieve the desired glycan in the same reactor. The advantages of this strategy include the following: (1) unique chemoselectivity is obtained after preactivation; (2) it is independent of the reactivity of glycosyl donors; (3) multiple-step glycosylations are enabled without the need for intermediate purification; (4) only stoichiometric building blocks are required without complex protecting group manipulations. Using this protocol, a range of glycans including tumor-associated carbohydrate antigens, various glycosaminoglycans, complex N-glycans, and diverse bacterial glycans have been synthesized manually. Gratifyingly, the synthesis of mycobacterial arabinogalactan containing 92 monosaccharide units has been achieved, which created a precedent in the field of polysaccharide synthesis. Recently, the synthesis of a highly branched arabinogalactan from traditional Chinese medicine featuring 140 monosaccharide units has been also accomplished to evaluate its anti-pancreatic-cancer activity. In the spirit of green and sustainable chemistry, this strategy can also be applied to light-driven glycosylation reactions, where either UV or visible light can be used for the activation of glycosyl donors.Automated synthesis is an advanced approach to the construction of complex glycans. Based on the two preactivation modes (general promoter activation mode and light-induced activation mode), a universal and highly efficient automated solution-phase synthesizer was further developed to drive glycan assembly from manual to automated synthesis. Using this synthesizer, a library of oligosaccharides covering various glycoforms and glycosidic linkages was assembled rapidly, either in a general promoter-activation mode or in a light-induced-activation mode. The automated synthesis of a fully protected fondaparinux pentasaccharide was realized on a gram scale. Furthermore, the automated synthesis of large-size polysaccharides was performed, allowing the assembly of arabinans up to an astonishing 1080-mer using the automated multiplicative synthesis strategy, taking glycan synthesis to a new height far beyond the synthesis of nucleic acids (up to 200-mer) and proteins (up to 472-mer).
Collapse
Affiliation(s)
- Wenlong Yao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, and Chemical Biology Center, Peking University, Xue Yuan Road No. 38, Beijing 100191, China
| | - Xin-Shan Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, and Chemical Biology Center, Peking University, Xue Yuan Road No. 38, Beijing 100191, China
- National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, China
| |
Collapse
|
2
|
Yang J, Wei S, Zhao J, Zeng W, Shao H, Ma X. An environmentally benign protocol for the synthesis of sugar 1,2-orthoesters in poly(ethylene glycol) dimethyl ether (DMPE). Carbohydr Res 2023; 534:108902. [PMID: 38006705 DOI: 10.1016/j.carres.2023.108902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/30/2023] [Accepted: 07/17/2023] [Indexed: 11/27/2023]
Abstract
An environmentally benign procedure has been developed for the synthesis of sugar orthoesters using anhydrous sodium acetate in poly (ethylene glycol)dimethyl ether (DMPE). Various sugar orthoesers were prepared without using volatile organic solvent and quaternary ammonium salt. The sugar orthoesters were obtained in good to excellent yields.
Collapse
Affiliation(s)
- Jian Yang
- Natural Products Research Centre, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Shanqiao Wei
- Natural Products Research Centre, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Jinzhong Zhao
- Natural Products Research Centre, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Wei Zeng
- Natural Products Research Centre, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Huawu Shao
- Natural Products Research Centre, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, PR China.
| | - Xiaofeng Ma
- Natural Products Research Centre, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| |
Collapse
|
3
|
Zhao Q, Zhou S, Wang Y, Yang X, Meng Y, Zhang Y, Gao J. Stereoselective synthesis of the 3,6-branched Fuzi α-glucans up to 15-mer via a one-pot and convergent glycosylation strategy. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
4
|
Borges EL, Goulart HA, Perin G, Schneider PH, Rieder GS, Nogara PA, da Rocha JBT. One-Pot Synthesis and in Silico Molecular Docking Studies of Arylselanyl Hydrazides as Potential Antituberculosis Agents. Chem Biodivers 2022; 19:e202100793. [PMID: 35293125 DOI: 10.1002/cbdv.202100793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 03/14/2022] [Indexed: 11/06/2022]
Abstract
The present study reports a simple two-step method for the synthesis of arylselanyl hydrazide derivatives using hypophosphorous acid and polyethylene glycol (H3 PO2 /PEG-400) as an alternative reducing system and hydrazine hydrate (NH2 NH2 ⋅xH2 O/50-60 %). This single-vessel procedure was employed with methyl acrylate 2a and methyl bromoacetate 2b using diaryl diselenides to generate the nucleophile species to produce, respectively, 3-(arylselanyl)propane-hydrazides 4a-e and 2-(arylselanyl)acetohydrazides 5a-e with good yields by accelerating the reduction of -Se-Se- bond, when compared to available methods. The synthesized molecules are structurally similar to the isoniazid (INH). Therefore, we perform in silico molecular docking studies, using the lactoperoxidase enzyme, in order to verify whether the INH Se derivatives could interact in a similar way to INH at the active site of the mammalian enzyme. The in silico results indicated a similar type of interaction of the arylselanyl hydrazide derivatives with that of INH. In view of the similar in silico interaction of the selenium derivatives of INH, the arylselanyl hydrazide derivatives reported here should be tested against Mycobacterium tuberculosis in vitro.
Collapse
Affiliation(s)
- Elton L Borges
- Grupo de Pesquisa em Síntese Orgânica da Região Amazônica (LASORA, DAEPA), Fundação Universidade Federal de Rondônia (UNIR), Rua da Paz 4376, 76916-000, Presidente Médici, RO, Brazil
| | - Helen A Goulart
- Laboratório de Síntese Orgânica Limpa (LASOL, CCQFA), Universidade Federal de Pelotas (UFPel), PO Box 354, 96010-900, Pelotas, RS, Brazil
| | - Gelson Perin
- Laboratório de Síntese Orgânica Limpa (LASOL, CCQFA), Universidade Federal de Pelotas (UFPel), PO Box 354, 96010-900, Pelotas, RS, Brazil
| | - Paulo H Schneider
- Instituto de Química, Universidade Federal do Rio Grande do Sul (UFRGS), 91501-970, Porto Alegre, RS, Brazil
| | - Guilherme S Rieder
- Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria (UFSM), 97105-90, Santa Maria, RS, Brazil
| | - Pablo A Nogara
- Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria (UFSM), 97105-90, Santa Maria, RS, Brazil
| | - João B T da Rocha
- Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria (UFSM), 97105-90, Santa Maria, RS, Brazil
| |
Collapse
|
5
|
Liu M, Qin X, Ye XS. Glycan Assembly Strategy: From Concept to Application. CHEM REC 2021; 21:3256-3277. [PMID: 34498347 DOI: 10.1002/tcr.202100183] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/30/2021] [Indexed: 12/11/2022]
Abstract
Glycans have been hot topics in recent years due to their exhibition of numerous biological activities. However, the heterogeneity of their natural source and the complexity of their chemical synthesis impede the progress in their biological research. Thus, the development of glycan assembly strategies to acquire plenty of structurally well-defined glycans is an important issue in carbohydrate chemistry. In this review, the latest advances in glycan assembly strategies from concepts to their applications in carbohydrate synthesis, including chemical and enzymatic/chemo-enzymatic approaches, as well as solution-phase and solid-phase/tag-assisted synthesis, are summarized. Furthermore, the automated glycan assembly techniques are also outlined.
Collapse
Affiliation(s)
- Mingli Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| | - Xianjin Qin
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| | - Xin-Shan Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| |
Collapse
|
6
|
Qin X, Ye X. Donor
Preactivation‐Based
Glycosylation: An Efficient Strategy for Glycan Synthesis. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000484] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Xianjin Qin
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Xue Yuan Road No. 38 Beijing 100191 China
| | - Xin‐Shan Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Xue Yuan Road No. 38 Beijing 100191 China
| |
Collapse
|
7
|
Cai L, Meng L, Zeng J, Wan Q. Sequential activation of thioglycosides enables one-pot glycosylation. Org Chem Front 2021. [DOI: 10.1039/d0qo01414a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This review describes recent developments in relative reactivity value (RRV) controlled sequential glycosylation, pre-activation based iterative glycosylation, and sulfoxide activation initiated one-pot glycosylation.
Collapse
Affiliation(s)
- Lei Cai
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation
- School of Pharmacy
- Huazhong University of Science and Technology
- Wuhan
- China
| | - Lingkui Meng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation
- School of Pharmacy
- Huazhong University of Science and Technology
- Wuhan
- China
| | - Jing Zeng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation
- School of Pharmacy
- Huazhong University of Science and Technology
- Wuhan
- China
| | - Qian Wan
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation
- School of Pharmacy
- Huazhong University of Science and Technology
- Wuhan
- China
| |
Collapse
|
8
|
Zhao SY, Li N, Luo WY, Zhang NN, Zhou RY, Li CY, Wang J. Chemical synthesis and antigenic activity of a phosphatidylinositol mannoside epitope from Mycobacterium tuberculosis. Chem Commun (Camb) 2020; 56:14067-14070. [PMID: 33104149 DOI: 10.1039/d0cc05573e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Phosphatidylinositol mannosides (PIMs) have been investigated as lipidic antigens for a new subunit tuberculosis vaccine. A non-natural diacylated phosphatidylinositol mannoside (Ac2PIM2) was designed and synthesized by mimicking the natural PIM6 processing procedure in dentritic cells. This synthetic Ac2PIM2 was achieved from α-methyl d-glucopyranoside 1 in 17 steps in 2.5% overall yield. A key feature of the strategy was extending the use of the chiral myo-inositol building block A to the O-2 and O-6 positions of the inositol unit to allow for introducing the mannose building blocks B1 and B2, and to the O-1 position for the phosphoglycerol building block C. Building block A, being a flexible core unit, may facilitate future access to other higher-order PIM analogues. A preliminary antigenic study showed that the synthetic PIM epitope (Ac2PIM2) was significantly more active than natural Ac2PIM2, which indicated that the synthetic Ac2PIM2 can be strongly immunoactive and may be developed as a potential vaccine.
Collapse
Affiliation(s)
- Shi-Yuan Zhao
- School of Pharmacy, Yancheng Teachers University, Hope Avenue South Road No. 2, Yancheng, 224007, Jiangsu Province, P. R. China.
| | - Na Li
- School of Pharmacy, Yancheng Teachers University, Hope Avenue South Road No. 2, Yancheng, 224007, Jiangsu Province, P. R. China.
| | - Wan-Yue Luo
- School of Pharmacy, Yancheng Teachers University, Hope Avenue South Road No. 2, Yancheng, 224007, Jiangsu Province, P. R. China.
| | - Nan-Nan Zhang
- School of Pharmacy, Yancheng Teachers University, Hope Avenue South Road No. 2, Yancheng, 224007, Jiangsu Province, P. R. China.
| | - Rong-Ye Zhou
- School of Pharmacy, Yancheng Teachers University, Hope Avenue South Road No. 2, Yancheng, 224007, Jiangsu Province, P. R. China.
| | - Chen-Yu Li
- School of Pharmacy, Yancheng Teachers University, Hope Avenue South Road No. 2, Yancheng, 224007, Jiangsu Province, P. R. China.
| | - Jin Wang
- School of Pharmacy, Yancheng Teachers University, Hope Avenue South Road No. 2, Yancheng, 224007, Jiangsu Province, P. R. China. and Université de Toulouse, Université Toulouse III - Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex 9, France and CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), 205 route de Narbonne, 31077 Toulouse, France
| |
Collapse
|
9
|
Xu K, Man Q, Zhang Y, Guo J, Liu Y, Fu Z, Zhu Y, Li Y, Zheng M, Ding N. Investigation of the remote acyl group participation in glycosylation from conformational perspectives by using trichloroacetimidate as the acetyl surrogate. Org Chem Front 2020. [DOI: 10.1039/d0qo00363h] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The remote acyl group participation in glycosylation was studied by using trichloroacetimidate as the acetyl surrogate. The bridging participation intermediates were systematically trapped, and DFT calculations were applied to explain the results.
Collapse
|
10
|
Wang Y, Wu Y, Xiong D, Ye X. Total Synthesis of a Hyperbranched
N
‐Linked Hexasaccharide Attached to ATCV‐1 Major Capsid Protein without Precedent. CHINESE J CHEM 2018. [DOI: 10.1002/cjoc.201800533] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yong‐Shi Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical SciencesPeking University Xue Yuan Road No. 38, Beijing 100191 China
| | - Yong Wu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical SciencesPeking University Xue Yuan Road No. 38, Beijing 100191 China
| | - De‐Cai Xiong
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical SciencesPeking University Xue Yuan Road No. 38, Beijing 100191 China
- State Key Laboratory of Drug ResearchShanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 200031 China
| | - Xin‐Shan Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical SciencesPeking University Xue Yuan Road No. 38, Beijing 100191 China
| |
Collapse
|