1
|
Chen ZL, Lin J, Li Q, Zhang X, Song Y, Li H, Huang WH, Xu J. Microelectrochemical Sensor Reveals Tunneling Nanotube-Mediated Intercellular Communication of Endothelial Mechanotransduction. Anal Chem 2024; 96:9659-9665. [PMID: 38798234 DOI: 10.1021/acs.analchem.4c01542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The intercellular communication of mechanotransduction has a significant impact on various cellular processes. Tunneling nanotubes (TNTs) have been documented to possess the capability of transmitting mechanical stimulation between cells, thereby triggering an influx of Ca2+ ions. However, the related kinetic information on the TNT-mediated intercellular mechanotransduction communication is still poorly explored. Herein, we developed a classic and sensitive Pt-functionalized carbon fiber microelectrochemical sensor (Pt/CF) to study the intercellular communication of endothelial mechanotransduction through TNTs. The experimental findings demonstrate that the transmission of mechanical stimulation from stimulated human umbilical vein endothelial cells (HUVECs) to recipient HUVECs connected by TNTs occurred quickly (<100 ms) and effectively promoted nitric oxide (NO) production in the recipient HUVECs. The kinetic profile of NO release exhibited remarkable similarity in stimulated and recipient HUVECs. But the production of NO in the recipient cell is significantly attenuated (16.3%) compared to that in the stimulated cell, indicating a transfer efficiency of approximately 16.3% for TNTs. This study unveils insights into the TNT-mediated intercellular communication of mechanotransduction.
Collapse
Affiliation(s)
- Zhi-Liang Chen
- School of Pharmacy, Shaoyang University, Shaoyang 422000, P. R China
| | - Jiamei Lin
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang 330013, P. R. China
| | - Qianming Li
- Jiangxi Administration of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang 330006, P. R. China
| | - Xinglei Zhang
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang 330013, P. R. China
| | - Yonggui Song
- Jiangxi Administration of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang 330006, P. R. China
| | - Hui Li
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang 330013, P. R. China
| | - Wei-Hua Huang
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Jiaquan Xu
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang 330013, P. R. China
| |
Collapse
|
2
|
Sun M, Sun H, Yu C, Lu P, Feng F, Zhang J, Li W, Yao L. Force-Encoding DNA Nanomachines for Simultaneous and Direct Detection of Multiple Pathogenic Bacteria in Blood. Anal Chem 2024; 96:4314-4321. [PMID: 38415347 DOI: 10.1021/acs.analchem.4c00298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Pathogen detection is growing in importance in the early stages of bacterial infection and treatment due to the significant morbidity and mortality associated with bloodstream infections. Although various diagnostic approaches for pathogen detection have been proposed, most of them are time-consuming, with insufficient sensitivity and limited specificity and multiplexing capability for clinical use. Here, we report a force-encoding DNA nanomachine for simultaneous and high-throughput detection of multiple pathogens in blood through force-induced remnant magnetization spectroscopy (FIRMS). The force-encoding DNA nanomachines coupled with DNA walkers enable analytical sensitivity down to a single bacterium via a cascade signal amplification strategy. More importantly, it allows for rapid and specific profiling of various pathogens directly in blood samples, without being affected by factors such as light color and solution properties. We expect that this magnetic sensing platform holds great promise for various applications in biomedical research and clinical diagnostics.
Collapse
Affiliation(s)
- Mengxue Sun
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing 100190, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Hongxia Sun
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing 100190, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Chanchan Yu
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing 100190, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Pan Lu
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing 100190, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Feng Feng
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing 100190, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Jin Zhang
- Department of Thoracic Surgery, China-Japan Friendship Hospital, Beijing 100029, China
| | - Wenchao Li
- The Seventh Medical Center of Chinese People's Liberation Army General Hospital, Beijing 100010, China
| | - Li Yao
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing 100190, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Li A, Zou J, Zhuo X, Chen S, Chai X, Gai C, Li X, Zhao Q, Zou Y. Rational Optimizations of the Marine-Derived Peptide Sungsanpin as Novel Inhibitors of Cell Invasion. Chem Biodivers 2023; 20:e202201221. [PMID: 36651671 DOI: 10.1002/cbdv.202201221] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/19/2023]
Abstract
Cancer metastasis, including cell invasion, is a major cause of poor clinical outcomes and death in numerous cancer patients. In recent years, many efforts have been made to develop potent therapeutic molecules from naturally derived peptides. Sungsanpin is a naturally derived lasso peptide that inhibits A549 cell invasion. We aimed to evaluate the potential of sungsanpin derivatives as candidates for anti-invasion drugs. We synthesized an analog of sungsanpin (Sun A) using a solid-phase peptide synthesis strategy (SPPS) and further modified its structure to improve its anti-invasion activity. All peptides were tested for their proliferative inhibition and anti-invasion activities in the A549 cell lines. Octapeptide S3 and cyclooctapeptide S4 upregulated the expression of TIMP-1 and TIMP-2 mRNA effectively and thus improved the inhibitory effect on the invasion of A549 cells. The two peptides can inhibit the invasion of A549 cells by up to 60 %, suggesting that they have potential as lead molecules for the development of peptide inhibitors.
Collapse
Affiliation(s)
- Anpeng Li
- School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Jihua Zou
- Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province 350122, China
| | - Xiaobin Zhuo
- School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Shuai Chen
- School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Xiaoyun Chai
- School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Conghao Gai
- School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Xiang Li
- School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Qingjie Zhao
- School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Yan Zou
- School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| |
Collapse
|
4
|
Ferraro R, Ascione F, Dogra P, Cristini V, Guido S, Caserta S. Diffusion‐induced anisotropic cancer invasion: a novel experimental method based on tumour spheroids. AIChE J 2022. [DOI: 10.1002/aic.17678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Rosalia Ferraro
- Università degli Studi di Napoli Federico II Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale Naples Italy
- CEINGE Advanced Biotechnologies Naples Italy
| | - Flora Ascione
- Università degli Studi di Napoli Federico II Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale Naples Italy
| | - Prashant Dogra
- Mathematics in Medicine Program Houston Methodist Research Institute Houston Texas USA
- Department of Physiology and Biophysics Weill Cornell Medical College New York New York USA
| | - Vittorio Cristini
- Mathematics in Medicine Program Houston Methodist Research Institute Houston Texas USA
- Department of Imaging Physics University of Texas MD Anderson Cancer Center Houston Texas USA
- Physiology, Biophysics, and Systems Biology Program, Graduate School of Medical Sciences Weill Cornell Medicine New York New York USA
| | - Stefano Guido
- Università degli Studi di Napoli Federico II Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale Naples Italy
- CEINGE Advanced Biotechnologies Naples Italy
| | - Sergio Caserta
- Università degli Studi di Napoli Federico II Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale Naples Italy
- CEINGE Advanced Biotechnologies Naples Italy
| |
Collapse
|
5
|
Di-4-ANEPPDHQ probes the response of lipid packing to the membrane tension change in living cells. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.08.060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Song Y, Huang Y, Zhou F, Ding J, Zhou W. Macrophage-targeted nanomedicine for chronic diseases immunotherapy. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.08.090] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
7
|
Li Y, Zhao D, Shi Y, Sun Z, Liu R. Role of Co in the Electrocatalytic Activity of Monolayer Ternary NiFeCo-Double Hydroxide Nanosheets for Oxygen Evolution Reaction. MATERIALS 2021; 14:ma14010207. [PMID: 33406720 PMCID: PMC7795402 DOI: 10.3390/ma14010207] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/07/2020] [Accepted: 12/14/2020] [Indexed: 02/06/2023]
Abstract
Monolayer nanosheets have gained significant attention as functional materials and also in photo/electrocatalysis due to their unique physical/chemical properties, abundance of highly exposed coordination sites, edges, and corner sites, motivating the pursuit of highly active monolayer nanosheets. NiFe-based layered double hydroxide (NiFe-LDH) nanosheets have been regarded as the most efficient electrocatalysis for oxygen evolution. However, the limited catalytic active site and the stacking layer limited the performance. Therefore, by introducing highly electroactive Co ions into monolayer NiFe-LDH, the obtained ternary NiFeCo-LDH monolayer structure possessed an increased concentration of defect (oxygen and metal vacancies), providing enough unsaturated coordination sites, benefitting the electrocatalytic water oxidation, as also explained by the density functional theory (DFT). This work reported an efficient strategy for the synthesis of ternary monolayer LDH in the application of energy conversion and storage.
Collapse
Affiliation(s)
- Ye Li
- Beijing Institute of Graphic Communication, School of New Media, Beijing 102600, China;
| | - Dan Zhao
- Beijing Institute of Graphic Communication, School of Printing and Packaging Engineering, Beijing 102600, China; (D.Z.); (Y.S.); (Z.S.)
| | - Yue Shi
- Beijing Institute of Graphic Communication, School of Printing and Packaging Engineering, Beijing 102600, China; (D.Z.); (Y.S.); (Z.S.)
| | - Zhicheng Sun
- Beijing Institute of Graphic Communication, School of Printing and Packaging Engineering, Beijing 102600, China; (D.Z.); (Y.S.); (Z.S.)
| | - Ruping Liu
- Beijing Institute of Graphic Communication, School of Printing and Packaging Engineering, Beijing 102600, China; (D.Z.); (Y.S.); (Z.S.)
- Correspondence: ; Tel.: +86-010-6026-1603
| |
Collapse
|
8
|
Zhang W, Wang F, Hu C, Zhou Y, Gao H, Hu J. The progress and perspective of nanoparticle-enabled tumor metastasis treatment. Acta Pharm Sin B 2020; 10:2037-2053. [PMID: 33304778 PMCID: PMC7714986 DOI: 10.1016/j.apsb.2020.07.013] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/14/2020] [Accepted: 07/09/2020] [Indexed: 02/06/2023] Open
Abstract
As one of the most serious threats to human being, cancer is hard to be treated when metastasis happens. What's worse, there are few identified targets of metastasis for drug development. Therefore, it is important to develop strategies to prevent metastasis or treat existed metastasis. This review focuses on the procedure of metastasis, and first summarizes the targeting delivery strategies, including primary tumor targeting drug delivery, tumor metastasis targeting drug delivery and hijacking circulation cells. Then, as a promising treatment, the application of immunotherapy in tumor metastasis treatment is introduced, and strategies that stimulating immune response are reviewed, including chemotherapy, photothermal therapy, photodynamic therapy, ferroptosis, sonodynamic therapy, and nanovaccines. Finally, the challenges and perspective about nanoparticle-enabled tumor metastasis treatment are discussed.
Collapse
|
9
|
Wu X, Liu T, Gao S, Chen S, Lu Q. Single Polar Cell Trapping Based on the Breath Figure Method. ACS OMEGA 2019; 4:20223-20229. [PMID: 31815223 PMCID: PMC6893950 DOI: 10.1021/acsomega.9b02522] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 10/11/2019] [Indexed: 06/10/2023]
Abstract
The ability to research individual cells is important for various biological studies. Currently reported biointerfaces for single-cell analysis can only trap individual cells in random morphologies. Cell polarity is a key factor in cellular functions, and the study of single-cell polarity can facilitate an understanding of cancer metastasis and stem-cell differentiation. For single polar cell trapping, anisotropic honeycomb-structured films were prepared. Elastic poly(1,2-butadiene) honeycomb films with ordered hexagonal pores were first prepared via the breath figure method. Subsequently, the films were subjected to mechanical stretching and fixed via photo-cross-linking under UV light irradiation. This stretched honeycomb structure was then transferred to a polystyrene surface. The resultant anisotropic porous films exhibited excellent capacity for single-cell trapping. Besides contributing to the physical spatial confinement of cells, the trapped single cells exhibited orientation in different polarities. The single polar cell array provided a novel platform for fundamental biological research.
Collapse
Affiliation(s)
- Xixi Wu
- School of Chemical Science and Engineering and School of Medicine, Tongji University, Siping Road 1239, Shanghai 200092, China
| | - Tao Liu
- School of Chemical Science and Engineering and School of Medicine, Tongji University, Siping Road 1239, Shanghai 200092, China
| | - Su Gao
- School
of Chemistry and Chemical Engineering, Shanghai
Jiao Tong University, Dongchuan Road 800, Shanghai 200240, China
| | - Shuangshuang Chen
- School of Chemical Science and Engineering and School of Medicine, Tongji University, Siping Road 1239, Shanghai 200092, China
| | - Qinghua Lu
- School of Chemical Science and Engineering and School of Medicine, Tongji University, Siping Road 1239, Shanghai 200092, China
- School
of Chemistry and Chemical Engineering, Shanghai
Jiao Tong University, Dongchuan Road 800, Shanghai 200240, China
| |
Collapse
|
10
|
Seleno-β-lactoglobulin (Se-β-Lg) induces mitochondria-dependant apoptosis in HepG2 cells. Mol Biol Rep 2019; 46:5025-5031. [PMID: 31364020 DOI: 10.1007/s11033-019-04953-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 06/27/2019] [Indexed: 12/31/2022]
Abstract
Selenium compounds have been widely investigated as novel anticancer agents due to high efficacy and selectivity against cancer cells in recent years. This study aimed to research the potential inhibitory effects of seleno-β-lactoglobulin (Se-β-Lg) on HepG2 cells in vitro. MTT results demonstrated that the synthetized Se-β-Lg exhibited strong antitumor activity on HepG2 cells with few side effects on human normal cells (LO2) and relatively weaker cytotoxic effects compared to inorganic selenium (SeO2). Scanning electron microscope (SEM), hoechst 33342/PI double staining, annexin V-FITC/PI staining and cell cycle detection results showed that Se-β-Lg could induce the apoptosis of HepG2 cells via arresting them in S and G2/M phases and lead to the obvious morphological changes (loss of adhesion, cell shrinkage, and membrane blebbing, membrane permeabilities and DNA fragmentation). Besides, JC-1 staining, western blotting (WB) and polymerase chain reaction (PCR) results showed that Se-β-Lg could gradually destroy the mitochondrial membrane potential of HepG2 cells, and finally resulting in the mitochondria-dependant apoptosis via up-regulation of Bax, Cytochrome c, Caspase-3 and down-regulation of Bcl-2. Our data could provide a theoretical basis for practical application of Se-β-Lg in food and drug industries.
Collapse
|