1
|
Ma L, Zhang S, Ren J, Wang G, Li J, Chen Z, Yao H, Hou J. Design of a Fully Non-Fused Bulk Heterojunction toward Efficient and Low-Cost Organic Photovoltaics. Angew Chem Int Ed Engl 2023; 62:e202214088. [PMID: 36448216 DOI: 10.1002/anie.202214088] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/04/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022]
Abstract
To modulate the miscibility between donor and acceptor materials both possessing fully non-fused ring structures, a series of electron acceptors (A4T-16, A4T-31 and A4T-32) with different polar functional substituents were synthesized and investigated. The three acceptors show good planarity, high conformational stability, complementary absorption and energy levels with the non-fused polymer donor (PTVT-BT). Among them, A4T-32 possesses the strongest polar functional group and shows the highest surface energy, which facilitates morphological modulation in the bulk heterojunction (BHJ) blend. Benefiting from the proper morphology control method, an impressive power conversion efficiency (PCE) of approaching 16.0 % and a superior fill factor over 0.795 are achieved in the PTVT-BT : A4T-32-based organic photovoltaic cells with superior photoactive materials price advantage, which represent the highest value for the cells based on the non-fused blend films. Notably, this cell maintains ≈84 % of its initial PCE after nearly 2000 h under the continuous simulated 1-sun-illumination. In addition, the flexible PTVT-BT : A4T-32-based cells were fabricated and delivered a decent PCE of 14.6 %. This work provides an effective molecular design strategy for the non-fused non-fullerene acceptors (NFAs) from the aspect of bulk morphology control in fully non-fused BHJ layers, which is crucial for their practical applications.
Collapse
Affiliation(s)
- Lijiao Ma
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Shaoqing Zhang
- School of Chemistry and Biology Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Junzhen Ren
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Guanlin Wang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jiayao Li
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhihao Chen
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Huifeng Yao
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Jianhui Hou
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
2
|
Gao J, Zhu X, Bao H, Feng J, Gao X, Liu Z, Ge Z. Latest progress on fully non-fused electron acceptors for high-performance organic solar cells. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
3
|
Wang D, Yang Z, Liu F, Xiao C, Wu Y, Li W. A benzo[ghi]-perylene triimide based double-cable conjugated polymer for single-component organic solar cells. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.06.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
4
|
Chang Y, Li J, Chang Y, Zhang Y, Zhang J, Lu K, Sun X, Wei Z. Enhancing the performances of all-small-molecule ternary organic solar cells via achieving optimized morphology and 3D charge pathways. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.03.067] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
5
|
Completely non-fused electron acceptor with 3D-interpenetrated crystalline structure enables efficient and stable organic solar cell. Nat Commun 2021; 12:5093. [PMID: 34429435 PMCID: PMC8384863 DOI: 10.1038/s41467-021-25394-w] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 08/04/2021] [Indexed: 11/21/2022] Open
Abstract
Non-fullerene acceptors (NFAs) based on non-fused conjugated structures have more potential to realize low-cost organic photovoltaic (OPV) cells. However, their power conversion efficiencies (PCEs) are much lower than those of the fused-ring NFAs. Herein, a new bithiophene-based non-fused core (TT-Pi) featuring good planarity as well as large steric hindrance was designed, based on which a completely non-fused NFA, A4T-16, was developed. The single-crystal result of A4T-16 reveals that a three-dimensional interpenetrating network can be formed due to the compact π–π stacking between the adjacent end-capping groups. A high PCE of 15.2% is achieved based on PBDB-TF:A4T-16, which is the highest value for the cells based on the non-fused NFAs. Notably, the device retains ~84% of its initial PCE after 1300 h under the simulated AM 1.5 G illumination (100 mW cm−2). Overall, this work provides insight into molecule design of the non-fused NFAs from the aspect of molecular geometry control. Non-fullerene acceptors based on non-fused conjugated structures have potential for realizing low-cost organic photovoltaic cells, owing to its synthetic simplicity. Here, the authors develop a non-fused molecule with a three-dimensional interpenetrating network and compact π-π stacking, which is highly suitable for PV applications.
Collapse
|
6
|
Benzothiadiazole-based Conjugated Polymers for Organic Solar Cells. CHINESE JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1007/s10118-021-2537-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Side-chains Engineering of Conjugated Polymers toward Additive-free Non-fullerene Organic Solar Cells. CHINESE JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1007/s10118-020-2490-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
8
|
Lim E. P3HT‐Based Polymer Solar Cells with Unfused Bithiophene–Rhodanine‐based Nonfullerene Acceptors. B KOREAN CHEM SOC 2020. [DOI: 10.1002/bkcs.12048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Eunhee Lim
- Department of ChemistryKyonggi University Suwon 16227 Republic of Korea
| |
Collapse
|
9
|
Liu F, Li C, Li J, Wang C, Xiao C, Wu Y, Li W. Ternary organic solar cells based on polymer donor, polymer acceptor and PCBM components. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.06.051] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
10
|
Ma X, Yi Y. Electronic polarization in dipolar organic molecular semiconductors: The case study of 1,2,3,4-tetrafluoro-6,7-dimethylnaphthalene crystal. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.05.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
11
|
Xuan M, Lu C, Lin BL. C-S coupling with nitro group as leaving group via simple inorganic salt catalysis. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.07.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
12
|
Zhao C, Yang F, Xia D, Zhang Z, Zhang Y, Yan N, You S, Li W. Thieno[3,4-c]pyrrole-4,6-dione-based conjugated polymers for organic solar cells. Chem Commun (Camb) 2020; 56:10394-10408. [DOI: 10.1039/d0cc04150e] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Thieno[3,4-c]pyrrole-4,6-dione (TPD) based conjugated polymers as an electron donor, acceptor and single-component for application in organic solar cells in the past ten years have been intensively reviewed in this Feature Article.
Collapse
Affiliation(s)
- Chaowei Zhao
- Institute of Applied Chemistry
- Jiangxi Academy of Sciences
- Nanchang 330096
- P. R. China
| | - Fan Yang
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Centre of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Shandong Normal University
- Jinan 250014
| | - Dongdong Xia
- Beijing National Laboratory for Molecular Sciences
- CAS Key Laboratory of Organic Solids, Institute of Chemistry
- Chinese Academy of Sciences
- Beijing
- P. R. China
| | - Zhou Zhang
- Institute of Applied Chemistry
- Jiangxi Academy of Sciences
- Nanchang 330096
- P. R. China
- College of Chemistry and Environmental Science
| | - Yuefeng Zhang
- Institute of Applied Chemistry
- Jiangxi Academy of Sciences
- Nanchang 330096
- P. R. China
| | - Nanfu Yan
- Institute of Applied Chemistry
- Jiangxi Academy of Sciences
- Nanchang 330096
- P. R. China
| | - Shengyong You
- Institute of Applied Chemistry
- Jiangxi Academy of Sciences
- Nanchang 330096
- P. R. China
| | - Weiwei Li
- Institute of Applied Chemistry
- Jiangxi Academy of Sciences
- Nanchang 330096
- P. R. China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic–Inorganic Composites
| |
Collapse
|
13
|
Tian Z, Guo Y, Li J, Li C, Li W. Benzodithiophene-Fused Perylene Bisimides as Electron Acceptors for Non-Fullerene Organic Solar Cells with High Open-Circuit Voltage. Chemphyschem 2019; 20:2696-2701. [PMID: 31012986 DOI: 10.1002/cphc.201900309] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/23/2019] [Indexed: 11/05/2022]
Abstract
Tandem-junction organic solar cells require solar cells with visible light photo-response as front cells, in which an open-circuit voltage (Voc ) above 1.0 V is highly demanded. In this work, we are able to develop electron acceptors to fabricate non-fullerene organic solar cells (NFOSCs) with a very high Voc of 1.14 V. This was realized by designing perylene bisimide (PBI)-based conjugated materials fused with benzodithiophene, in which Cl and S atom were introduced into the molecules in order to lower the frontier energy levels. The fused structures can reduce the aggregation of PBI unit and meanwhile maintain a good charge transport property. The new electron acceptors were applied into NFOSCs by using Cl and S substituted conjugated polymers as electron donor, in which an initial power conversion efficiency of 6.63 % and a high Voc of 1.14 V could be obtained. The results demonstrate that the molecular design by incorporating Cl and S atom into electron acceptors has great potential to realize high performance NFOSCs.
Collapse
Affiliation(s)
- Zhongrong Tian
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yiting Guo
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Junyu Li
- DSM DMSC R&D Solutions, P.O. Box 18, 6160 MD, Geleen, The Netherlands
| | - Cheng Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Weiwei Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
14
|
Zhang Y, Xu X, Lu J, Zhang S. Effect of polymer molecular weight on J51 based organic solar cells. RSC Adv 2019; 9:14657-14661. [PMID: 35516292 PMCID: PMC9064158 DOI: 10.1039/c9ra02022e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 05/02/2019] [Indexed: 11/21/2022] Open
Abstract
Very recently, organic solar cells (OSCs) have achieved outstanding scientific results with a power conversion efficiency (PCE) of over 16%. However, it is rarely reported on how molecular weight (M n) of polymer donors affects the solar cell performances. In this work, the wide bandgap polymer donor J51 with different M n from 8 to 36 kDa were synthesized and used for fabrication of J51:PC71BM devices. It was found that the PCEs were gradually on the increase with the increased molecular weight of J51 donor. This work demonstrated the relationship between devices performance and polymer molecular weight, which enriched the OSCs research content. It provides valuable reference information that optimal molecular weight of polymer donors should be limited in what is considered the applicable range.
Collapse
Affiliation(s)
- Yangqian Zhang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University 30 South Puzhu Road Nanjing 211816 Jiangsu P. R. China
| | - Xiangfei Xu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University 30 South Puzhu Road Nanjing 211816 Jiangsu P. R. China
| | - Jiaorong Lu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University 30 South Puzhu Road Nanjing 211816 Jiangsu P. R. China
| | - Shiming Zhang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University 30 South Puzhu Road Nanjing 211816 Jiangsu P. R. China
| |
Collapse
|