1
|
Gong L, Ying S, Xia C, Pan K, He F. Carboxymethyl cellulose stabilization induced changes in particle characteristics and dechlorination efficiency of sulfidated nanoscale zero-valent iron. CHEMOSPHERE 2024; 355:141726. [PMID: 38521105 DOI: 10.1016/j.chemosphere.2024.141726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/13/2024] [Accepted: 03/13/2024] [Indexed: 03/25/2024]
Abstract
Polymer stabilization, exemplified by carboxymethyl cellulose (CMC), has demonstrated effectiveness in enhancing the transport of nanoscale zero-valent iron (nZVI). And, sulfidation is recognized for enhancing the reactivity and selectivity of nZVI in dechlorination processes. The influence of polymer stabilization on sulfidated nZVI (S-nZVI) with various sulfur precursors remains unclear. In this study, CMC-stabilized S-nZVI (CMC-S-nZVI) was synthesized using three distinct sulfur precursors (S2-, S2O42-, and S2O32-) through one-step approach. The antioxidant properties of CMC significantly elevated the concentration of reduced sulfur species (S2-) on CMC-S-nZVIs, marking a 3.1-7.0-fold increase compared to S-nZVIs. The rate of trichloroethylene degradation (km) by CMC-S-nZVIs was observed to be 2.2-9.0 times higher than that achieved by their non-stabilized counterparts. Among the three CMC-S-nZVIs, CMC-S-nZVINa2S exhibited the highest km. Interesting, while the electron efficiency of CMC-S-nZVIs surged by 7.9-12 times relative to nZVI, it experienced a reduction of 7.0-34% when compared with S-nZVIs. This phenomenon is attributed to the increased hydrophilicity of S-nZVI particles due to CMC stabilization, which inadvertently promotes the hydrogen evolution reaction (HER). In conclusion, the findings of this study underscores the impact of CMC stabilization on the properties and dechlorination performance of S-nZVI sulfidated using different sulfur precursors, offering guidance for engineering CMC-S-nZVIs with desirable properties for contaminated groundwater remediation.
Collapse
Affiliation(s)
- Li Gong
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Shuaixuan Ying
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Chenyun Xia
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Ke Pan
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Feng He
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China; Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
2
|
Wang J, Chen M, Han Y, Sun C, Zhang Y, Zang S, Qi L. Fast and efficient As(III) removal from water by bifunctional nZVI@NBC. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:160. [PMID: 38592564 DOI: 10.1007/s10653-024-01939-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/23/2024] [Indexed: 04/10/2024]
Abstract
As a notable toxic substance, metalloid arsenic (As) widely exists in water body and drinking As-contaminated water for an extended period of time can result in serious health concerns. Here, the performance of nanoscale zero-valent iron (nZVI) modified N-doped biochar (NBC) composites (nZVI@NBC) activated peroxydisulfate (PDS) for As(III) removal was investigated. The removal efficiencies of As(III) with initial concentration ranging from 50 to 1000 μg/L were above 99% (the residual total arsenic below 10 μg/L, satisfying the contaminant limit for arsenic in drinking water) within 10 min by nZVI@NBC (0.2 g/L)/PDS (100 μM). As(III) removal efficiency influenced by reaction time, PDS dosage, initial concentration, pH, co-existing ions, and natural organic matter in nZVI@NBC/PDS system were investigated. The nZVI@NBC composite is magnetic and could be conveniently collected from aqueous solutions. In practical applications, nZVI@NBC/PDS has more than 99% As(III) removal efficiency in various water bodies (such as deionized water, piped water, river water, and lake water) under optimized operation parameters. Radical quenching and EPR analysis revealed that SO4·- and ·OH play important roles in nZVI@NBC/PDS system, and the possible reaction mechanism was further proposed. These results suggest that nZVI@NBC activated peroxydisulfate may be an efficient and fast approach for the removal of water contaminated with As(III).
Collapse
Affiliation(s)
- Jiuwan Wang
- College of Environment, Liaoning University, Shenyang, 110036, People's Republic of China
| | - Mengfan Chen
- College of Environment, Liaoning University, Shenyang, 110036, People's Republic of China
| | - Yulian Han
- College of Environment, Liaoning University, Shenyang, 110036, People's Republic of China
| | - Congting Sun
- College of Environment, Liaoning University, Shenyang, 110036, People's Republic of China.
| | - Ying Zhang
- College of Environment, Liaoning University, Shenyang, 110036, People's Republic of China
| | - Shuyan Zang
- Shenyang University of Chemical Technology, Shenyang, 110142, People's Republic of China.
| | - Lin Qi
- Shenyang Municipal Bureau of Ecology and Environment, Shenyang, 110036, People's Republic of China
| |
Collapse
|
3
|
Du F, Huo X, Xue C, Zhang C, Wang H, Dai C, Yang Y, Lai C, He J. Catalytic activation of persulfate by nanoscale zero-valent iron-derived supported boron-doped porous carbon for bisphenol A degradation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:28241-28252. [PMID: 38538997 DOI: 10.1007/s11356-024-33035-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/18/2024] [Indexed: 04/30/2024]
Abstract
In this study, boron-doped porous carbon materials (BCs) with high surface areas were synthesized employing coffee grounds as carbon source and sodium bicarbonate and boric acid as precursors; afterward, nanoscale zero-valent iron (nZVI) and BCs composites (denoted as nZVI@BCs) were further prepared through reduction of FeSO4 by NaBH4 along with stirring. The performance of the nZVI@BCs for activating persulfate (PS) was evaluated for the degradation of bisphenol A (BPA). In comparison with nZVI@Cs/PS, nZVI@BCs/PS could greatly promote the degradation and mineralization of BPA via both radical and non-radical pathways. On the one hand, electron spin resonance and radical quenching studies represented that •OH, SO4•-, and O2•- were mainly produced in the nZVI@BCs/PS system for BPA degradation. On the other hand, the open circuit voltages of nZVI@BCs and nZVI@Cs in different systems indicated that non-radical pathway still existed in our system. PS could grab the unstable unpaired electron on nZVI@BCs to form a carbon material surface-confined complex ([nZVI@BCs]*) with a high redox potential, then accelerate BPA removal efficiency via direct electron transfer. Furthermore, the performances and mechanisms for BPA degradation were examined by PS activation with nZVI@BC composites at various conditions including dosages of nZVI@BCs, BPA and PS, initially pH value, temperature, common anions, and humid acid. Therefore, this study provides a novel insight for development of high-performance carbon catalysts toward environmental remediation.
Collapse
Affiliation(s)
- Fuxiang Du
- China Construction Third Engineering Bureau Group Co., Ltd., Wuhan, 430074, People's Republic of China
- China Construction Third Engineering Bureau, Southwest Group Co., Ltd., Chengdu, 610218, People's Republic of China
| | - Xiaowei Huo
- China Construction Third Engineering Bureau Group Co., Ltd., Wuhan, 430074, People's Republic of China.
- China Construction Third Engineering Bureau, Southwest Group Co., Ltd., Chengdu, 610218, People's Republic of China.
- College of Architecture & Environment, Sichuan University, Chengdu, 610065, People's Republic of China.
| | - Chao Xue
- China Construction Third Engineering Bureau Group Co., Ltd., Wuhan, 430074, People's Republic of China
- China Construction Third Engineering Bureau, Southwest Group Co., Ltd., Chengdu, 610218, People's Republic of China
| | - Chenggui Zhang
- China Construction Third Engineering Bureau Group Co., Ltd., Wuhan, 430074, People's Republic of China
- China Construction Third Engineering Bureau, Southwest Group Co., Ltd., Chengdu, 610218, People's Republic of China
| | - Huichao Wang
- China Construction Third Engineering Bureau Group Co., Ltd., Wuhan, 430074, People's Republic of China
- China Construction Third Engineering Bureau, Southwest Group Co., Ltd., Chengdu, 610218, People's Republic of China
| | - Chao Dai
- China Construction Third Engineering Bureau Group Co., Ltd., Wuhan, 430074, People's Republic of China
- China Construction Third Engineering Bureau, Southwest Group Co., Ltd., Chengdu, 610218, People's Republic of China
| | - Yang Yang
- China Construction Third Engineering Bureau Group Co., Ltd., Wuhan, 430074, People's Republic of China
- China Construction Third Engineering Bureau, Southwest Group Co., Ltd., Chengdu, 610218, People's Republic of China
| | - Cheng Lai
- China Construction Third Engineering Bureau Group Co., Ltd., Wuhan, 430074, People's Republic of China
- China Construction Third Engineering Bureau, Southwest Group Co., Ltd., Chengdu, 610218, People's Republic of China
| | - Junjun He
- China Construction Third Engineering Bureau Group Co., Ltd., Wuhan, 430074, People's Republic of China
- China Construction Third Engineering Bureau, Southwest Group Co., Ltd., Chengdu, 610218, People's Republic of China
| |
Collapse
|
4
|
Alabssawy AN, Hashem AH. Bioremediation of hazardous heavy metals by marine microorganisms: a recent review. Arch Microbiol 2024; 206:103. [PMID: 38358529 PMCID: PMC10869373 DOI: 10.1007/s00203-023-03793-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/09/2023] [Accepted: 12/11/2023] [Indexed: 02/16/2024]
Abstract
Heavy metals (HMs) like Zn, Cu, Pb, Ni, Cd, and Hg, among others, play a role in several environmental problems. The marine environment is polluted by several contaminants, such as HMs. A variety of physico-chemical methods usually available for sanitation HMs remediation suffer from either limitation. Bioremediation is a promising way of dealing with HMs pollution. Microbes have the ability with various potencies to resist HMs tension. The current review discusses the main sources and influences of HMs, the role of marine microorganisms in HMs bioremediation, as well as the microbial mechanisms for HMs detoxification and transformation. This review paper aims to provide an overview of the bioremediation technologies that are currently available for the removal of HMs ions from industrial and urban effluent by aquatic organisms such as bacteria, fungi, and microalgae, particularly those that are isolated from marine areas. The primary goals are to outline various studies and offer helpful information about the most important aspects of the bioelimination techniques. The biotreatment practices have been primarily divided into three techniques based on this topic. They are biosorption, bioaccumulation, bioleaching, and biotransformation. This article gives the brief view on the research studies about bioremediation of HMs using marine microorganisms. The current review also deals with the critical issues and recent studies based on the HMs biodetoxification using aquatic microorganisms.
Collapse
Affiliation(s)
- Ahmed N Alabssawy
- Marine Science and Fishes Branch, Zoology Department, Faculty of Science, Al-Azhar University, Cairo, 11884, Egypt.
| | - Amr H Hashem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt.
| |
Collapse
|
5
|
Chen Q, Zhang Y, Xia H, Liu R, Wang H. Fabrication of two novel amino-functionalized and starch-coated CuFe 2O 4-modified magnetic biochar composites and their application in removing Pb 2+ and Cd 2+ from wastewater. Int J Biol Macromol 2024; 258:128973. [PMID: 38163509 DOI: 10.1016/j.ijbiomac.2023.128973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/02/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
Novel magnetic biochar composites (SFeCu@SBCO and FeCu@SBCO-NH2) were fabricated by modifying oxidized sawdust biochar (SBCO) with Fe/Cu loading, starch-coating/amination, characterized (FTIR, XRD, BET, SEM-EDS and XPS) and applied in capturing Pb2+ and Cd2+ from wastewater. Adsorption experiments revealed that SFeCu@SBCO and FeCu@SBCO-NH2 exhibited extraordinary adsorption performance toward Pb2+/Cd2+ with the maximum adsorption capacity reaching 184.26/173.35 mg g-1 and 201.43/190.81 mg g-1, respectively, which were >5 times higher than those of SBC. The great increase in adsorption capacity of the two adsorbents was ascribed to the introduction of CuFe2O4 and starch/amino groups. Pb2+ and Cd2+ adsorption was an endothermic reaction controlled by monolayer chemisorption. Complexation and electrostatic attraction were the two predominant mechanisms. Besides, ion exchange together with physical adsorption also occurred during the adsorption. Additionally, the both adsorbents displayed favorable stability and reusability as well as desirable anti-interfering ability to other metal cations. Taken together, the both adsorbents could be utilized as reusable magnetic adsorbents with promising prospect in the effective remediation of Pb2+/Cd2+ contaminated water. The study not only contributed to the better understanding of biochar modification strategy and the application of modified biochar in heavy metals pollutants removal, but also realized resource utilization of biomass waste.
Collapse
Affiliation(s)
- Qian Chen
- School of Life and Environmental Sciences, School of Chemistry and Chemical Engineering, Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing, 312000, Zhejiang, PR China
| | - Yaohong Zhang
- School of Life and Environmental Sciences, School of Chemistry and Chemical Engineering, Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing, 312000, Zhejiang, PR China.
| | - Haixin Xia
- School of Life and Environmental Sciences, School of Chemistry and Chemical Engineering, Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing, 312000, Zhejiang, PR China
| | - Renrong Liu
- School of Life and Environmental Sciences, School of Chemistry and Chemical Engineering, Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing, 312000, Zhejiang, PR China
| | - Hai Wang
- School of Life and Environmental Sciences, School of Chemistry and Chemical Engineering, Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing, 312000, Zhejiang, PR China.
| |
Collapse
|
6
|
Chen JQ, Zhou GN, Ding RR, Li Q, Zhao HQ, Mu Y. Ferrous ion enhanced Fenton-like degradation of emerging contaminants by sulfidated nanosized zero-valent iron with pH insensitivity. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132229. [PMID: 37549576 DOI: 10.1016/j.jhazmat.2023.132229] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/29/2023] [Accepted: 08/03/2023] [Indexed: 08/09/2023]
Abstract
In this study, the performance and mechanism of the integrated sulfidated nanosized zero-valent iron and ferrous ions (S-nZVI/Fe2+) system for oxygen activation to remove emerging contaminants (ECs) were comprehensively explored. The S-nZVI/Fe2+ system exhibited a 2.4-8.2 times of increase in the pseudo-first order kinetic rate constant for the oxidative degradation of various ECs compared to the S-nZVI system under aerobic conditions, whereas negligible removal was observed in both nZVI and nZVI/Fe2+ systems. Moreover, remarkable EC mineralization efficiency and benign detoxification capacity were also demonstrated in the S-nZVI/Fe2+ system. We revealed that dosing Fe2+ promoted the corrosion of S-nZVI by maintaining an acidic solution pH, which was conducive to O2 activation by dissolved Fe2+ and surface-absorbed Fe(II) to produce •OH. Furthermore, the generation of H* was enhanced for the further reduction of Fe(III) and H2O2 to Fe(II) and •O2-, resulting in the improvement of consecutive single-electron O2 activation for •OH production. Additionally, bisphenol A (BPA) degradation by S-nZVI/Fe2+ was positively correlated with the S-nZVI dosage, with an optimum S/Fe molar ratio of 0.15. The Fenton-like degradation process by S-nZVI/Fe2+ was pH-insensitive, indicating its robust performance over a wide pH range. This study provides valuable insights for the practical implementation of nZVI-based technology in achieving high-efficiency removal of ECs from water.
Collapse
Affiliation(s)
- Jia-Qi Chen
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, China
| | - Guan-Nan Zhou
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, China University of Geosciences, Wuhan 430078, China
| | - Rong-Rong Ding
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, China
| | - Qi Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, China
| | - Han-Qing Zhao
- College of Environment and Ecology, Chongqing University, Chongqing, China
| | - Yang Mu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
7
|
Chi HY, Zhou XX, Wu MR, Shan WY, Liu JF, Wan JQ, Yan B, Liu R. Regulating the reaction pathway of nZVI to improve the decontamination performance through magnetic spatial confinement effect. JOURNAL OF HAZARDOUS MATERIALS 2023; 447:130799. [PMID: 36680900 DOI: 10.1016/j.jhazmat.2023.130799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/08/2023] [Accepted: 01/14/2023] [Indexed: 06/17/2023]
Abstract
Nanoscale zero-valent iron (nZVI) shows high effectiveness in the catalyzed removal of contaminants in wastewater treatment. However, the uncontrolled interfacial electron transfer behavior and formation of surface iron oxide (FeOx) layer led to severe electron wasting and occasionally form highly toxic intermediates. Here, we constructed magnetic mesoporous SiO2 shell on surface of nZVI to stimulate a magnetic spatial confinement effect and regulate the electron transfer pattern. Therein, Fe atom facilely spread out from the nZVI core, orderly release electron to surface adsorbed H2O molecule, which is efficiently transformed into active hydrogen (H*). Meanwhile, in-situ Raman revealed that Fe atoms were involved in the formation of penetrable γ-FeOOH rather than FeOx layer, enabling the continuous inward diffusion of H2O and outward diffusion of H* . Employing the catalyzed removal of halogenated phenols as demo reaction, the presence of magnetic mesoporous SiO2 shell utilized the reaction between electrons and H2O to switch the reaction pathway from the reduction/oxidation hybrid process to hydrodehalogantion, and increased the conversion of halogenated phenols-to-phenols by 5.53 times. This study shows the forehand of improving the decontamination performance of nZVI through sophisticated designed surface coating, as well as fine regulating the environmental behavior of magnetic material via micro-magnetic field.
Collapse
Affiliation(s)
- Hai-Yuan Chi
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China; College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Xiao-Xia Zhou
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| | - Min-Rong Wu
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Wan-Yu Shan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jing-Fu Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jin-Quan Wan
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Bing Yan
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Rui Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China.
| |
Collapse
|
8
|
Wei X, Pan D, Tan Q, Shi X, Hou J, Tang Q, Xu Z, Wu W, Ma B. Surface charge property governing co-transport of illite colloids and Eu(III) in saturated porous media. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
9
|
Wang J, Zhang D, Nie F, Zhang R, Fang X, Wang Y. The role of MnO 2 crystal morphological scale and crystal structure in selective catalytic degradation of azo dye. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:15377-15391. [PMID: 36169823 DOI: 10.1007/s11356-022-23223-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
MnO2, as a representative manganese-based catalyst with many kinds of crystal forms, has been widely used to activate PMS. However, the role of morphological scale and crystal structures on the catalytic capability of MnO2 still lacks further study. In this study, four different crystal forms of MnO2 (α-MnO2, β-MnO2, γ-MnO2, and δ-MnO2) are succeeded in being fabricated via hydrothermal processes and evaluated by activating PMS for the removal of Reactive Yellow X-RG, typical azo dye. Experiment results indicate that α-MnO2 with a one-dimensional structure exhibits the best catalytic performance among the four as-prepared MnO2, which can be attributed to its broadest crystal interplanar distance (0.692), the highest portion of Mn (III)/Mn (IV) (4.194), and lowest value of average oxidation state AOS (2.696). Correlation analysis confirms that interplanar distance is the most relative factor with the catalytic activity of MnO2 among the three studied factors (R2 = 0.99715). Meanwhile, the morphological scale structure of α-MnO2 can also account for its highest catalytic ability among the four as-prepared MnO2, including its large specific area and advantageous one-dimensional nanostructure. Furthermore, according to the response surface methodology, when the dosage of PMS is 2.369 g/L, the dosage of α-MnO2 is 0.991 g/L, and the initial dye concentration is 1025 mg/L, the maximum removal rate of Reactive Yellow X-RG is up to 97.38%.
Collapse
Affiliation(s)
- Junwei Wang
- Department of Resources and Environmental Science, College of Resources and Environment, Northeast Agricultural University, Changjiang road 600#, Harbin, 150030, Heilongjiang, China
| | - Di Zhang
- Department of Resources and Environmental Science, College of Resources and Environment, Northeast Agricultural University, Changjiang road 600#, Harbin, 150030, Heilongjiang, China.
- Key Laboratory of Black Soil Protection and Restoration, Harbin, 150030, Heilongjiang, China.
| | - Fan Nie
- Department of Resources and Environmental Science, College of Resources and Environment, Northeast Agricultural University, Changjiang road 600#, Harbin, 150030, Heilongjiang, China
| | - Ruixue Zhang
- Department of Resources and Environmental Science, College of Resources and Environment, Northeast Agricultural University, Changjiang road 600#, Harbin, 150030, Heilongjiang, China
| | - Xiaojie Fang
- Department of Resources and Environmental Science, College of Resources and Environment, Northeast Agricultural University, Changjiang road 600#, Harbin, 150030, Heilongjiang, China
| | - Yaxin Wang
- Department of Resources and Environmental Science, College of Resources and Environment, Northeast Agricultural University, Changjiang road 600#, Harbin, 150030, Heilongjiang, China
| |
Collapse
|
10
|
Wang H, Chen Q, Liu R, Zhang Y, Zhang Y. Synthesis and application of starch-stablized Fe-Mn/biochar composites for the removal of lead from water and soil. CHEMOSPHERE 2022; 305:135494. [PMID: 35764108 DOI: 10.1016/j.chemosphere.2022.135494] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/18/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
Starch-stablized and Fe/Mn bimetals modified biochar derived from corn straw (SFM@CBC and SFM@CBC-350) were firstly prepared, characterized (FTIR, XRD, SEM, EDS, BET and XPS), and applied in Pb removal from water and soil. SFM@CBC and SFM@CBC-350 displayed highly effective adsorption performance of Pb2+ from wastewater with the maximum adsorption capacity of 170.91 mg g-1 and 190.17 mg g-1, respectively, which were much greater than that of FM@CBC (149.25 mg g-1) and CBC (101.10 mg g-1). Studies of adsorption kinetics, isotherms and thermodynamics indicated that the absorption of Pb2+ by SFM@CBC and SFM@CBC-350 was spontaneous and endothermic reaction, and it was controlled by monolayer chemisorption. The mechanism studies indicated that Pb2+ removal involved with multiple mechanism, including complexation (dominant process confirmed by XPS analysis), physical adsorption, electrostatic attraction, and cation exchange. The reusability test demonstrated that SFM@CBC and SFM@CBC-350 had very good stability and reusability. In addition, in order to further explore Pb removal performance of the modified biochar, SFM@CBC-350 was used in soil-ryegrass pot systems. Compared with the controls, the addition of SFM@CBC-350 reduced Pb content in soil and ryegrass, increased the biomass and total chlorophyll content, reduced the activity of antioxidant enzymes (CAT, SOD, MDA and POD) and ROS fluorescence intensity of ryegrass, thus alleviating Pb stress of ryegrass. Besides, the addition of SFM@CBC-350 could increase the richness and diversity of soil microorganisms, which was beneficial to the growth of ryegrass. Hence, SFM@CBC-350 has the potential of being used as a green, efficient and promising adsorbent in Pb removal from wastewater and soil.
Collapse
Affiliation(s)
- Hai Wang
- School of Life Science, School of Chemistry and Chemical Engineering, Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing, 312000, Zhejiang, PR China; Jianhu Provincial Wetland Park Management Committee, Shaoxing, 312000, Zhejiang, PR China.
| | - Qian Chen
- School of Life Science, School of Chemistry and Chemical Engineering, Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing, 312000, Zhejiang, PR China
| | - Renrong Liu
- School of Life Science, School of Chemistry and Chemical Engineering, Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing, 312000, Zhejiang, PR China
| | - Yichan Zhang
- Department of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, Jiangsu, PR China
| | - Yaohong Zhang
- School of Life Science, School of Chemistry and Chemical Engineering, Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing, 312000, Zhejiang, PR China.
| |
Collapse
|
11
|
Zhang YF, Zhang CH, Xu JH, Li L, Li D, Wu Q, Ma LM. Strategies to enhance the reactivity of zero-valent iron for environmental remediation: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 317:115381. [PMID: 35751237 DOI: 10.1016/j.jenvman.2022.115381] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/05/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Application of zero-valent iron (ZVI) has become one of the most promising innovative technologies for the remediation of environmental pollutants. However, ZVI may suffer from the low intrinsic reactivity toward refractory pollutants, which seriously restricts its practical application in fields. Therefore, strategies have been developing to enhance the reactivity of ZVI. Until now, the most commonly used strategies include pretreatment of ZVI, synthesis of highly-active ZVI-based materials and additional auxiliary measures. In this review, a systematic and comprehensive summary of these commonly used strategies has been conducted for the following purposes: (1) to understand the fundamental mechanisms of the selected approaches; (2) to point out their advantages and shortcomings; (3) to illustrate the main problems of their large-scale application; (4) to forecast the future trend of developing ZVI technologies. Overall, this review is devoted to providing a fundamental understanding on the mechanism for enhancing the reactivity of ZVI and facilitating the practical application of ZVI technologies in fields.
Collapse
Affiliation(s)
- Yun-Fei Zhang
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523830, China
| | - Chun-Hui Zhang
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523830, China
| | - Jian-Hui Xu
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523830, China
| | - Lei Li
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523830, China
| | - Dan Li
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523830, China.
| | - Qi Wu
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523830, China
| | - Lu-Ming Ma
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| |
Collapse
|
12
|
Wang C, Wang S, Song C, Liu H, Yang J. Improved Electron Efficiency of Zero-Valent Iron towards Cr(VI) Reduction after Sequestering in Al2O3 Microspheres. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19148367. [PMID: 35886218 PMCID: PMC9316081 DOI: 10.3390/ijerph19148367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/28/2022] [Accepted: 06/28/2022] [Indexed: 02/04/2023]
Abstract
Zero-valent iron (ZVI) is widely used for groundwater remediation, but suffers from high electron consumption because of its free contact with non-target substrates such as O2. Here, ZVI-ALOX particles were prepared via in situ NaBH4 aqueous-phase reduction of ferrous ions (Fe2+) preabsorbed into Al2O3 microspheres. The electron efficiency (EE) and long-term performance of the material were improved by sequestering ZVI in the interspace of the Al2O3 microspheres (ZVI-ALOX). During long-term (350 days) continuous flow, Cr(VI) was removed to below the detection limit for over 23 days. Based on the high reactivity of ZVI towards Cr(VI), the EE of ZVI-ALOX was evaluated by measuring its Cr(VI) removal efficiency at neutral pH and comparing it with that of ZVI. The results showed that the EE of ZVI-ALOX during long-term continuous flow could reach 39.1%, which was much higher than that of ZVI (8.68%). The long-term continuous flow results also demonstrated that treatment of the influent solution achieved higher EE values than in the batch mode, where the presence of dissolved oxygen reduced EE values. At lower pollutant concentrations, the sequestering of ZVI was beneficial to its performance and long-term utility. In addition, measurement of the acute toxicity of treated column effluent using the indicator organism Photobacterium phosphoreum T3 showed that ZVI-ALOX could reduce the toxicity of 5 mg/L Cr(VI) solution by ~70% in 350 d. The results from this study provide a basis for the development of permeable reactive barriers for groundwater remediation based on sequestered ZVI.
Collapse
Affiliation(s)
- Chuan Wang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou 510006, China;
| | - Sha Wang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; (S.W.); (C.S.); (H.L.)
- Key Laboratory of Reservoir Aquatic Environment, Chinese Academy of Sciences, Chongqing 400714, China
| | - Cheng Song
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; (S.W.); (C.S.); (H.L.)
- Key Laboratory of Reservoir Aquatic Environment, Chinese Academy of Sciences, Chongqing 400714, China
| | - Hong Liu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; (S.W.); (C.S.); (H.L.)
- Key Laboratory of Reservoir Aquatic Environment, Chinese Academy of Sciences, Chongqing 400714, China
| | - Jingxin Yang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou 510006, China;
- Correspondence:
| |
Collapse
|
13
|
Tuning band structure of graphitic carbon nitride for efficient degradation of sulfamethazine: Atmospheric condition and theoretical calculation. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.08.061] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
14
|
Fu Q, Lai JL, Li C, Ji XH, Luo XG. Phytotoxicity mechanism of the natural radionuclide thorium in Vicia faba. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127718. [PMID: 34815127 DOI: 10.1016/j.jhazmat.2021.127718] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/26/2021] [Accepted: 11/04/2021] [Indexed: 06/13/2023]
Abstract
Elucidation of the phytotoxic mechanisms of thorium (Th) is important for controlling Th accumulation in crops and improving the efficiency of phytoremediation. Here, we analyzed the subcellular distribution of Th in Vicia faba seedlings and the toxic reaction of seedlings to Th (5-40 μmol·L-1) at the subcellular and cellular levels. Increasing the phosphate level in the culture medium from 0.01 to 0.1 mmol·L-1 decreased the Th accumulation by the roots by 47-57%. Th was mainly distributed in the root cell walls (94-96%) and existed mainly in the form of residue (92-94%). Th accumulation in the root was similar to the changes observed for P, Ni, Cu, and Fe. High concentrations of Th (40 μmol·L-1) induced abnormal root growth and leaf photosynthetic metabolism. At the cellular level, Th (40 μmol·L-1) induced root edge cell death and inhibited root respiration and cell mitosis. SOD, POD and CAT activities were involved in the regulation of reactive oxygen species accumulation in the roots. Untargeted metabolomics identified 580 and 262 differentially expressed metabolites in roots and leaves. At the metabolic level, its toxicological mechanism involved a severe inhibition of the expression of nucleotides in roots and leaves.
Collapse
Affiliation(s)
- Qian Fu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Jin-Long Lai
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China; Engineering Research Center of Biomass Materials, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China
| | - Chen Li
- College of Chemical and Environment Science, Shaanxi University of Technology, Hanzhong 723000, China; State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Xiao-Hui Ji
- College of Chemical and Environment Science, Shaanxi University of Technology, Hanzhong 723000, China; State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Xue-Gang Luo
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China; State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.
| |
Collapse
|
15
|
Kandel S, Katsenovich YP, Boglaienko D, Emerson HP, Levitskaia TG. Time dependent zero valent iron oxidation and the reductive removal of pertechnetate at variable pH. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127400. [PMID: 34638077 DOI: 10.1016/j.jhazmat.2021.127400] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/04/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
Elemental iron Fe0 is a promising reductant for removal of radioactive technetium-99 (Tc) from complex aqueous waste streams that contain sulfate, halides, and other inorganic anions generated during processing of legacy radioactive waste. The impact of sulfate on the kinetics of oxidation and reduction capacity of Fe0 in the presence of Tc has not been examined. We investigated the oxidative transformation of Fe0 and reductive removal of TcO4- in 0.1 M Na2SO4 as a function of initial pH (i.e., pHi 4, 7, and 10) under aerobic conditions up to 30 days. Tc reduction was the fastest at pHi 7 and slowest at pHi 10 (Tc reduction rate pHi 7 > 4 > 10). Aqueous fraction of Tc was measured at 0.4% at pHi 7 within 6 h, whereas ≥ 97% of Tc was removed from solutions at pHi of 4 and 10 within 24 h. Solid phase characterization showed that magnetite was the only oxidized crystalline phase for the first 6 h regardless of initial pH. Lepidocrocite was the most abundant oxidized product for pHi 10 after 5 days, but was not observed at pH of 4 or 7.
Collapse
Affiliation(s)
- Shambhu Kandel
- Applied Research Center, Florida International University, 10555W Flagler St, Miami, FL 33174, USA
| | - Yelena P Katsenovich
- Applied Research Center, Florida International University, 10555W Flagler St, Miami, FL 33174, USA.
| | - Daria Boglaienko
- Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99354, USA.
| | - Hilary P Emerson
- Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99354, USA
| | - Tatiana G Levitskaia
- Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99354, USA.
| |
Collapse
|
16
|
Temperature-responsive alkaline aqueous biphasic system for radioactive wastewater treatment. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.02.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Taghizadeh SM, Ebrahiminezhad A, Raee MJ, Ramezani H, Berenjian A, Ghasemi Y. A Study of l-Lysine-Stabilized Iron Oxide Nanoparticles (IONPs) on Microalgae Biofilm Formation of Chlorella vulgaris. Mol Biotechnol 2022; 64:702-710. [PMID: 35099707 PMCID: PMC9135783 DOI: 10.1007/s12033-022-00454-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/14/2022] [Indexed: 12/01/2022]
Abstract
Despite iron-based nanoparticles gaining huge attraction in various field of sciences and technology, their application rises ecological concerns due to lack of studies on their interaction with microbial cells populations and communities, such as biofilms. In this study, Chlorella vulgaris cells were employed as a model of aquatic microalgae to investigate the impacts of l-lysine-coated iron oxide nanoparticles (lys@IONPs) on microalgal growth and biofilm formation. In this regard, C. vulgaris cells were exposed to different concentrations of lys@IONPs and the growth of cells was evaluated by OD600 and biofilm formation was analyzed using crystal violet staining throughout 12 days. It was revealed that low concentration of nanoparticles (< 400 µg/mL) can promote cell growth and biofilm formation. However, higher concentrations have an adverse effect on microalgal communities. It is interesting that microalgal growth and biofilm are concentration- and exposure time-dependent to lys@IONPs. Over long period (~ 12 days) exposure to high concentrations of nanoparticles, cells can adapt with the condition, so growth was raised and biofilm started to develop. Results of the present study could be considered in ecological issues and also bioprocesses using microalgal cells.
Collapse
|
18
|
Wang X, Zhang Y, Wang Z, Xu C, Tratnyek PG. Advances in metal(loid) oxyanion removal by zerovalent iron: Kinetics, pathways, and mechanisms. CHEMOSPHERE 2021; 280:130766. [PMID: 34162087 DOI: 10.1016/j.chemosphere.2021.130766] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/23/2021] [Accepted: 04/24/2021] [Indexed: 06/13/2023]
Abstract
Metal(loid) oxyanions in groundwater, surface water, and wastewater can have harmful effects on human or ecological health due to their high toxicity, mobility, and lack of degradation. In recent years, the removal of metal(loid) oxyanions using zerovalent iron (ZVI) has been the subject of many studies, but the full scope of this literature has not been systematically reviewed. The main elements that form metal(loid) oxyanions under environmental conditions are Cr(VI), As(V and III), Sb(V and III), Tc(VII), Re(VII), Mo(VI), V(V), etc. The removal mechanisms of metal(loid) oxyanions by ZVI may involve redox reactions, adsorption, precipitation, and coprecipitation, usually with one of these mechanisms being the main reaction pathway and the other playing auxiliary roles. However, the removal mechanisms are coupled to the reactions involved in corrosion of Fe(0) and reaction conditions. The layer of iron oxyhydroxides that forms on ZVI during corrosion mediates the sequestration of metal(loid) oxyanions. This review summarizes most of the currently available data on mechanisms and performance (e.g., kinetics) of removal of the most widely studies metal(loid) oxyanion contaminants (Cr, As, Sb) by different types of ZVI typically used in wastewater treatment, as well as ZVI that has been sulfidated or combination with catalytic bimetals.
Collapse
Affiliation(s)
- Xiao Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Yue Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Zhiwei Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Chunhua Xu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China.
| | - Paul G Tratnyek
- OHSU-PSU School of Public Health, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA.
| |
Collapse
|
19
|
Li C, Yu Y, Fang A, Feng D, Du M, Tang A, Chen S, Li A. Insight into biosorption of heavy metals by extracellular polymer substances and the improvement of the efficacy: a review. Lett Appl Microbiol 2021; 75:1064-1073. [PMID: 34562275 DOI: 10.1111/lam.13563] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/26/2021] [Accepted: 09/01/2021] [Indexed: 01/21/2023]
Abstract
Heavy metals are continuously released into aquatic environments in which they accumulate. This phenomenon endangers public health because heavy metals accumulate along the food chain. However, conventional remediation methods are inefficient, expensive and yield toxic intermediate products, which adversely affect the environment. The discovery of green bio-adsorbents such as microbial extracellular polymer substance (EPS) has quickly attracted considerable worldwide attention because of their low cost, high removal efficiency of heavy metals and industrial availability. Hence, this review considers the sources, hazards and treatment methods of heavy metals pollution, particularly the biosorption mechanism of EPS to heavy metals and the influencing factors of the bio-adsorption process, which are significant in the efficient removal of heavy metals-containing wastewater treatment. This review also focuses on strengthening the process of EPS adsorption of heavy metals, which can further contribute to heavy metals removal. Finally, it has been proposed that improving the yield, stability, selectivity and recoverability of EPS is the key direction of further research.
Collapse
Affiliation(s)
- C Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, People's Republic of China
| | - Y Yu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, People's Republic of China
| | - A Fang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, People's Republic of China
| | - D Feng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, People's Republic of China
| | - M Du
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, People's Republic of China
| | - A Tang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, People's Republic of China
| | - S Chen
- School of Municipal and Environmental Engineering, Jilin University of Architecture and Technology, Changchun, People's Republic of China
| | - A Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, People's Republic of China.,School of Municipal and Environmental Engineering, Jilin University of Architecture and Technology, Changchun, People's Republic of China
| |
Collapse
|
20
|
Li Y, Yang Y, Lei J, Liu W, Tong M, Liang J. The degradation pathways of carbamazepine in advanced oxidation process: A mini review coupled with DFT calculation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 779:146498. [PMID: 34030238 DOI: 10.1016/j.scitotenv.2021.146498] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/22/2021] [Accepted: 03/11/2021] [Indexed: 06/12/2023]
Abstract
Degradation pathway is important for the study of carbamazepine (CBZ) removal in advanced oxidation processes (AOPs). Generally, degradation pathways are speculated based on intermediate identification and basic chemical rules. However, this semiempirical strategy is sometimes time-consuming and baseless. To improve the situation, a mini meta-analysis was first conducted for the degradation pathways of CBZ in AOPs. Then, the rationality of the pathways was analyzed by Density Functional Theory (DFT) calculation. Results show that the degradation pathways of CBZ in various AOPs has high similarity, and the reactive sites predicted by Fukui function fitted well with the data retrieved from literatures. In addition, molecule configuration of degradation intermediates was found to play a very important roles on degradation pathway. The study reveals that computational chemistry is a useful tool for degradation pathway speculation in AOPs.
Collapse
Affiliation(s)
- Yunyi Li
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment of Ministry of Education, Chongqing University, Chongqing 400044, PR China
| | - Ying Yang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment of Ministry of Education, Chongqing University, Chongqing 400044, PR China
| | - Jiamin Lei
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment of Ministry of Education, Chongqing University, Chongqing 400044, PR China
| | - Wen Liu
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Peking University, Beijing 100871, China
| | - Meiping Tong
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Jialiang Liang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment of Ministry of Education, Chongqing University, Chongqing 400044, PR China.
| |
Collapse
|
21
|
Qi J, Liu J, Sun F, Huang T, Duan J, Liu W. High active amorphous Co(OH)2 nanocages as peroxymonosulfate activator for boosting acetaminophen degradation and DFT calculation. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.11.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
22
|
Gao C, Yu W, Zhu Y, Wang M, Tang Z, Du L, Hu M, Fang L, Xiao X. Preparation of porous silicate supported micro-nano zero-valent iron from copper slag and used as persulfate activator for removing organic contaminants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 754:142131. [PMID: 33254954 DOI: 10.1016/j.scitotenv.2020.142131] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/15/2020] [Accepted: 08/30/2020] [Indexed: 06/12/2023]
Abstract
Porous silicate supported micro-nano zero-valent iron (PSi@ZVI) was prepared from copper slag (CS) through carbothermal reduction technology, and used as a persulfate (PS) activator for removing organic contaminants. Results showed that the properties of the activator were greatly affected by the preparation conditions. Calcination for 20 min at 1100 °C with 20% anthracite was considered the optimum preparation condition for degradation of orange G (OG). The removal rate of OG was improved by increasing the dosages of PSi@ZVI or PS and raising the reaction temperature. Moreover, PSi@ZVI exhibited excellent PS activator ability in a wide range of initial pH, good degradation capability for eosin Y, methyl orange, acid fuchsine, and methylene blue. The reusability and safety of PSi@ZVI were verified. Electron paramagnetic resonance and radical quenching tests indicated that sulfate radical (SO4-) was the main active species in the PSi@ZVI/PS system. The X-ray diffraction results indicated that a high calcination temperature (1100 °C) was beneficial to the reduction of iron-bearing minerals to ZVI. Scanning electron microscopy and energy-dispersive spectroscopy results revealed that the formation of porous structure of PSi@ZVI and the generation of nano to micro-sized ZVI particles on the surface of the silicate holes. The X-ray photoelectron spectra showed that ZVI was first convert into Fe(II), which mainly activated PS and generated Fe(III) in the PSi@ZVI/PS system. Furthermore, the intermediates of OG were detected using gas chromatography-mass spectrometry, and the possible degradation pathway of OG was proposed. This study provides a novel approach for reuse of CS as a heterogeneous activator to effectively activate PS.
Collapse
Affiliation(s)
- Caiqi Gao
- School of Architectural and Surveying and Mapping Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, PR China
| | - Wen Yu
- School of Resources and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, PR China.
| | - Yichun Zhu
- School of Architectural and Surveying and Mapping Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, PR China.
| | - Miao Wang
- School of Resources and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, PR China
| | - Zuozhen Tang
- School of Architectural and Surveying and Mapping Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, PR China
| | - Li Du
- School of Resources and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, PR China
| | - Mengying Hu
- School of Resources and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, PR China
| | - Long Fang
- School of Resources and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, PR China
| | - Xingcong Xiao
- School of Resources and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, PR China
| |
Collapse
|
23
|
Pan F, Ji H, Du P, Huang T, Wang C, Liu W. Insights into catalytic activation of peroxymonosulfate for carbamazepine degradation by MnO 2 nanoparticles in-situ anchored titanate nanotubes: Mechanism, ecotoxicity and DFT study. JOURNAL OF HAZARDOUS MATERIALS 2021; 402:123779. [PMID: 33254790 DOI: 10.1016/j.jhazmat.2020.123779] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/30/2020] [Accepted: 08/17/2020] [Indexed: 06/12/2023]
Abstract
Developing efficient pharmaceuticals and personal care products (PPCPs) degradation technologies is of scientifical and practical importance to restrain their discharge into natural water environment. This study fabricated and applied a composite material of amorphous MnO2 nanoparticles in-situ anchored titanate nanotubes (AMnTi) to activate peroxymonosulfate (PMS) for efficient degradation and mineralization of carbamazepine (CBZ). The degradation pathway and toxicity evolution of CBZ during elimination were deeply evaluated through produced intermediates identification and theoretical calculations. AMnTi with a composition of (0.3MnO2)•(Na1.22H0.78Ti3O7) offered high activation efficiency of PMS, which exhibited 21- and 3-times degradation rate of CBZ compared with the pristine TNTs and MnO2, respectively. The high catalytic activity can be attributed to its unique structure, leading to a lattice shrinkage and small pores to confine the PMS molecule onto the interface. Therefore, efficient charge transfer and catalytic activation through MnOTi linkage occurred, and a MnTi cycle mediating catalytic PMS activation was found. Both hydroxyl and sulfate radicals played key roles in CBZ degradation. Theoretical calculations, i.e., density functional theory (DFT) and computational toxicity calculations, combined with intermediates identification revealed that CBZ degradation pathway was hydroxyl addition and NC cleavage. CBZ degradation in this system was also a toxicity-attenuation process.
Collapse
Affiliation(s)
- Fei Pan
- School of Environmental Engineering, Wuhan Textile University, Engineering Research Centre for Clean Production of textile Dyeing and Printing, Ministry of Education, Wuhan, 430073, PR China
| | - Haodong Ji
- College of Environmental Sciences and Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, 100871, PR China; The Beijing Innovation Center for Engineering Science and Advanced Technology (BIC-ESAT), Peking University, Beijing, 100871, PR China
| | - Penghui Du
- College of Environmental Sciences and Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, 100871, PR China
| | - Taobo Huang
- College of Environmental Sciences and Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, 100871, PR China
| | - Chong Wang
- Key Laboratory of Mechanics on Disaster and Environment in Western China, School of Civil Engineering and Mechanics, Lanzhou University, Lanzhou, 730000, PR China
| | - Wen Liu
- College of Environmental Sciences and Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, 100871, PR China; The Beijing Innovation Center for Engineering Science and Advanced Technology (BIC-ESAT), Peking University, Beijing, 100871, PR China; Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin, 300350, PR China.
| |
Collapse
|
24
|
Yang C, Ge C, Li X, Li L, Wang B, Lin A, Yang W. Does soluble starch improve the removal of Cr(VI) by nZVI loaded on biochar? ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111552. [PMID: 33396093 DOI: 10.1016/j.ecoenv.2020.111552] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 10/16/2020] [Accepted: 10/20/2020] [Indexed: 06/12/2023]
Abstract
A novel material that nano zero valent iron (nZVI) loaded on biochar with stable starch stabilization (nZVI/SS/BC) was synthesized and used for the removal of hexavalent chromium [Cr(VI)] in simulated wastewater. It was indicated that as the pyrolysis temperature of rice straw increased, the removal rate of Cr(VI) by nZVI/SS/BC first increased and then decreased. nZVI/SS/BC made from biochar pyrolyzed at 600 °C (nZVI/SS/BC600) had the highest removal efficiency and was suitable for a wide pH range (pH 2.1-10.0). The results showed that 99.67% of Cr(VI) was removed by nZVI/SS/BC600, an increase of 45.93% compared to the control group, which did not add soluble starch during synthesis. The pseudo-second-order model and the Langmuir model were more in line with reaction. The maximum adsorption capacity for Cr(VI) by nZVI/SS/BC600 was 122.86 mg·g-1. The properties of the material were analyzed by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) mapping, Brunauer-Emmett-Teller (BET), Fourier-transform infrared (FTIR), and X-ray diffraction (XRD). The results showed that the nZVI particles were uniformly supported on the biochar, and the BET surface areas of nZVI/SS/BC was 40.4837 m2·g-1, an increase of 8.79 times compared with the control group. Mechanism studies showed that soluble starch reduced the formation of metal oxides, thereby improving the reducibility of the material, and co-precipitates were formed during the reaction. All results indicated that nZVI/SS/BC was a potential repair material that can effectively overcome the limitations of nZVI and achieve efficient and rapid repair of Cr(VI).
Collapse
Affiliation(s)
- Chun Yang
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chazhong Ge
- Chinese Academy for Environmental Planning, Beijing 100012, China
| | - Xiaoliang Li
- Chinese Academy for Environmental Planning, Beijing 100012, China
| | - Lu Li
- Chinese Academy for Environmental Planning, Beijing 100012, China
| | - Bin Wang
- Qinhuangdao Bohai Biological Research Institute of Beijing University of Chemical Technology, Qinhuangdao, Hebei 066000, China
| | - Aijun Lin
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China; Qinhuangdao Bohai Biological Research Institute of Beijing University of Chemical Technology, Qinhuangdao, Hebei 066000, China.
| | - Wenjie Yang
- Chinese Academy for Environmental Planning, Beijing 100012, China; College of Renewable Energy, North China Electric Power University, Beijing 102206, China.
| |
Collapse
|
25
|
Wang W, Wang K, Xu L, Li Y, Niu J. Raney nickel coupled nascent hydrogen as a novel strategy for enhanced reduction of nitrate and nitrite. CHEMOSPHERE 2021; 263:128187. [PMID: 33297153 DOI: 10.1016/j.chemosphere.2020.128187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/24/2020] [Accepted: 08/26/2020] [Indexed: 06/12/2023]
Abstract
Raney nickel (R-Ni) is a cost-effective hydrogenation catalyst, and nascent hydrogen (Nas-H2) generated in situ on the cathode trends to more reactive than commercial hydrogen (Com-H2). In the present work, nitrate and nitrite (NOX-) reduction via R-Ni/Nas-H2 catalytic system was investigated. The results show that hydrogenation of NOX- (C0 = 3.0 mM) follows pseudo-first-order reaction kinetics with kinetic constants of 5.18 × 10-2 min-1 (NO3-) and 6.46 × 10-2 min-1 (NO2-). The saturation demand for Nas-H2 is only 0.8 mL min-1 at a fixed R-Ni dosage of 1.0 g L-1. The experiments reveal that both Nas-H2 and hydrogen adatoms (Hads∗) can drive the reduction of NOX-. The improved reduction ratios of NOX- are attributed to two aspects: (1) the micro/nano-sized Nas-H2 bubbles exhibits increased reactivity due to the fine dispersion of the hydrogen molecules; (2) the alkaline environment formed by the cathode positively maintain R-Ni activity, thus, Nas-H2 bubbles were more readily activated to generate powerful Hads∗. The results give insight into NOX- hydrogenation via introducing fine hydrogen resource, and can develop an efficient catalytic hydrogenation technique without noble metals.
Collapse
Affiliation(s)
- Weilai Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, People's Republic of China; Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan, 523808, People's Republic of China
| | - Kaixuan Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, People's Republic of China
| | - Lei Xu
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan, 523808, People's Republic of China
| | - Yang Li
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, People's Republic of China
| | - Junfeng Niu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, People's Republic of China; Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan, 523808, People's Republic of China.
| |
Collapse
|
26
|
Dang C, Sun F, Jiang H, Huang T, Liu W, Chen X, Ji H. Pre-accumulation and in-situ destruction of diclofenac by a photo-regenerable activated carbon fiber supported titanate nanotubes composite material: Intermediates, DFT calculation, and ecotoxicity. JOURNAL OF HAZARDOUS MATERIALS 2020; 400:123225. [PMID: 32585518 DOI: 10.1016/j.jhazmat.2020.123225] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/08/2020] [Accepted: 06/12/2020] [Indexed: 06/11/2023]
Abstract
Pharmaceuticals and personal care products (PPCPs) have been widely detected in ecosystems. However, effective water purification technologies for PPCPs degradation are lacking. In this work, an active activated carbon fiber supported titanate nanotubes (TNTs@ACF) composite was synthesized via one-step hydrothermal process, which was applied for adsorption and photocatalytic degradation of PPCPs under simulated solar light. Characterizations indicated that the successful grafting of TNTs onto ACF was achieved and surface modification occurred. Diclofenac (DCF, a model PPCPs) was rapidly adsorbed onto TNTs@ACF, and subsequently photodegraded (98.8 %) under solar light within 2 h. TNTs@ACF also performed well over a wide range of pH, and was resistant to humic acid. The good adsorption and photocatalytic activity of TNTs@ACF was attributed to the well-defined hybrid structure, enabling corporative adsorption of DCF by TNTs and ACF, and extending the light absorbance to visible region. Furthermore, the description of degradation pathway and evaluation of ecotoxicity for DCF and its intermediates/byproduct were proposed based on experimental analysis, density functional theory (DFT) calculation and quantitative structure-activity relationship (QSAR) analysis, respectively, indicating the photocatalytic degradation of DCF can offer the step-by-step de-toxicity. Our study is expected to offer new strategy as "pre-accumulation and in-situ destruction" for environmental application.
Collapse
Affiliation(s)
- Chenyuan Dang
- College of Environmental Sciences and Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, PR China
| | - Fengbin Sun
- College of Environmental Sciences and Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, PR China
| | - Huan Jiang
- College of Environmental Sciences and Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, PR China
| | - Taobo Huang
- College of Environmental Sciences and Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, PR China
| | - Wen Liu
- College of Environmental Sciences and Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, PR China; The Beijing Innovation Center for Engineering Science and Advanced Technology (BIC-ESAT), Peking University, Beijing 100871, PR China; Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300350, PR China
| | - Xingmin Chen
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, PR China
| | - Haodong Ji
- College of Environmental Sciences and Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, PR China; The Beijing Innovation Center for Engineering Science and Advanced Technology (BIC-ESAT), Peking University, Beijing 100871, PR China.
| |
Collapse
|
27
|
Yang C, Zheng MX, Zhang Y, Xi BD, Tian ZF, He XS. Bioreduction of hexavalent chromium: Effect of compost-derived humic acids and hematite. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2020.04.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
28
|
Efficient removal for multiple pollutants via Ag2O/BiOBr heterojunction: A promoted photocatalytic process by valid electron transfer pathway. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2020.07.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
29
|
Abstract
Among all minerals, iron is one of the elements identified early by human beings to take advantage of and be used. The role of iron in human life is so great that it made an era in the ages of humanity. Pure iron has a shiny grayish-silver color, but after combining with oxygen and water it can make a colorful set of materials with divergent properties. This diversity sometimes appears ambiguous but provides variety of applications. In fact, iron can come in different forms: zero-valent iron (pure iron), iron oxides, iron hydroxides, and iron oxide hydroxides. By taking these divergent materials into the nano realm, new properties are exhibited, providing us with even more applications. This review deals with iron as a magic element in the nano realm and provides comprehensive data about its structure, properties, synthesis techniques, and applications of various forms of iron-based nanostructures in the science, medicine, and technology sectors.
Collapse
|
30
|
Removal of 17β-Estradiol by Activated Charcoal Supported Titanate Nanotubes (TNTs@AC) through Initial Adsorption and Subsequent Photo-Degradation: Intermediates, DFT calculation, and Mechanisms. WATER 2020. [DOI: 10.3390/w12082121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A low-cost composite of activated charcoal supported titanate nanotubes (TNTs@AC) was developed via the facile hydrothermal method to remove the 17β-estradiol (E2, a model of pharmaceutical and personal care products) in water matrix by initial adsorption and subsequent photo-degradation. Characterizations indicated that the modification occurred, i.e., the titanate nanotubes would be grafted onto the activated charcoal (AC) surface, and the micro-carbon could modify the tubular structure of TNTs. E2 was rapidly adsorbed onto TNTs@AC, and the uptake reached 1.87 mg/g from the dual-mode model fitting. Subsequently, the adsorbed E2 could be degraded 99.8% within 2 h under ultraviolet (UV) light irradiation. TNTs@AC was attributed with a unique hybrid structure, providing the hydrophobic effect, π−π interaction, and capillary condensation for E2 adsorption, and facilitating the electron transfer and then enhancing photocatalytic ability for E2-degradation. In addition, the removal mechanism of E2 was elucidated through the density functional theory calculation. Our study is expected to provide a promising material for environmental application.
Collapse
|
31
|
Zheng M, Ji H, Duan J, Dang C, Chen X, Liu W. Efficient adsorption of europium (III) and uranium (VI) by titanate nanorings: Insights into radioactive metal species. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2020; 2:100031. [PMID: 36160918 PMCID: PMC9488033 DOI: 10.1016/j.ese.2020.100031] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 06/12/2023]
Abstract
Radioactive wastewater containing high concentration of radionuclides poses severe threats to ecosystem and human health, so efficient removal of these toxic heavy metals is urgently needed. Titanate nanomaterials have been demonstrated good adsorbents for heavy metals due to ion exchange property. In this study, titanate nanorings (TNRs) were synthesized using the facile hydrothermal-cooling method. The TNRs were composed of sodium trititanate, with a chemical formula of Na0.66H1.34Ti3O7•0.27H2O and a Na content of 2.38 mmol/g. The TNRs demonstrated sufficient adsorption performance to radionuclides europium (Eu) and uranium (U) ions. Specifically, even at a high initial concentration of 50 mg/L, 86.5% and 92.6% of the two metal ions can be rapidly adsorbed by the TNRs within 5 min, and equilibrium was reached within 60 min at pH 5. The maximum adsorption capacity (Q max) obtained by the Langmuir isotherm model was 115.3 mg/g for Eu(III) and 282.5 mg/g for uranium U(VI) at pH 5, respectively. The adsorption capacities of the two metals under various water chemical conditions were highly related to their species. Ion exchange between metal cations and Na+ in the TNR interlayers was the dominant adsorption mechanism, and adsorption of U(VI) was more complicated because of the co-existence of various uranyl (UO2 2+) and uranyl-hydroxyl species. The spent TNRs were effectively regenerated through an acid-base or ethylenediamine tetraacetic acid (EDTA) treatment and reused. Considering the large adsorption capacity and quick kinetic, TNRs are promising materials to remove radionuclides in environmental purification applications, especially emergent treatment of leaked radionuclides.
Collapse
Affiliation(s)
- Maosheng Zheng
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
- The Key Laboratory of Resources and Environmental Systems Optimization, Ministry of Education, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China
| | - Haodong Ji
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
- The Beijing Innovation Center for Engineering Science and Advanced Technology (BIC-ESAT), Peking University, Beijing, 100871, China
- Beijing Engineering Research Center for Advanced Wastewater Treatment, Department of Environmental Engineering, Peking University, Beijing, 100871, China
| | - Jun Duan
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Chenyuan Dang
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Xingmin Chen
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Wen Liu
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
- The Beijing Innovation Center for Engineering Science and Advanced Technology (BIC-ESAT), Peking University, Beijing, 100871, China
- Beijing Engineering Research Center for Advanced Wastewater Treatment, Department of Environmental Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|