1
|
Wang L, Liu G, Zhang M, Luo K, Pang Y. Reduced Graphene Oxide-Coated CuFeO 2 with Fenton-like Catalytic Degradation Performance for Terramycin. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4391. [PMID: 36558244 PMCID: PMC9781562 DOI: 10.3390/nano12244391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
A novel Fenton-like catalyst made of reduced graphene oxide-coated CuFeO2 (rGO-coated CuFeO2) was synthesized by the hydrothermal reaction method to remove terramycin from aqueous solutions. The catalytic degradation performance of rGO-coated CuFeO2 for terramycin was verified with H2O2 activation. The characterization reveals that rGO-coated CuFeO2 has a micro- and mesoporous structure, with groups such as C=C/C-C, CH2-CO, and HO-C=O found on the surface. The Fenton-like catalytic degradation of terramycin by rGO-coated CuFeO2 was in line with the pseudo-second-order kinetic model, and the elevated temperature accelerated the reaction. Terramycin was catalytically degraded by rGO-coated CuFeO2 in two steps: terramycin was first adsorbed by rGO, and then Fenton-like degradation took place on its surface. This research presents new insight into the design and fabrication of Fenton-like catalysts with enhanced performance.
Collapse
Affiliation(s)
- Liping Wang
- College of Materials and Environmental Engineering, Changsha University, Changsha 410022, China
| | - Gonghao Liu
- College of Materials and Environmental Engineering, Changsha University, Changsha 410022, China
| | - Mingyu Zhang
- State Key Laboratory for Powder Metallurgy, Central South University, Changsha 410083, China
| | - Kun Luo
- College of Materials and Environmental Engineering, Changsha University, Changsha 410022, China
| | - Ya Pang
- College of Materials and Environmental Engineering, Changsha University, Changsha 410022, China
| |
Collapse
|
2
|
Dong Y, Wang L, Zhang Z, Ji F, Chan TKF, Yang H, Chan CPL, Yang Z, Chen Z, Chang WT, Chan JYK, Sung JJY, Zhang L. Endoscope-assisted magnetic helical micromachine delivery for biofilm eradication in tympanostomy tube. SCIENCE ADVANCES 2022; 8:eabq8573. [PMID: 36206344 PMCID: PMC9544342 DOI: 10.1126/sciadv.abq8573] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Occlusion of the T-tube (tympanostomy tube) is a common postoperative sequela related to bacterial biofilms. Confronting biofilm-related infections of T-tubes, maneuverable and effective treatments are still challenging presently. Here, we propose an endoscopy-assisted treatment procedure based on the wobbling Fe2O3 helical micromachine (HMM) with peroxidase-mimicking activity. Different from the ideal corkscrew motion, the Fe2O3 HMM applies a wobbling motion in the tube, inducing stronger mechanical force and fluid convections, which not only damages the biofilm occlusion into debris quickly but also enhances the catalytic generation and diffusion of reactive oxygen species (ROS) for killing bacteria cells. Moreover, the treatment procedure, which integrated the delivery, actuation, and retrieval of Fe2O3 HMM, was validated in the T-tube implanted in a human cadaver ex vivo. It enables the visual operation with ease and is gentle to the tympanic membrane and ossicles, which is promising in the clinical application.
Collapse
Affiliation(s)
- Yue Dong
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Lu Wang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
- Multi-Scale Medical Robotics Center, Hong Kong Science Park, Hong Kong SAR, China
| | - Zifeng Zhang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Fengtong Ji
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Tony K. F. Chan
- Multi-Scale Medical Robotics Center, Hong Kong Science Park, Hong Kong SAR, China
- Chow Yuk Ho Technology Centre for Innovative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Haojin Yang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Catherine P. L. Chan
- Department of Otorhinolaryngology, Head and Neck Surgery, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Zhengxin Yang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Zigui Chen
- Department of Microbiology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Wai Tsz Chang
- Department of Otorhinolaryngology, Head and Neck Surgery, The Chinese University of Hong Kong, Hong Kong SAR, China
- Corresponding author. (L.Z.); (J.Y.K.C.); (W.T.C.)
| | - Jason Y. K. Chan
- Multi-Scale Medical Robotics Center, Hong Kong Science Park, Hong Kong SAR, China
- Department of Otorhinolaryngology, Head and Neck Surgery, The Chinese University of Hong Kong, Hong Kong SAR, China
- Corresponding author. (L.Z.); (J.Y.K.C.); (W.T.C.)
| | - Joseph J. Y. Sung
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Li Zhang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
- Multi-Scale Medical Robotics Center, Hong Kong Science Park, Hong Kong SAR, China
- Chow Yuk Ho Technology Centre for Innovative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- CUHK T Stone Robotics Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong SAR, China
- Corresponding author. (L.Z.); (J.Y.K.C.); (W.T.C.)
| |
Collapse
|
3
|
Wang H, Liu H, Zou X, Sun F, Wang L, Hu J, Chen D, Liu M, Shen J, Chen T. H 2O 2 activation over Co substitution in Fe 1-xS for tetracycline degradation: Effect of Co substitution. CHEMOSPHERE 2022; 297:134131. [PMID: 35257708 DOI: 10.1016/j.chemosphere.2022.134131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/11/2022] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
In this work, the effect of Co substitution in the Fe1-xS (CSP) on the activation of H2O2 to degrade tetracycline (TC) is investigated. A series of CSP samples with different Co content are synthesized via a high-temperature sulfidation method and characterized by XRD, XPS, SEM, and electrochemical analysis. The result showed that low Co content (≤1%) promotes the catalytic activity of Fe1-xS, while excessive Co (1%﹤x ≤ 3%) inhibits its catalytic activity. The investigation of Behnajady-Modirshahla-Ghanbery kinetic model (BMG) showed that the maximum initial degradation rate of TC over 1.0% CSP/H2O2 was 1.6 times than that of in CSP/H2O2 system. The Box-Behnken with Response Surface Methodology was employed to verify optimum condition for TC degradation. The quenching experiments and ESR determined that ·OH, ·O2- and 1O2 were involved in TC degradation with the treatment of 1.0% CSP/H2O2 system. Electrochemical analysis, ·OH quantification, and metal ion concentrations measure reveal that Co substitution accelerates electron transfer efficiency and Fe2+ regeneration. Furthermore, nine intermediates are identified and the possible degradation pathway of TC is proposed. The unique effect of Co provides novel insight and efficient strategies for improving the reactivity of iron sulfide.
Collapse
Affiliation(s)
- Hanlin Wang
- Key Laboratory of Nano-minerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, 230009, China; Environmental Mineral and Material, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Haibo Liu
- Key Laboratory of Nano-minerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, 230009, China; Environmental Mineral and Material, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Xuehua Zou
- Key Laboratory of Nano-minerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, 230009, China; Environmental Mineral and Material, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Fuwei Sun
- Key Laboratory of Nano-minerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, 230009, China; Environmental Mineral and Material, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Luyao Wang
- Key Laboratory of Nano-minerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, 230009, China; Environmental Mineral and Material, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Jingchao Hu
- Key Laboratory of Nano-minerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, 230009, China; Environmental Mineral and Material, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Dong Chen
- Key Laboratory of Nano-minerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, 230009, China; Environmental Mineral and Material, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Meng Liu
- Key Laboratory of Nano-minerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, 230009, China; Environmental Mineral and Material, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Jianfei Shen
- Key Laboratory of Nano-minerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, 230009, China; Environmental Mineral and Material, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Tianhu Chen
- Key Laboratory of Nano-minerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, 230009, China; Environmental Mineral and Material, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China.
| |
Collapse
|
4
|
Sharifi N, Nasiri A, Silva Martinez S, Amiri H. Synthesis of Fe3O4@activated carbon to treat metronidazole effluents by adsorption and heterogeneous Fenton with effluent bioassay. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.113845] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
5
|
Enhanced catalytic activation of H2O2 by CNTs/SCH through rapid Fe(III)/Fe(II) redox couple circulation: Insights into the role of functionalized multiwalled CNTs. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120000] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
6
|
Wang S, Zhang X, Chen G, Liu B, Li H, Hu J, Fu J, Liu M. Hydroxyl radical induced from hydrogen peroxide by cobalt manganese oxides for ciprofloxacin degradation. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.01.055] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
7
|
Wang Y, Li A, Ren B, Han Z, Lin J, Zhang Q, Cao T, Cui C. Mechanistic insights into soil heavy metals desorption by biodegradable polyelectrolyte under electric field. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118277. [PMID: 34610413 DOI: 10.1016/j.envpol.2021.118277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 06/13/2023]
Abstract
In this study, we firstly used alginate to enhance an electrokinetic technology to remediate soil contaminated with divalent heavy metals (Pb2+, Cu2+, Zn2+). The mechanisms of alginate-associated migration of metal ions in electric field were confirmed. Alginate resulted in a high electrical current during electrokinetic process, and soil conductivity also increased after remediation. Obvious changes in both electroosmotic flow and soil pH were observed. Moreover, these factors were affected by increasing alginate dosage. The highest Cu (95.82%) and Zn (97.33%) removal efficiencies were obtained by introducing 1 wt% alginate. Alginate can desorb Cu2+ and Zn2+ ions from soil by forming unstable gels, which could be dissociated through electrolysis. However, Pb2+ ions did not easily migrate out of the contaminated soil. The density functional theory (DFT) calculations show Pb2+ ions could form a more stable coordination sphere in metal complexes than Cu2+ and Zn2+ ions. The metal removal efficiency was decreased by increasing alginate dosage at a high level. More alginate could provide more carboxyl ligands for divalent metal ions to stabilize gels, which were difficult to dissociate by electrolysis. In summary, the results indicate it is potential for introducing alginate into an electrokinetic system to remediate Cu- and Zn- contaminated soil.
Collapse
Affiliation(s)
- Yuchen Wang
- School of Environment, Harbin Institute of Technology, Harbin, 150090, People's Republic of China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, People's Republic of China
| | - Ang Li
- School of Environment, Harbin Institute of Technology, Harbin, 150090, People's Republic of China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, People's Republic of China
| | - Binqiao Ren
- School of Environment, Harbin Institute of Technology, Harbin, 150090, People's Republic of China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, People's Republic of China
| | - Zijian Han
- School of Environment, Harbin Institute of Technology, Harbin, 150090, People's Republic of China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, People's Republic of China
| | - Junhao Lin
- School of Environment, Harbin Institute of Technology, Harbin, 150090, People's Republic of China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, People's Republic of China
| | - Qiwei Zhang
- School of Environment, Harbin Institute of Technology, Harbin, 150090, People's Republic of China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, People's Republic of China
| | - Tingting Cao
- School of Environment, Harbin Institute of Technology, Harbin, 150090, People's Republic of China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, People's Republic of China
| | - Chongwei Cui
- School of Environment, Harbin Institute of Technology, Harbin, 150090, People's Republic of China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, People's Republic of China.
| |
Collapse
|
8
|
Zhao M, Xiang Y, Jiao X, Cao B, Tang S, Zheng Z, Zhang X, Jiao T, Yuan D. MoS2 co-catalysis promoted CaO2 Fenton-like process: Performance and mechanism. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119289] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
9
|
Hossain MF, Islam MS, Kashem MA, Osman KT, Zhou Y. Lead immobilization in soil using new hydroxyapatite-like compounds derived from oyster shell and its uptake by plant. CHEMOSPHERE 2021; 279:130570. [PMID: 33895674 DOI: 10.1016/j.chemosphere.2021.130570] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 04/05/2021] [Accepted: 04/11/2021] [Indexed: 06/12/2023]
Abstract
Protecting the natural environment and ecological systems from the inorganic pollutants such as lead (Pb) has highlighted the urgent need to develop new and effective approaches for this substance's immobilization in soil. In this study, new, low-cost, and eco-friendly hydroxyapatite (HAp)-like compounds were prepared by reacting oyster shell (Oys) with diammonium phosphate ((NH4)2HPO4) (DAP) and calcium hydroxide (Ca(OH)2) at 25-28 °C (OyOHr) and 100 °C (OyOHh). Furthermore, OyOHr and OyOHh were assessed for their effectiveness to immobilize Pb in soil and suppress Pb uptake by Indian spinach (Basella Alba L.). Application of 0.5% OyOHr and OyOHh to soil (by weight) reduced Pb concentration in the shoots by 76.9-78.0% compared to control (CK), to a level that was slightly higher (by 15.5-21.5%) than the recommended food safety level (2 mg kg-1) suggested by WHO. The changes in Pb fractions revealed that the total contents of oxidizable and residual forms in OyOHr or OyOHh after harvest was >415.0 mg kg-1, which indicated that >92% of Pb when added to the soil, was immobilized and not able to be taken up by plants. The proposed Pb immobilization mechanism might be the dissolution of OyOHr or OyOHh followed by hydroxypyromorphite (Pb10(PO4)6(OH)2) (HP) formation. Due to their facile preparation and eco-friendly and excellent Pb immobilizing characteristics, OyOHr or OyOHh could be readily integrated into current farming systems to mitigate the risk of Pb transferring to plants. However, OyOHr seemed a better immobilizing agent correspond to OyOHh in terms of cost and efficiency.
Collapse
Affiliation(s)
- Md Faysal Hossain
- Department of Soil Science, University of Chittagong, Chittagong, 4331, Bangladesh; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, No. 130, Meilong Road, Shanghai, 200237, China
| | - Md Shoffikul Islam
- Department of Soil Science, University of Chittagong, Chittagong, 4331, Bangladesh.
| | - Md Abul Kashem
- Department of Soil Science, University of Chittagong, Chittagong, 4331, Bangladesh
| | - Khan Towhid Osman
- Department of Soil Science, University of Chittagong, Chittagong, 4331, Bangladesh
| | - Yanbo Zhou
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, No. 130, Meilong Road, Shanghai, 200237, China; National Engineering Laboratory for Industrial Wastewater Treatment, East China University of Science and Technology, No. 130 Meilong Road, Shanghai, 200237, China.
| |
Collapse
|
10
|
Dong C, Yi Q, Shen B, Xing M, Zhang J. Novel Fenton process of Co-catalyst Co 9S 8 quantum dots for highly efficient removal of organic pollutants. CHEMOSPHERE 2021; 270:128648. [PMID: 33268100 DOI: 10.1016/j.chemosphere.2020.128648] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/01/2020] [Accepted: 10/14/2020] [Indexed: 06/12/2023]
Abstract
Advanced oxidation processes (AOPs) have been widely accepted as an efficient and promising strategy for treating organic pollutants, is mainly dominated by hydroxyl radicals (•OH); however, its further practical application has been hindered by its low decomposition rate of H2O2. Hence, for the first time, we propose an eco-friendly and facile synthesis methodology synthesize water-soluble Co9S8 quantum dots (QDs) derived from commercial cobalt disulfide (CoS2), which can serve as excellent co-catalysts to dramatically enhance the decomposition rate of H2O2. It is demonstrated that the conversion rate of H2O2 into •OH is ca. 80.02% promoted by Co9S8 QDs, whereas the conventional Fenton process is ca. 34.9%. The result shows that unsaturated edged S atoms on the surface of Co9S8 play a pivotal role in this enhancement, where the number of protons will react with sulfur atoms to form H2S and expose reductive metallic active sites to accelerate the Fe3+/Fe2+ conversion. In addition, to tackle the issue for difficult recovery of liquid quantum dots, the magnetic Co9S8 QDs/Fe3O4 nanoparticles are particularly synthesized, which show excellent performance for degradation of 20 mg/L Rhodamine B (RhB). Moreover, the TOC degradation rate can remain stable at 80% even after five cycles. It is expected that this work will provide a new pathway of thinking in the Fenton process and impulse the usage of liquid quantum dots in practical AOPs application.
Collapse
Affiliation(s)
- Chencheng Dong
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Qiuying Yi
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Bin Shen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Mingyang Xing
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Jinlong Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China; School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu Province, 224051, China.
| |
Collapse
|
11
|
A High-Efficient Carbon-Coated Iron-Based Fenton-Like Catalyst with Enhanced Cycle Stability and Regenerative Performance. Catalysts 2020. [DOI: 10.3390/catal10121486] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Carbon coated iron-based Fenton-like catalysts are now widely studied in wastewater treatment. However, their poor stability is still a big challenge and the related regenerative performance is seldom investigated. Herein, a carbon-coated Fe3O4 on carbon cloth (cc/Fe3O4@C) was prepared with glucose as carbon source via electrodeposition and ethanol solvothermal methods. An amorphous carbon layer with polar C-groups covers the surface of Fe3O4, which presents a flaky cross-linked network structure on the carbon cloth (cc). The cc/Fe3O4@C exhibits an improved catalytic activity with nearly 84% phenol was removed within 35 min with polar C-groups. What’s more, around 80% phenol can still be degraded in 120 min after 14 degradation cycles. After the regeneration treatment, the degradation performance was restored to the level of the fresh in the first two regenerations. The enhanced cycle stability and regeneration performance of the catalyst are as follows: Firstly, the catalyst’s composition and structure were recovered; Secondly, the reduction effect of the amorphous carbon layer ensuring timely supplement of Fe2+ from Fe3+. Also, the carbon layer reduces Fe leaching during the Fenton-like process.
Collapse
|
12
|
Wang Y, Zhou C, Wu J, Niu J. Insights into the electrochemical degradation of sulfamethoxazole and its metabolite by Ti/SnO2-Sb/Er-PbO2 anode. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2020.03.073] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|