1
|
Tan R, Yang H, Jiang M, Song P. Visible-Light-Induced Singlet Oxygen-Promoted Arylation and Alkylation of Quinoxalin-2(1H)-ones and Quinolines. Molecules 2024; 29:5113. [PMID: 39519754 PMCID: PMC11547374 DOI: 10.3390/molecules29215113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/11/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
We report a green and efficient visible-light-driven method for the arylation and alkylation of quinoxalin-2(1H)-ones and quinolines. This catalyst-free process utilizes air as the oxidant, offering mild reaction conditions, environmental sustainability, and broad functional group compatibility. The approach enables the synthesis of aryl and alkyl derivatives of quinoxalin-2(1H)-ones and quinolines with high to excellent yields.
Collapse
Affiliation(s)
- Renjun Tan
- School of Science, Wuhan University of Technology, Wuhan 430070, China
- Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology, College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China; (R.T.)
| | - Hequn Yang
- School of Science, Wuhan University of Technology, Wuhan 430070, China
| | - Min Jiang
- School of Science, Wuhan University of Technology, Wuhan 430070, China
| | - Peijun Song
- Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology, College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China; (R.T.)
| |
Collapse
|
2
|
Wang K, Xu W, Xia C, Cao X. Temperature-Controlled Divergent Synthesis of Pyrazoles and 1-Tosyl-1 H-pyrazoles under Transition-Metal-Catalyst- and Oxidant-Free Conditions. Molecules 2024; 29:1706. [PMID: 38675526 PMCID: PMC11052136 DOI: 10.3390/molecules29081706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/28/2024] [Accepted: 03/30/2024] [Indexed: 04/28/2024] Open
Abstract
Herein, a general and practical temperature-controlled approach for the divergent synthesis of pyrazoles and 1-tosyl-1H-pyrazoles via electrophilic cyclization in the absence of transition-metal catalysts and oxidants was developed. The desired products were obtained in moderate to excellent yields from common starting materials in both ionic liquids and ethanol by simply tuning the reaction temperature. This strategy employs easily synthesized substrates, mild reaction conditions, and excellent functional-group tolerance.
Collapse
Affiliation(s)
- Kai Wang
- College of Medical Engineering & The Key Laboratory for Medical Functional Nanomaterials, Jining Medical University, Jining 272067, China; (K.W.); (W.X.)
| | - Wenjing Xu
- College of Medical Engineering & The Key Laboratory for Medical Functional Nanomaterials, Jining Medical University, Jining 272067, China; (K.W.); (W.X.)
| | - Chengcai Xia
- Institute of Pharmacology, Pharmacy College, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 271016, China
| | - Xianting Cao
- College of Medical Engineering & The Key Laboratory for Medical Functional Nanomaterials, Jining Medical University, Jining 272067, China; (K.W.); (W.X.)
| |
Collapse
|
3
|
Li L, Li J. Solvent- and Catalyst-Free Synthesis of gem-Difluorinated and Polyfluoroarylated Compounds with Nucleophilic or Electrophilic Fluorine-Containing Reaction Partners, Respectively. Molecules 2024; 29:697. [PMID: 38338440 PMCID: PMC10856203 DOI: 10.3390/molecules29030697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
A novel, efficient and environmentally friendly solvent-free and catalyst-free approach for the synthesis of structurally diverse gem-difluorinated and polyfluoroarylated derivatives with readily available nucleophilic and electrophilic fluorine-containing reaction partners, difluoroenoxysilane and pentafluorobenzaldehyde, is described. This neat protocol is induced by the direct hydrogen-bond interactions between fluorinated and non-fluorinated reactants without the use of heavy metal catalysts or volatile organic solvents and with no need for column chromatographic separation for most cases.
Collapse
Affiliation(s)
- Lingheng Li
- Department of Photography, Tianjin University of Technology, Tianjin 300384, China
| | - Jinshan Li
- School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China
| |
Collapse
|
4
|
III R, Lujan B, Martinez A, Manasi R, DeBow JD, Kou KGM. A Fenton Approach to Aromatic Radical Cations and Diarylmethane Synthesis. J Org Chem 2023; 88:15060-15066. [PMID: 37847050 PMCID: PMC10629232 DOI: 10.1021/acs.joc.3c01505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Indexed: 10/18/2023]
Abstract
Manipulating carbon-centered radicals to add to electron-deficient systems is a well-precedented process. By coupling the Fe(II)-mediated Fenton reaction with the Fe(III)-mediated single-electron oxidation of anisolic compounds, we demonstrate how electron-rich carbon-centered radicals can react with electron-rich arenes through a radical-polar cascade pathway. This bioinspired approach produces diarylmethane derivatives from simple unfunctionalized precursors.
Collapse
Affiliation(s)
- Robert
Crowley III
- Department of Chemistry, University of California, Riverside, 501 Big Springs Road, Riverside, California 92521, United States
| | | | | | - Roni Manasi
- Department of Chemistry, University of California, Riverside, 501 Big Springs Road, Riverside, California 92521, United States
| | - Justin D. DeBow
- Department of Chemistry, University of California, Riverside, 501 Big Springs Road, Riverside, California 92521, United States
| | - Kevin G. M. Kou
- Department of Chemistry, University of California, Riverside, 501 Big Springs Road, Riverside, California 92521, United States
| |
Collapse
|
5
|
Zhang S, Yuan J, Huang G, Ma C, Yang J, Yang L, Xiao Y, Qu L. Visible-Light-Induced Intramolecular Tandem Cyclization of Unactivated Indoloalkynes for the Synthesis of Sulfonylated and Selenylated Indolo[1,2- a]quinolines. J Org Chem 2023; 88:11712-11727. [PMID: 37530760 DOI: 10.1021/acs.joc.3c00997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
A convenient and efficient visible-light-induced method has been developed for the construction of sulfonated and selenylated indolo[1,2-a]quinolines through sulfonyl or selenyl radical-initiated tandem cyclization of unactivated alkynes with sodium sulfinates or diaryl diselenides under mild conditions. This protocol, which simply utilizes visible light as the safe and eco-friendly energy source and an inexpensive and nontoxic organic dye as a photocatalyst without the aid of an external photocatalyst, provides various sulfonyl- and selenyl-containing indolo[1,2-a]quinolines in moderate to good yields.
Collapse
Affiliation(s)
- Shouren Zhang
- Henan Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou 450006, P. R. China
| | - Jinwei Yuan
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China
| | - Guangchao Huang
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China
| | - Chengjia Ma
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China
| | - Jingjing Yang
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China
| | - Liangru Yang
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China
| | - Yongmei Xiao
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China
| | - Lingbo Qu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
6
|
Zhang JH, Jiang LL, Hu SJ, Li JZ, Yu XC, Liu FL, Guan YT, Lei KW, Wei WT. The polychloromethylation/acyloxylation of 1,6-enynes with chloroalkanes and diacyl peroxides through dual-role designs. Org Biomol Chem 2022; 20:7067-7070. [PMID: 35993972 DOI: 10.1039/d2ob01330d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The novel polychloromethylation/acyloxylation of 1,6-enynes with chloroalkanes and diacyl peroxides through dual-role designs has been developed to prepare 2-pyrrolidinone derivatives with polychloromethyl units with the use of an inexpensive copper salt under mild conditions. This strategy includes two dual-role designs, not only improving atomic utilization but also allowing a cleaner process. The wide substrate scope and simple reaction conditions demonstrate the practicability of this protocol.
Collapse
Affiliation(s)
- Jun-Hao Zhang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Li-Lin Jiang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Sen-Jie Hu
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Jiao-Zhe Li
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Xuan-Chi Yu
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Fa-Liang Liu
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Yu-Tao Guan
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Ke-Wei Lei
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Wen-Ting Wei
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China.
| |
Collapse
|
7
|
Wang X, You F, Xiong B, Chen L, Zhang X, Lian Z. Metal- and base-free tandem sulfonylation/cyclization of 1,5-dienes with aryldiazonium salts via the insertion of sulfur dioxide. RSC Adv 2022; 12:16745-16750. [PMID: 35754872 PMCID: PMC9170380 DOI: 10.1039/d2ra03034a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 05/31/2022] [Indexed: 02/05/2023] Open
Abstract
A metal- and base-free 5-endo-trig sulfonylative cyclization between 1,5-dienes, aryldiazonium salts and SO2 (from SOgen) is presented. This method could successfully produce sulfonylated pyrrolin-2-ones in one pot with excellent regioselectivity and good-to-excellent yields. This strategy features mild reaction conditions and broad substrate scope. Moreover, a scale-up reaction and three synthetic applications demonstrate the practicality of this method. Lastly, control experiments indicate that the 5-endo-trig sulfonylative cyclization may proceed in a radical pathway. A new metal- and base-free method for synthesizing sulfonylated pyrrolin-2-ones from 1,5-dienes, aryldiazonium salts and SO2 is presented. This transformation features mild reaction conditions and broad substrate scope.![]()
Collapse
Affiliation(s)
- Xiaohong Wang
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, West China School of Pharmacy, Sichuan University Chengdu 610041 China
| | - Fengzhi You
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, West China School of Pharmacy, Sichuan University Chengdu 610041 China
| | - Baojian Xiong
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, West China School of Pharmacy, Sichuan University Chengdu 610041 China
| | - Lei Chen
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, West China School of Pharmacy, Sichuan University Chengdu 610041 China
| | - Xuemei Zhang
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, West China School of Pharmacy, Sichuan University Chengdu 610041 China
| | - Zhong Lian
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, West China School of Pharmacy, Sichuan University Chengdu 610041 China
| |
Collapse
|
8
|
Shen Q, Zheng X, Li L, Zhong T, Yin C, Yu C. Photoinduced Three-Component Difluoroamidosulfonylation/Bicyclization: A Route to Dihydrobenzofuran Derivatives. Org Lett 2022; 24:2556-2561. [PMID: 35348346 DOI: 10.1021/acs.orglett.2c00761] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A visible-light-induced photocatalyst-free three-component radical cascade bicyclization has been achieved to obtain diverse difluoroamidosulfonylated dihydrobenzofurans in moderate to good yields. This protocol avoids potential toxicity and the tedious removal procedure for photocatalysts and also features mild reaction conditions and a good functional group tolerance. Moreover, mechanistic investigations reveal the formation of a charge-transfer complex and the involvement of an intramolecular 1,5-hydrogen atom transfer process in this transformation.
Collapse
Affiliation(s)
- Qitao Shen
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Xiangyun Zheng
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Lianghao Li
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Tianshuo Zhong
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Chuanliu Yin
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Chuanming Yu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| |
Collapse
|
9
|
Fu R, Liu Y, Wu T, Zhang X, Zhu Y, Luo J, Zhang Z, Jiang Y. Metal-free synthesis of β-aminoketones by the reductive hydroamination of ynones. Chem Commun (Camb) 2022; 58:3525-3528. [PMID: 35195654 DOI: 10.1039/d2cc00169a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
This study describes a cascade method for the synthesis of β-aminoketones through the reductive hydroamination of alkynes under very mild metal-free conditions. It allows for the rapid conversion of ynones and amines into corresponding β-aminoketones with a broad substrate scope and diverse functionalities. This straightforward and easy-to-handle reaction process can be successfully applied for the synthesis of Proroxan and Propipocaine, offering a potential option for the synthesis of drug molecules with the β-aminoketone skeleton.
Collapse
Affiliation(s)
- Rui Fu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China.
| | - Yu Liu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China.
| | - Tao Wu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China.
| | - Xinyu Zhang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China.
| | - Yang Zhu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China.
| | - Jiangbin Luo
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Zhengyu Zhang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China.
| | - Yaojia Jiang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China. .,Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| |
Collapse
|
10
|
Electrochemical regioselective synthesis of N-substituted/unsubstituted 4-selanylisoquinolin-1(2H)-ones. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.08.071] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
11
|
He L, Liang C, Ouyang Y, Li L, Guo Y, Zhang P, Li W. α-Functionalization of ketones promoted by sunlight and heterogeneous catalysis in the aqueous phase. Org Biomol Chem 2022; 20:790-795. [PMID: 34994749 DOI: 10.1039/d1ob02249k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Herein, a protocol that combines heterogeneous catalysis and solar photocatalysis for the regioselective α-substitution of asymmetric ketones with quinoxalinones has been reported. The result indicates that the reaction is more likely to occur on the α-carbon. This strategy provides a green and efficient way for the α-functionalization of ketones. A singlet oxygen involved mechanism is suggested for the transformation.
Collapse
Affiliation(s)
- Lei He
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China.
| | - Chenfeng Liang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China.
| | - Yani Ouyang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China.
| | - Lin Li
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China.
| | - Yirui Guo
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China.
| | - Pengfei Zhang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China.
| | - Wanmei Li
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China.
| |
Collapse
|
12
|
Dai S, Yang K, Luo Y, Xu Z, Li Z, Li Z, Li B, Sun X. Metal-free and Selectfluor-mediated diverse transformations of 2-alkylthiobenzamides to access 2,3-dihydrobenzothiazin-4-ones, benzoisothiazol-3-ones and 2-alkylthiobenzonitriles. Org Chem Front 2022. [DOI: 10.1039/d2qo00663d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Diverse transformations of 2-alkylthiobenzamides have been established to synthesize 2,3-dihydrobenzothiazin-4-ones, benzoisothiazol-3-ones and 2-alkylthiobenzonitriles in the presence of Selectfluor.
Collapse
Affiliation(s)
- Shengfei Dai
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Ke Yang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Yanqi Luo
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Ziyuan Xu
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Zhi Li
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Zhengyi Li
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Bijin Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Xiaoqiang Sun
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
| |
Collapse
|
13
|
Liu M, Zhang X, Chu S, Ge Y, Huang T, Liu Y, Yu L. Selenization of cotton products with NaHSe endowing the antibacterial activities. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.05.061] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
14
|
Chen Z, Zhang H, Zhou SF, Cui X. Photoredox-catalyzed synthesis of sulfonated oxazolines from N-allylamides through the insertion of sulfur dioxide. Org Chem Front 2022. [DOI: 10.1039/d1qo01540k] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Photoredox-catalyzed generation of sulfonated oxazolines starting from N-allylamides, DABCO·(SO2)2, and aryldiazonium salts has been developed and a range of sulfonated oxazolines were obtained in moderate to good yields.
Collapse
Affiliation(s)
- Zhichao Chen
- College of Chemical Engineering, Huaqiao University, Xiamen, Fujian 361021, P. R. China
| | - Hong Zhang
- Engineering Research Centre of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, Key Laboratory of Xiamen Marine and Gene Drugs, School of Biomedical Sciences, Huaqiao University, Xiamen 361021, P. R. China
| | - Shu-Feng Zhou
- College of Chemical Engineering, Huaqiao University, Xiamen, Fujian 361021, P. R. China
| | - Xiuling Cui
- Engineering Research Centre of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, Key Laboratory of Xiamen Marine and Gene Drugs, School of Biomedical Sciences, Huaqiao University, Xiamen 361021, P. R. China
| |
Collapse
|
15
|
Sun B, Tian H, Ni Z, Huang P, Ding H, Li B, Jin C, Wu C, Shen RP. Photocatalyst-, metal- and additive-free, regioselective radical cascade sulfonylation/cyclization of benzimidazoles derivatives with sulfonyl chlorides induced by visible light. Org Chem Front 2022. [DOI: 10.1039/d2qo00518b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, an environmental and practical protocol for the visible-light-triggered regioselective radical cascade sulfonylation/cyclization of unactivated alkenes towards synthesis of polycyclic benzimidazoles containing sulfone group has been developed. Notably, the control...
Collapse
|
16
|
Sun Z, Huang H, Wang Q, Huang C, Mao G, Deng GJ. Visible light-mediated radical-cascade addition/cyclization of arylacrylamides with aldehydes to form quaternary oxindoles at room temperature. Org Chem Front 2022. [DOI: 10.1039/d2qo00319h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The visible light-induced oxidative radical cascade coupling of N-arylacrylamides with aldehydes using bromide as the hydrogen atom transfer agent to synthesize functional oxindoles is described.
Collapse
Affiliation(s)
- Zhaozhao Sun
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Huawen Huang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, P. R. China
| | - Qiaolin Wang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Chunyan Huang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Guojiang Mao
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, P. R. China
| | - Guo-Jun Deng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, P. R. China
| |
Collapse
|
17
|
Ding R, Tang XF, Deng YH, Luo S, Wang PL. Metal- and base-free regioselective cascade sulfonylation-cyclization of 1,5-dienes via the insertion of sulfur dioxide: access to pyrrolinones. NEW J CHEM 2022. [DOI: 10.1039/d2nj02297d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A metal- and base-free regioselective cascade sulfonylation–cyclization reaction of linear substrates, 1,5-dienes, has been developed to synthesize sulfonylated pyrrolinones.
Collapse
Affiliation(s)
- Ran Ding
- College of Chemistry and Materials Engineering, Anhui Science and Technology University, Bengbu, Anhui, 233100, P. R. China
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui, 235000, P. R. China
| | - Xue-Feng Tang
- College of Chemistry and Materials Engineering, Anhui Science and Technology University, Bengbu, Anhui, 233100, P. R. China
| | - Yu-Hang Deng
- College of Chemistry and Materials Engineering, Anhui Science and Technology University, Bengbu, Anhui, 233100, P. R. China
| | - Shan Luo
- College of Chemistry and Materials Engineering, Anhui Science and Technology University, Bengbu, Anhui, 233100, P. R. China
| | - Pei-Long Wang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui, 235000, P. R. China
- Information College, Huaibei Normal University, Huaibei, 235000, China
| |
Collapse
|
18
|
Xu J, Cai H, Shen J, Shen C, Wu J, Zhang P, Liu X. Photo-Induced Cross-Dehydrogenative Alkylation of Heteroarenes with Alkanes under Aerobic Conditions. J Org Chem 2021; 86:17816-17832. [PMID: 34875167 DOI: 10.1021/acs.joc.1c02125] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We report a Minisci-type cross-dehydrogenative alkylation in an aerobic atmosphere using abundant and inexpensive cerium chloride as a photocatalyst and air as an oxidant. This photoreaction exhibits excellent tolerance to functional groups and is suitable for both heteroarene and alkane substrates under mild conditions, generating the corresponding products in moderate-to-good yields. Our method provides an alternative approach for the late-stage functionalization of valuable substrates.
Collapse
Affiliation(s)
- Jun Xu
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore.,Center for Functional Materials, National University of Singapore Suzhou Research Institute, Suzhou 215123, China
| | - Heng Cai
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Jiabin Shen
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Chao Shen
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Jie Wu
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore.,Center for Functional Materials, National University of Singapore Suzhou Research Institute, Suzhou 215123, China
| | - Pengfei Zhang
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Xiaogang Liu
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore.,Center for Functional Materials, National University of Singapore Suzhou Research Institute, Suzhou 215123, China
| |
Collapse
|
19
|
Sun B, Ding H, Tian H, Huang P, Jin C, Wu C, Shen R. Photo‐Triggered Self‐Induced Homolytic Dechlorinative Sulfonylation/Cyclization of Unactivated Alkenes: Synthesis of Quinazolinones Containing a Sulfonyl Group. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202101141] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Bin Sun
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Hao Ding
- College of Pharmaceutical Sciences Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Hai‐Xia Tian
- College of Pharmaceutical Sciences Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Pan‐Yi Huang
- College of Pharmaceutical Sciences Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Can Jin
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals Zhejiang University of Technology Hangzhou 310014 People's Republic of China
- College of Pharmaceutical Sciences Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Chun‐Lei Wu
- Zhejiang Engineering Research Center of Fat-soluble Vitamin Shaoxing University Shaoxing 312000 People's Republic of China
| | - Run‐Pu Shen
- Zhejiang Engineering Research Center of Fat-soluble Vitamin Shaoxing University Shaoxing 312000 People's Republic of China
| |
Collapse
|
20
|
Li N, Xu S, Wang X, Xu L, Qiao J, Liang Z, Xu X. Ag2CO3-catalyzed efficient synthesis of internal or terminal propargylicamines and chalcones via A3-coupling under solvent-free condition. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.04.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
21
|
Kang QQ, Liu Y, Wu SP, Ge GP, Zheng H, Zhang JQ, Wei WT. Selective divergent radical cyclization of 1,6-dienes with alkyl nitriles. Org Biomol Chem 2021; 19:9501-9505. [PMID: 34709283 DOI: 10.1039/d1ob01620b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
An efficient, selective, and step economical radical cyclization of 1,6-dienes with alkyl nitriles initiated by α-C(sp3)-H functionalization under the Sc(OTf)3 and Ag2CO3 system is described here. The selective divergent cyclization relies on the substitution effect at the α-position of the acrylamide moiety and nitriles, which is terminated by hydrogen abstraction, direct cyclization with the aryl ring, or further cyclization with the CN bond and hydrolysis, respectively.
Collapse
Affiliation(s)
- Qing-Qing Kang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Yi Liu
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Shi-Ping Wu
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Guo-Ping Ge
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Hongxing Zheng
- Institution of Functional Organic Molecules and Materials, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong, 252059, China
| | - Jun-Qi Zhang
- Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou, 318000, China
| | - Wen-Ting Wei
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China.
| |
Collapse
|
22
|
Persulfate promoted tandem radical cyclization of ortho-cyanoarylacrylamides with oxamic acids for construction of carbamoyl quinoline-2,4-diones under metal-free conditions. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.04.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
23
|
Chen Z, Zhang H, Zhou SF, Cui X. Metal-Free Sulfonylative Spirocyclization of Indolyl-ynones via Insertion of Sulfur Dioxide: Access to Sulfonated Spiro[cyclopentenone-1,3'-indoles]. Org Lett 2021; 23:7992-7995. [PMID: 34581591 DOI: 10.1021/acs.orglett.1c02999] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A three-component sulfonylative spirocyclization of indolyl ynones with aryldiazonium salts and a sulfur dioxide surrogate of DABCO·(SO2)2 has been developed, providing a range of sulfonated spiro[cyclopentenone-1,3'-indoles] in moderate to good yields. This transformation was initiated by an in situ generated arylsulfonyl radical and proceeded efficiently under metal-free conditions, involving a radical-induced dearomative cascade cyclization accompanied by the insertion of sulfur dioxide. This protocol provides an efficient and convenient method to access sulfonated spiroindolenines, and tolerant various functional groups.
Collapse
Affiliation(s)
- Zhichao Chen
- College of Chemical Engineering, Huaqiao University, Xiamen, Fujian 361021, P. R. China
| | - Hong Zhang
- Engineering Research Centre of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, Key Laboratory of Xiamen Marine and Gene Drugs, School of Biomedical Sciences, Huaqiao University, Xiamen 361021, P. R. China
| | - Shu-Feng Zhou
- College of Chemical Engineering, Huaqiao University, Xiamen, Fujian 361021, P. R. China
| | - Xiuling Cui
- Engineering Research Centre of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, Key Laboratory of Xiamen Marine and Gene Drugs, School of Biomedical Sciences, Huaqiao University, Xiamen 361021, P. R. China
| |
Collapse
|
24
|
Chen JY, Wu HY, Gui QW, Yan SS, Deng J, Lin YW, Cao Z, He WM. Sustainable electrochemical cross-dehydrogenative coupling of 4-quinolones and diorganyl diselenides. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(20)63750-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Hypervalent iodine mediated C-H amination of quinoxalinones with heteroaromatic amines under metal-free conditions. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.02.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
26
|
Yi RN, Wu ZL, Ouyang WT, Wang WF, He WM. Green synthesis of 4-organylselanyl-1H-pyrazoles through electrochemical cross-dehydrogenative coupling of 1H-pyrazoles and diorganyl diselenides. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
27
|
Shen MH, Li C, Xu QS, Guo B, Wang R, Liu X, Xu HD, Xu D. Allylation and alkylation of oxindoleketimines via imine umpolung strategy. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.02.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
28
|
Ponpao N, Senapak W, Saeeng R, Jaratjaroonphong J, Sirion U. Metal- and solvent-free synthesis of aniline- and phenol-based triarylmethanes via Brönsted acidic ionic liquid catalyzed Friedel-Crafts reaction. RSC Adv 2021; 11:22692-22709. [PMID: 35480415 PMCID: PMC9034371 DOI: 10.1039/d1ra03724b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 06/18/2021] [Indexed: 01/04/2023] Open
Abstract
A beneficial, scalable and efficient methodology for the synthesis of aniline-based triarylmethanes has been established through the double Friedel-Crafts reaction of commercial aldehydes and primary, secondary or tertiary anilines using Brönsted acidic ionic liquid as a powerful catalyst, namely [bsmim][NTf2]. This protocol was successfully performed under metal- and solvent-free conditions with a broad range of substrates, giving the corresponding aniline-based triarylmethane products in good to excellent yields (up to 99%). In addition, alternative aromatic nucleophiles such as phenols and electron-rich arenes were also studied using this useful approach to achieve a diversity of triarylmethane derivatives in high to excellent yields.
Collapse
Affiliation(s)
- Nipaphorn Ponpao
- Department of Chemistry, Center of Excellence for Innovation in Chemistry, Faculty of Science, Burapha University Sangesook ChonBuri 20131 Thailand +66-3-839-3494 +66-98-026-2181
| | - Warapong Senapak
- Department of Chemistry, Center of Excellence for Innovation in Chemistry, Faculty of Science, Burapha University Sangesook ChonBuri 20131 Thailand +66-3-839-3494 +66-98-026-2181
| | - Rungnapha Saeeng
- Department of Chemistry, Center of Excellence for Innovation in Chemistry, Faculty of Science, Burapha University Sangesook ChonBuri 20131 Thailand +66-3-839-3494 +66-98-026-2181
- The Research Unit in Synthetic Compounds and Synthetic Analogues from Natural Product for Drug Discovery (RSND), Burapha University Chonburi 20131 Thailand
| | - Jaray Jaratjaroonphong
- Department of Chemistry, Center of Excellence for Innovation in Chemistry, Faculty of Science, Burapha University Sangesook ChonBuri 20131 Thailand +66-3-839-3494 +66-98-026-2181
- The Research Unit in Synthetic Compounds and Synthetic Analogues from Natural Product for Drug Discovery (RSND), Burapha University Chonburi 20131 Thailand
| | - Uthaiwan Sirion
- Department of Chemistry, Center of Excellence for Innovation in Chemistry, Faculty of Science, Burapha University Sangesook ChonBuri 20131 Thailand +66-3-839-3494 +66-98-026-2181
- The Research Unit in Synthetic Compounds and Synthetic Analogues from Natural Product for Drug Discovery (RSND), Burapha University Chonburi 20131 Thailand
| |
Collapse
|
29
|
Cao XT, Wei SN, Sun HT, Li M, Zheng ZL, Wang G. Iridium-catalyzed regioselective C-H sulfonamidation of 1,2,4-thiadiazoles with sulfonyl azides in water. RSC Adv 2021; 11:22000-22004. [PMID: 35480792 PMCID: PMC9034132 DOI: 10.1039/d1ra04450h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 06/14/2021] [Indexed: 12/20/2022] Open
Abstract
We have developed a regioselective C-N cross-coupling of 1,2,4-thiadiazoles with sulfonyl azides through iridium catalysis in water. This method tactically linked the 1,2,4-thiadiazoles and sulfonamides together, and the novel molecules increased the diversity of 1,2,4-thiadiazoles which may have potential applications.
Collapse
Affiliation(s)
- Xian-Ting Cao
- College of Medical Engineering, Key Laboratory for Medical Functional Nanomaterials, Jining Medical University Jining 272067 China
| | - Su-Ning Wei
- College of Medical Engineering, Key Laboratory for Medical Functional Nanomaterials, Jining Medical University Jining 272067 China
| | - Hao-Tian Sun
- College of Medical Engineering, Key Laboratory for Medical Functional Nanomaterials, Jining Medical University Jining 272067 China
| | - Meng Li
- College of Medical Engineering, Key Laboratory for Medical Functional Nanomaterials, Jining Medical University Jining 272067 China
| | - Zuo-Ling Zheng
- College of Medical Engineering, Key Laboratory for Medical Functional Nanomaterials, Jining Medical University Jining 272067 China
| | - Guannan Wang
- College of Medical Engineering, Key Laboratory for Medical Functional Nanomaterials, Jining Medical University Jining 272067 China
| |
Collapse
|
30
|
Visible-light-initiated tandem synthesis of difluoromethylated oxindoles in 2-MeTHF under additive-, metal catalyst-, external photosensitizer-free and mild conditions. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.01.021] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
31
|
|
32
|
Song Q, Liu Y, Cai L, Cao X, Qian S, Wang Z. One-pot tandem route to fused indolizidines and quinolizidines: Application in the synthesis of alkaloids and bioactive compounds. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.01.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
33
|
Electrochemical transient iodination and coupling for selenylated 4-anilinocoumarin synthesis. GREEN SYNTHESIS AND CATALYSIS 2021. [DOI: 10.1016/j.gresc.2021.03.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
34
|
Zheng H, Han Y, Sun J, Yan CG. Convenient synthesis of hexasubstituted benzene derivatives via DABCO promoted domino reaction of arylidene malononitrile and dialkyl but-2-ynedioate. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.12.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
35
|
|
36
|
Xie Z, Lan J, Zhu H, Lei G, Jiang G, Le Z. Visible light induced tandem reactions: An efficient one pot strategy for constructing quinazolinones using in-situ formed aldehydes under photocatalyst-free and room-temperature conditions. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.09.059] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
37
|
Pan C, Yuan C, Yu JT. Peroxide-mediated synthesis of benzimidazo[2,1- a]isoquinoline-6(5 H)-ones via cascade methylation/ethylation and intramolecular cyclization. Org Biomol Chem 2021; 19:619-626. [PMID: 33367428 DOI: 10.1039/d0ob02383c] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A metal-free oxidative radical methylation/arylation of 2-arylbenzoimidazoles with DTBP as the oxidant and methyl radical source was developed. The reaction proceeds through a sequential methyl radical addition/cyclization pathway and affords a series of methyl functionalized benzimidazo[2,1-a]isoquinoline-6(5H)-ones in moderate to good yields. Besides, the ethylation/arylation of 2-arylbenzoimidazoles was also achieved with DTAP.
Collapse
Affiliation(s)
- Changduo Pan
- School of Chemical and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, P. R. China.
| | - Cheng Yuan
- School of Chemical and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, P. R. China.
| | - Jin-Tao Yu
- School of Petrochemical Engineering, Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, Changzhou University, Changzhou 213164, P. R. China.
| |
Collapse
|
38
|
Cicco L, Hernández-Fernández JA, Salomone A, Vitale P, Ramos-Martín M, González-Sabín J, Presa Soto A, Perna FM, Capriati V, García-Álvarez J. Copper-catalyzed Goldberg-type C-N coupling in deep eutectic solvents (DESs) and water under aerobic conditions. Org Biomol Chem 2021; 19:1773-1779. [PMID: 33543179 DOI: 10.1039/d0ob02501a] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
An efficient and selective N-functionalization of amides is first reported via a CuI-catalyzed Goldberg-type C-N coupling reaction between aryl iodides and primary/secondary amides run either in Deep Eutectic Solvents (DESs) or water as sustainable reaction media, under mild and bench-type reaction conditions (absence of protecting atmosphere). Higher activities were observed in an aqueous medium, though the employment of DESs expanded and improved the scope of the reaction to include also aliphatic amides. Additional valuable features of the reported protocol include: (i) the possibility to scale up the reaction without any erosion of the yield/reaction time; (ii) the recyclability of both the catalyst and the eutectic solvent up to 4 consecutive runs; and (iii) the feasibility of the proposed catalytic system for the synthesis of biologically active molecules.
Collapse
Affiliation(s)
- Luciana Cicco
- Laboratorio de Compuestos Organometálicos y Catálisis (Unidad Asociada al CSIC), Departamento de Química Orgánica e Inorgánica (IUQOEM), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Facultad de Química, Universidad de Oviedo, E-33071 Oviedo, Spain. and Dipartimento di Farmacia-Scienze del Farmaco, Università di Bari "Aldo Moro", Consorzio C.I.N.M.P.I.S., Via E. Orabona 4, I-70125 Bari, Italy.
| | - Jose A Hernández-Fernández
- Laboratorio de Compuestos Organometálicos y Catálisis (Unidad Asociada al CSIC), Departamento de Química Orgánica e Inorgánica (IUQOEM), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Facultad de Química, Universidad de Oviedo, E-33071 Oviedo, Spain.
| | - Antonio Salomone
- Dipartimento di Chimica, Università di Bari "Aldo Moro", Via E. Orabona 4, I-70125 Bari, Italy
| | - Paola Vitale
- Dipartimento di Farmacia-Scienze del Farmaco, Università di Bari "Aldo Moro", Consorzio C.I.N.M.P.I.S., Via E. Orabona 4, I-70125 Bari, Italy.
| | - Marina Ramos-Martín
- Laboratorio de Compuestos Organometálicos y Catálisis (Unidad Asociada al CSIC), Departamento de Química Orgánica e Inorgánica (IUQOEM), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Facultad de Química, Universidad de Oviedo, E-33071 Oviedo, Spain.
| | - Javier González-Sabín
- EntreChem SL, Vivero Ciencias de la Salud, Santo Domingo de Guzmán, E-33011, Oviedo, Spain
| | - Alejandro Presa Soto
- Laboratorio de Compuestos Organometálicos y Catálisis (Unidad Asociada al CSIC), Departamento de Química Orgánica e Inorgánica (IUQOEM), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Facultad de Química, Universidad de Oviedo, E-33071 Oviedo, Spain.
| | - Filippo M Perna
- Dipartimento di Farmacia-Scienze del Farmaco, Università di Bari "Aldo Moro", Consorzio C.I.N.M.P.I.S., Via E. Orabona 4, I-70125 Bari, Italy.
| | - Vito Capriati
- Dipartimento di Farmacia-Scienze del Farmaco, Università di Bari "Aldo Moro", Consorzio C.I.N.M.P.I.S., Via E. Orabona 4, I-70125 Bari, Italy.
| | - Joaquín García-Álvarez
- Laboratorio de Compuestos Organometálicos y Catálisis (Unidad Asociada al CSIC), Departamento de Química Orgánica e Inorgánica (IUQOEM), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Facultad de Química, Universidad de Oviedo, E-33071 Oviedo, Spain.
| |
Collapse
|
39
|
Deng X, Qian R, Zhou H, Yu L. Organotellurium-catalyzed oxidative deoximation reactions using visible-light as the precise driving energy. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.09.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
40
|
Bao H, Lin Z, Jin M, Zhang H, Xu J, Chen B, Li W. Visible-light-induced C H arylation of quinoxalin-2(1H)-ones in H2O. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.152841] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
41
|
Chen JY, Zhong CT, Gui QW, Zhou YM, Fang YY, Liu KJ, Lin YW, Cao Z, He WM. Practical and sustainable approach for clean preparation of 5-organylselanyl uracils. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.09.034] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
42
|
Li S, Qiu J, Li B, Sun Z, Xie P, Loh TP. Practical allylation with unactivated allylic alcohols under mild conditions. Org Chem Front 2021. [DOI: 10.1039/d1qo00490e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A practical palladium/calcium catalytic system was developed for dehydrative allylation with unactivated allylic alcohols.
Collapse
Affiliation(s)
- Shuangshuang Li
- School of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing 211816
- P. R. China
| | - Ju Qiu
- School of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing 211816
- P. R. China
| | - Bowen Li
- School of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing 211816
- P. R. China
| | - Zuolian Sun
- School of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing 211816
- P. R. China
| | - Peizhong Xie
- School of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing 211816
- P. R. China
| | - Teck-Peng Loh
- School of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing 211816
- P. R. China
- Division of Chemistry and Biological Chemistry
| |
Collapse
|
43
|
Sun M, Xu K, Guo B, Zeng C. Copper-Catalyzed Vicinal C(sp 2)—H Selenylation of Benzoic Acid Derivatives Using Air as Oxidant. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202102002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
44
|
Guan F, Chen Y, Zhang Y, Yu R. A coupling process of electrodialysis with oxime hydrolysis reaction for preparation of hydroxylamine sulfate. RSC Adv 2021; 11:19238-19247. [PMID: 35478614 PMCID: PMC9033559 DOI: 10.1039/d1ra02766b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/05/2021] [Accepted: 05/16/2021] [Indexed: 11/21/2022] Open
Abstract
A coupling process of electrodialysis with oxime hydrolysis reaction for preparing hydroxylamine sulfate was developed in this work. The three steps, including the oxime hydrolysis, the hydroxylamine protonation reaction, and the separation process, are integrated into a triple-chamber electrodialysis stack. In this novel method, the impacts of current density, oxime concentration, and reaction time were investigated. The results indicated that the decomposition voltage is above 1.93 V. Furthermore, the current density is 4.69 × 10−2 A cm−2, the oxime concentration is 1.00 mol L−1, and when reaction time reaches 600 min, the yield of hydroxylamine sulfate is 67.59%. Moreover, the process has excellent mass transfer performance, mild reaction conditions, and simple operation compared with conventional methods. This work will provide a theoretical basis for the green and continuous manufacture of hydroxylamine sulfate and a guide for preparing other hydroxylamine salts through such hydrolysis methods. A coupling process of electrodialysis with oxime hydrolysis reaction for preparing hydroxylamine sulfate was developed in this work.![]()
Collapse
Affiliation(s)
- Fenggang Guan
- School of Chemistry and Chemical Engineering
- Shandong University of Technology
- Zibo
- PR China
| | - Yanyan Chen
- School of Chemistry and Chemical Engineering
- Shandong University of Technology
- Zibo
- PR China
| | - Yuying Zhang
- School of Chemistry and Chemical Engineering
- Shandong University of Technology
- Zibo
- PR China
| | - Rujun Yu
- School of Chemistry and Chemical Engineering
- Shandong University of Technology
- Zibo
- PR China
| |
Collapse
|
45
|
Metal-free direct C(sp3)−H functionalization of 2-alkylthiobenzoic acid to access 1,3-benzooxathiin-4-one. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.11.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
46
|
Sun K, Lv QY, Lin YW, Yu B, He WM. Nitriles as radical acceptors in radical cascade reactions. Org Chem Front 2021. [DOI: 10.1039/d0qo01058h] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The application of the cyano group as a radical acceptor in the cascade reactions for the construction of various important heterocycles and carbocycles was summarized.
Collapse
Affiliation(s)
- Kai Sun
- Green Catalysis Center
- College of Chemistry
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Qi-Yan Lv
- Green Catalysis Center
- College of Chemistry
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Ying-Wu Lin
- School of Chemistry and Chemical Engineering
- University of South China
- Hengyang
- China
| | - Bing Yu
- Green Catalysis Center
- College of Chemistry
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Wei-Min He
- Department of Chemistry
- Hunan University of Science and Engineering
- Yongzhou 425100
- China
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation
| |
Collapse
|
47
|
Yang K, Dai S, Li Z, Li Z, Sun X. Amide-assisted α-C(sp 3)–H acyloxyation of organic sulfides to access α-acyloxy sulfides. Org Chem Front 2021. [DOI: 10.1039/d1qo00774b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The direct acyloxyation of 2-(alkylthio)benzamide has been established via an amide-assisted α-C(sp3)–H functionalization in the presence of Selectfluor by using simple carboxylic acid and its corresponding salt as acyloxy sources.
Collapse
Affiliation(s)
- Ke Yang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Shengfei Dai
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Zhi Li
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Zhengyi Li
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Xiaoqiang Sun
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
| |
Collapse
|
48
|
Nguyen VT, Nguyen HT, Tran PH. One-pot three-component synthesis of 1-amidoalkyl naphthols and polyhydroquinolines using a deep eutectic solvent: a green method and mechanistic insight. NEW J CHEM 2021. [DOI: 10.1039/d0nj05687a] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The multicomponent synthesis of 1-amidoalkyl naphthols and polyhydroquinolines has been developed as an atom-economic procedure catalyzed by a deep eutectic solvent ([CholineCl][ZnCl2]3).
Collapse
Affiliation(s)
- Vu Thanh Nguyen
- Department of Organic Chemistry, Faculty of Chemistry, University of Science, Ho Chi Minh City
- Vietnam
- Vietnam National University
- Ho Chi Minh City 721337
- Vietnam
| | - Hai Truong Nguyen
- Department of Organic Chemistry, Faculty of Chemistry, University of Science, Ho Chi Minh City
- Vietnam
- Vietnam National University
- Ho Chi Minh City 721337
- Vietnam
| | - Phuong Hoang Tran
- Department of Organic Chemistry, Faculty of Chemistry, University of Science, Ho Chi Minh City
- Vietnam
- Vietnam National University
- Ho Chi Minh City 721337
- Vietnam
| |
Collapse
|
49
|
Garia A, Chauhan P, Halder R, Jain N. Quinoline-Fused Lactones via Tandem Oxidation Cyclization: Metal-Free sp 3 C-H Functionalization. J Org Chem 2021; 86:538-546. [PMID: 33289376 DOI: 10.1021/acs.joc.0c02238] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A unique lactonization of 2-methyl-3-acyl-4-phenylquinolines using PhIO as the oxidant and selectfluor as an additive is reported. The reaction occurs under ambient conditions through tandem oxidation and cyclization of sp3 C-H bonds under metal-free conditions. The heterocycle-fused lactones are obtained in moderate to good yield.
Collapse
Affiliation(s)
- Alankrita Garia
- Department of Chemistry, Indian Institute of Technology, New Delhi 110016, India
| | - Parul Chauhan
- Department of Chemistry, Indian Institute of Technology, New Delhi 110016, India
| | - Riya Halder
- Department of Chemistry, Indian Institute of Technology, New Delhi 110016, India
| | - Nidhi Jain
- Department of Chemistry, Indian Institute of Technology, New Delhi 110016, India
| |
Collapse
|
50
|
Ghosh S, Biswas K. Metal-free multicomponent approach for the synthesis of propargylamine: a review. RSC Adv 2021; 11:2047-2065. [PMID: 35424169 PMCID: PMC8693810 DOI: 10.1039/d0ra09392k] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 12/14/2020] [Indexed: 12/15/2022] Open
Abstract
Propargylamines are important classes of alkyne coupled amine compounds used in heterocyclic chemistry and pharmaceuticals chemistry and have a large impact as a pharmacophore used in medicinal chemistry. One of the straightforward approaches for the synthesis of this class of compound is A3 coupling, a three-component coupling reaction among aldehyde, alkyne (terminal acetylene) and amine. However, there are many methods other than conventional three component alkyne–aldehyde–amine (A3) coupling which have also been reported for the synthesis of propargylamine. Most of these methods are based on the metal catalyzed activation of terminal alkyne. From the perspective of green and sustainable chemistry, the scientific community should necessarily focus on metal-free techniques which can access a variety of propargylamines. There are only a few reports found in the literature where propargylamines were successfully synthesized under metal-free conditions. This present review article neatly and precisely encompasses the comprehensive study of metal-free protocols in propargylamine synthesis putting forth their mechanisms and other aspects. Metal-free propargylamines synthesis via multicomponent reactions.![]()
Collapse
Affiliation(s)
- Sujit Ghosh
- Department of Chemistry
- Raiganj Surendranath Mahavidyalaya
- Raiganj 733134
- India
| | - Kinkar Biswas
- Department of Chemistry
- Raiganj University
- Raiganj 733134
- India
| |
Collapse
|