1
|
Li X, Jin Y, Zhu N, Yin J, Jin LY. Recent Developments of Fluorescence Sensors Constructed from Pillar[ n]arene-Based Supramolecular Architectures Containing Metal Coordination Sites. SENSORS (BASEL, SWITZERLAND) 2024; 24:1530. [PMID: 38475066 DOI: 10.3390/s24051530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024]
Abstract
The field of fluorescence sensing, leveraging various supramolecular self-assembled architectures constructed from macrocyclic pillar[n]arenes, has seen significant advancement in recent decades. This review comprehensively discusses, for the first time, the recent innovations in the synthesis and self-assembly of pillar[n]arene-based supramolecular architectures (PSAs) containing metal coordination sites, along with their practical applications and prospects in fluorescence sensing. Integrating hydrophobic and electron-rich cavities of pillar[n]arenes into these supramolecular structures endows the entire system with self-assembly behavior and stimulus responsiveness. Employing the host-guest interaction strategy and complementary coordination forces, PSAs exhibiting both intelligent and controllable properties are successfully constructed. This provides a broad horizon for advancing fluorescence sensors capable of detecting environmental pollutants. This review aims to establish a solid foundation for the future development of fluorescence sensing applications utilizing PSAs. Additionally, current challenges and future perspectives in this field are discussed.
Collapse
Affiliation(s)
- Xu Li
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, China
| | - Yan Jin
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, China
| | - Nansong Zhu
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, China
| | - Jinghua Yin
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, China
| | - Long Yi Jin
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, China
| |
Collapse
|
2
|
Wu J, Sun X, Li X, Li X, Feng W, Yuan L. Multi-Responsive Molecular Encapsulation and Release Based on Hydrogen-Bonded Azo-Macrocycle. Molecules 2023; 28:molecules28114437. [PMID: 37298912 DOI: 10.3390/molecules28114437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/27/2023] [Accepted: 05/27/2023] [Indexed: 06/12/2023] Open
Abstract
Research on stimuli-responsive host-guest systems is at the cutting edge of supramolecular chemistry, owing to their numerous potential applications such as catalysis, molecular machines, and drug delivery. Herein, we present a multi-responsive host-guest system comprising azo-macrocycle 1 and 4,4'-bipyridinium salt G1 for pH-, photo-, and cation- responsiveness. Previously, we reported a novel hydrogen-bonded azo-macrocycle 1. The size of this host can be controlled through light-induced E↔Z photo-isomerization of the constituent azo-benzenes. The host is found in this work to be capable of forming stable complexes with bipyridinium/pyridinium salts, and implementing guest capture and release with G1 under light in a controlled manner. The binding and release of the guest in the complexes can also be easily controlled reversibly by using acid and base. Moreover, the cation competition-induced dissociation of the complex 1a2⊃G1 is achieved. These findings are expected to be useful in regulating encapsulation for sophisticated supramolecular systems.
Collapse
Affiliation(s)
- Jinyang Wu
- College of Chemistry, Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China
| | - Xuan Sun
- College of Chemistry, Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China
| | - Xianghui Li
- College of Chemistry, Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China
| | - Xiaowei Li
- College of Chemistry, Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China
| | - Wen Feng
- College of Chemistry, Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China
| | - Lihua Yuan
- College of Chemistry, Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China
| |
Collapse
|
3
|
Han XN, Han Y, Chen CF. Recent advances in the synthesis and applications of macrocyclic arenes. Chem Soc Rev 2023; 52:3265-3298. [PMID: 37083011 DOI: 10.1039/d3cs00002h] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Macrocyclic arenes including calixarenes, resorcinarenes, cyclotriveratrylene, pillararenes and so on have emerged as highly attractive synthetic macrocyclic hosts due to their unique structures, facile functionalization, and broad range of applications. In recent years, there has been growing interest in the development of novel macrocyclic arenes composed of various aromatic building blocks bridged by methylene groups, which have found applications in various research areas. Consequently, the development of novel macrocyclic arenes has become a frontier and hot topic in supramolecular and macrocyclic chemistry. In this review, we feature the recent advances in the synthesis and applications of novel macrocyclic arenes that have emerged in the last decade. The general synthetic strategies employed for these macrocyclic arenes are systematically summarized, and their wide applications in molecular recognition and assemblies, molecular machines, biomedical science and functional materials are highlighted.
Collapse
Affiliation(s)
- Xiao-Ni Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Ying Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Chuan-Feng Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Wang W, Li Z, Song C, Yang J, Yang Y. Separation of Low-Molecular-Weight Organics by Water-Soluble Macrocyclic Arenes. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238554. [PMID: 36500648 PMCID: PMC9736317 DOI: 10.3390/molecules27238554] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 11/30/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022]
Abstract
In this study, we fabricate a series of water-soluble anionic macrocyclic arenes, including pillar[5]arene (WP5), pillar[6]arene (WP6), leaning pillar[6]arene (WLT6), and biphenyl-extended pillar[6]arene (WBpP6), which show different separation capabilities toward low-molecular-weight organics, such as short chain haloalkanes, cyclic aliphatics, and aromatics, in water. The liquid-liquid distribution experiments are carried out at room temperature. The separation factor for low-molecular-weight organics is evaluated in the extraction of equimolar mixtures. WP6 demonstrates a high extraction efficiency of up to 89% in separating toluene/methylcyclohexane mixtures. These adsorbents also have the advantages of rapid adsorption, high separation efficiency, remarkable selectivity, and good recyclability. This work not only expands the application scope of macrocyclic chemistry, but also has practical research value for organics separation and water purification.
Collapse
|
5
|
Wu JR, Wu G, Yang YW. Pillararene-Inspired Macrocycles: From Extended Pillar[ n]arenes to Geminiarenes. Acc Chem Res 2022; 55:3191-3204. [PMID: 36265167 DOI: 10.1021/acs.accounts.2c00555] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
chemistry since their establishment due to their innate functional features of molecular recognition and complexation. The rapid development of modern supramolecular chemistry has also significantly benefited from creating new macrocycles with distinctive geometries and properties. For instance, pillar[n]arenes (pillarenes), a relatively young generation of star macrocyclic hosts among the well-established ones (e.g., crown ethers, cyclodextrins, cucurbiturils, and calixarenes), promoted a phenomenal research hotspot all over the world in the past decade. Although the synthesis, host-guest properties, and various supramolecular functions of pillarenes have been intensively studied, many objective limitations and challenges still cannot be ignored. For example, high-level pillar[n]arenes (n > 7) usually do not possess applicable large-sized cavities due to structural folding and cannot be synthesized on a large scale because of the uncompetitive cyclization process. Furthermore, two functional groups must be covalently para-connected to each repeating phenylene unit, which severely limits their structural diversity and flexibility. In this context, we have developed a series of pillarene-inspired macrocycles (PIMs) using a versatile and modular synthetic strategy during the past few years, aiming to break through the synthetic limitations in traditional pillarenes and find new opportunities and challenges in supramolecular chemistry and beyond. Specifically, by grafting biphenyl units into the pillarene backbones, extended pillar[n]arenes with rigid and nanometer-sized cavities could be obtained with reasonable synthetic yields by selectively removing hydroxy/alkoxy substitutes on pillarene backbones, leaning pillar[6]arenes and leggero pillar[n]arenes with enhanced structural flexibility and cavity adaptability were obtained. By combining the two types of bridging modes in pillarenes and calixarenes, a smart macrocyclic receptor with two different but interconvertible conformational features, namely geminiarene, was discovered. Benefiting from the synthetic accessibility, facile functionalization, and superior host-guest properties in solution or the solid state, this new family of macrocycles has exhibited a broad range of applications, including but not limited to supramolecular assembly/gelation/polymers, pollutant detection and separation, porous organic polymers, crystalline/amorphous molecular materials, hybrid materials, and controlled drug delivery. Thus, in this Account, we summarize our research efforts on these PIMs. We first present an overview of their design and modular synthesis and a summary of their derivatization strategies. Thereafter, particular attention is paid to their structural features, supramolecular functions, and application exploration. Finally, the remaining challenges and perspectives are outlined for their future development. We hope that this Account and our works can stimulate further advances in synthetic macrocyclic chemistry and supramolecular functional systems, leading to practical applications in various research areas.
Collapse
Affiliation(s)
- Jia-Rui Wu
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
| | - Gengxin Wu
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
| | - Ying-Wei Yang
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
| |
Collapse
|
6
|
Li Y, Lou X, Wang C, Wang Y, Jia Y, Lin Q, Yang Y. Synthesis of stimuli-responsive pillararene-based supramolecular polymer materials for the detection and separation of metal ions. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
7
|
Pei Q, Han Q, Tang F, Wu J, Xu S, Zhang M, Ding A. Gallic‐Acid‐Modified Naphthalimide Containing Disulfide Bond as Reduction‐Responsive Supramolecular Organogelator. ChemistrySelect 2022. [DOI: 10.1002/slct.202201296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Qiang Pei
- College of Chemistry and Chemical Engineering Xinyang Normal University Xinyang 464000 China
| | - Qingqing Han
- College of Chemistry and Chemical Engineering Xinyang Normal University Xinyang 464000 China
| | - Fang Tang
- Key Laboratory of Radiopharmaceuticals Ministry of Education College of Chemistry Beijing Normal University Beijing 100875 China
| | - Jinjin Wu
- College of Chemistry and Chemical Engineering Xinyang Normal University Xinyang 464000 China
| | - Shijie Xu
- College of Chemistry and Chemical Engineering Xinyang Normal University Xinyang 464000 China
| | - Mengyao Zhang
- College of Chemistry and Chemical Engineering Xinyang Normal University Xinyang 464000 China
| | - Aixiang Ding
- College of Chemistry and Chemical Engineering Xinyang Normal University Xinyang 464000 China
| |
Collapse
|
8
|
Liu C, Zhou L, Cao S, Zhang H, Han J, Liu Z. Supramolecular systems prepared using terpyridine-containing pillararene. Polym Chem 2022. [DOI: 10.1039/d1py01397a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Recent progresses about the preparation of terpyridine-containing pillararene, as well as the utilization of those building blocks for making external stimulud-responsive supramolecular systems were summarized in this review.
Collapse
Affiliation(s)
- Chang Liu
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Le Zhou
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Shuai Cao
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Huacheng Zhang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Jie Han
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Energy), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhaona Liu
- Medical School, Xi'an Peihua University, Xi'an 710125, Shaanxi, China
| |
Collapse
|
9
|
Shi QX, Xiao H, Sheng YJ, Li DS, Su M, Sun XL, Bao H, Wan WM. Barbier single-atom polymerization induced emission as a one-pot approach towards stimuli-responsive luminescent polymers. Polym Chem 2022. [DOI: 10.1039/d2py00816e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A one-pot strategy for the design of stimuli-responsive luminescent polymers has been demonstrated through Barbier PIE, where the N,N-dimethyl moiety endows the polymers with both stimuli-responsive and red-shifted nonconjugated emission properties.
Collapse
Affiliation(s)
- Quan-Xi Shi
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. China
- College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Hang Xiao
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. China
- College of Environmental Science and Engineering, Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350007, P. R. China
| | - Yu-Jing Sheng
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. China
- College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, P. R. China
| | - De-Shan Li
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. China
| | - Min Su
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. China
| | - Xiao-Li Sun
- College of Environmental Science and Engineering, Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350007, P. R. China
| | - Hongli Bao
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. China
| | - Wen-Ming Wan
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. China
- College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| |
Collapse
|
10
|
Liu S, Tan S, Hu H, Chen Z, Pu S. Novel colorimetric and fluorescent chemosensor for Hg2+/Sn2+ based on a photochromic diarylethene with a styrene-linked pyrido[2,3-b]pyrazine unit. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113439] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
Zhang Y, Chen F, Li Y, Qiu H, Zhang J, Yin S. Supramolecular Polymer Networks with Enhanced Mechanical Properties: The Marriage of Covalent Polymer and Metallacycle
†. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100325] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Yue‐Yue Zhang
- College of Material, Chemistry and Chemical Engineering Hangzhou Normal University Hangzhou Zhejiang 311121 China
| | - Feng Chen
- College of Material, Chemistry and Chemical Engineering Hangzhou Normal University Hangzhou Zhejiang 311121 China
| | - Yang Li
- College of Material, Chemistry and Chemical Engineering Hangzhou Normal University Hangzhou Zhejiang 311121 China
| | - Hua‐Yu Qiu
- College of Material, Chemistry and Chemical Engineering Hangzhou Normal University Hangzhou Zhejiang 311121 China
- Key Laboratory of Organosilicon Chemistry and Materials Technology of Ministry of Education Hangzhou Normal University Hangzhou Zhejiang 311121 China
| | - Jin‐Jin Zhang
- College of Material, Chemistry and Chemical Engineering Hangzhou Normal University Hangzhou Zhejiang 311121 China
| | - Shou‐Chun Yin
- College of Material, Chemistry and Chemical Engineering Hangzhou Normal University Hangzhou Zhejiang 311121 China
| |
Collapse
|
12
|
Li Z, Ji X, Xie H, Tang BZ. Aggregation-Induced Emission-Active Gels: Fabrications, Functions, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2100021. [PMID: 34216407 DOI: 10.1002/adma.202100021] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 03/14/2021] [Indexed: 05/07/2023]
Abstract
Chromophores that exhibit aggregation-induced emission (i.e., aggregation-induced emission luminogens [AIEgens]) emit intense fluorescence in their aggregated states, but show negligible emission as discrete molecular species in solution due to the changes in restriction and freedom of intramolecular motions. As solvent-swollen quasi-solids with both a compact phase and a free space, gels enable manipulation of intramolecular motions. Thus, AIE-active gels have attracted significant interest owing to their various distinctive properties and promising application potential. Herein, a comprehensive overview of AIE-active gels is provided. The fabrication strategies employed are detailed, and the applications of AIEgens are summarized. In addition, the gel functions arising from the AIE moieties are revealed, along with their structure-property relationships. Furthermore, the applications of AIE-active gels in diverse areas are illustrated. Finally, ongoing challenges and potential means to address them are discussed, along with future perspectives on AIE-active gels, with the overall aim of inspiring research on novel materials and ideas.
Collapse
Affiliation(s)
- Zhao Li
- Institute of Engineering Medicine, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing, 100081, China
| | - Xiaofan Ji
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Huilin Xie
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st RD, South Area, Hi-tech Park Nanshan, Shenzhen, 518055, China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st RD, South Area, Hi-tech Park Nanshan, Shenzhen, 518055, China
- Center for Aggregation-Induced Emission, SCUT-HKUST Joint Research Institutes, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
13
|
Tian Y, Du C, Liu B, Qiu HN, Zhang X, Wu ZL, Zheng Q. Tough and fluorescent hydrogels composed of poly(hydroxyurethane) and poly(stearyl acrylate‐
co
‐acrylic acid) with hydrophobic associations and hydrogen bonds as the physical crosslinks. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210070] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Ye Tian
- Key Laboratory of Macromolecular Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
- College of Mechanical Engineering Zhejiang University of Technology Hangzhou China
- Key Laboratory of Special Purpose Equipment and Advanced Processing Technology, Ministry of Education and Zhejiang Province Zhejiang University of Technology Hangzhou China
| | - Cong Du
- Key Laboratory of Macromolecular Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| | - Bin Liu
- Key Laboratory of Macromolecular Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| | - Hao Nan Qiu
- Key Laboratory of Macromolecular Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| | - Xing‐Hong Zhang
- Key Laboratory of Macromolecular Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| | - Zi Liang Wu
- Key Laboratory of Macromolecular Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| | - Qiang Zheng
- Key Laboratory of Macromolecular Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| |
Collapse
|
14
|
|
15
|
Dai D, Yang J, Zou Y, Wu J, Tan L, Wang Y, Li B, Lu T, Wang B, Yang Y. Macrocyclic Arenes‐Based Conjugated Macrocycle Polymers for Highly Selective CO
2
Capture and Iodine Adsorption. Angew Chem Int Ed Engl 2021; 60:8967-8975. [DOI: 10.1002/anie.202015162] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/16/2021] [Indexed: 12/14/2022]
Affiliation(s)
- Dihua Dai
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry International Joint Research Laboratory of Nano-Micro Architecture Chemistry College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Jie Yang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry International Joint Research Laboratory of Nano-Micro Architecture Chemistry College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Yong‐Cun Zou
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry International Joint Research Laboratory of Nano-Micro Architecture Chemistry College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Jia‐Rui Wu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry International Joint Research Laboratory of Nano-Micro Architecture Chemistry College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Li‐Li Tan
- State Key Laboratory of Solidification Processing Center for Nano Energy Materials School of Materials Science and Engineering Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU) 127 Youyi West Road Xi'an 710072 P. R. China
| | - Yan Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry International Joint Research Laboratory of Nano-Micro Architecture Chemistry College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Bao Li
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Tong Lu
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Bo Wang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Key Laboratory of Cluster Science Ministry of Education School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 100081 P. R. China
| | - Ying‐Wei Yang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry International Joint Research Laboratory of Nano-Micro Architecture Chemistry College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| |
Collapse
|
16
|
Dai D, Yang J, Zou Y, Wu J, Tan L, Wang Y, Li B, Lu T, Wang B, Yang Y. Macrocyclic Arenes‐Based Conjugated Macrocycle Polymers for Highly Selective CO
2
Capture and Iodine Adsorption. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015162] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Dihua Dai
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry International Joint Research Laboratory of Nano-Micro Architecture Chemistry College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Jie Yang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry International Joint Research Laboratory of Nano-Micro Architecture Chemistry College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Yong‐Cun Zou
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry International Joint Research Laboratory of Nano-Micro Architecture Chemistry College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Jia‐Rui Wu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry International Joint Research Laboratory of Nano-Micro Architecture Chemistry College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Li‐Li Tan
- State Key Laboratory of Solidification Processing Center for Nano Energy Materials School of Materials Science and Engineering Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU) 127 Youyi West Road Xi'an 710072 P. R. China
| | - Yan Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry International Joint Research Laboratory of Nano-Micro Architecture Chemistry College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Bao Li
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Tong Lu
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Bo Wang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Key Laboratory of Cluster Science Ministry of Education School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 100081 P. R. China
| | - Ying‐Wei Yang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry International Joint Research Laboratory of Nano-Micro Architecture Chemistry College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| |
Collapse
|
17
|
Yang J, Dai D, Ma L, Yang YW. Molecular-scale drug delivery systems loaded with oxaliplatin for supramolecular chemotherapy. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.08.035] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
18
|
Cui T, Liu G, Zhang W, Zhu X, Leng J, Hao XQ, Mao P, Song MP. Metal-organic supramolecular nanoarchitectures by Ru(II) bis-(terpyridine)-bridged pillar[5]arene dimers with triphenylamine. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.02.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Yu S, Wang Y, Chatterjee S, Liang F, Zhu F, Li H. Pillar[5]arene-functionalized nanochannel platform for detecting chiral drugs. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.11.055] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
20
|
Zhang X, Wang X, Wang B, Ding ZJ, Li C. Carbon-carbon double bond in pillar[5]arene cavity: Selective binding of cis/trans-olefin isomers. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2020.02.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
21
|
Lou XY, Yang YW. Pillar[n]arene-Based Supramolecular Switches in Solution and on Surfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2003263. [PMID: 32924206 DOI: 10.1002/adma.202003263] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/17/2020] [Indexed: 06/11/2023]
Abstract
The design and synthesis of new synthetic macrocycles has driven the rapid development of supramolecular chemistry and materials. Pillar[n]arenes, as a new type of macrocyclic compounds, are used as a promising type of building blocks for switchable supramolecular systems due to their versatile functionalization and the ability of binding toward various guest molecules. A number of guests can form inclusion complexes with pillar[n]arenes and their derivatives in solution, which are sensitive to different external triggers. Interestingly, the pursuit of complex stimuli-responsive functional materials and devices has largely motivated the shift of pillar[n]arene-based switches from solution media to surfaces for controllable macroscopic motions on solid platforms. Facilitated by the facile modification of pillar[n]arenes on various solid supports and the dynamic binding of host-guest complexes, numerous functional hybrid materials with adjustable physical or chemical properties and integrated functionalities have been reported in the last decade. Here, the advance of supramolecular switches in solution and on surfaces based on pillar[n]arenes and derivatives with an emphasis on the efforts and the latest contributions from the field is discussed.
Collapse
Affiliation(s)
- Xin-Yue Lou
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Ying-Wei Yang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| |
Collapse
|
22
|
Guo L, Du J, Wang Y, Shi K, Ma E. Advances in diversified application of pillar[n]arenes. J INCL PHENOM MACRO 2020. [DOI: 10.1007/s10847-020-00986-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|