1
|
Acquah C, Hoehn S, Krul S, Jockusch S, Yang S, Seth SK, Lee E, Xiao H, Crespo-Hernández CE. Electronic relaxation pathways in thio-acridone and thio-coumarin: two heavy-atom-free photosensitizers absorbing visible light. Phys Chem Chem Phys 2024; 26:28980-28991. [PMID: 39552238 PMCID: PMC11570880 DOI: 10.1039/d4cp03720k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 11/09/2024] [Indexed: 11/19/2024]
Abstract
Heavy-atom-free photosensitizers (HAF-PSs) have emerged as a new class of photosensitizers aiming to broaden their applicability and versatility across various fields of the photodynamic therapy of cancers. The strategy involves replacing the exocyclic oxygen atoms of the carbonyl groups of established biocompatible organic fluorophores with sulfur, thereby bathochromically shifting their absorption spectra and enhancing their intersystem crossing efficiencies. Despite these advancements, the photophysical attributes and electronic relaxation mechanisms of many of these HAF-PSs remain inadequately elucidated. In this study, we investigate the excited state dynamics and photochemical properties of two promising HAF-PSs, thio-coumarin and thio-acridone. Employing a combination of steady-state and time-resolved techniques from femtoseconds to microseconds, coupled with quantum chemical calculations, we unravel the electronic relaxation mechanisms that give rise to the efficient population of long-lived and reactive triplet states in these HAF-PSs.
Collapse
Affiliation(s)
- Chris Acquah
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA.
| | - Sean Hoehn
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA.
| | - Sarah Krul
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA.
| | - Steffen Jockusch
- Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio, 43403, USA
| | - Shudan Yang
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas, 77005, USA
| | - Sourav Kanti Seth
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA.
| | - Eric Lee
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA.
| | - Han Xiao
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas, 77005, USA
- Department of Biosciences, Rice University, 6100 Main Street, Houston, Texas, 77005, USA
- Department of Bioengineering, Rice University, 6100 Main Street, Houston, Texas, 77005, USA
- SynthX Center, Rice University, 6100 Main Street, Houston, Texas, 77005, USA
| | | |
Collapse
|
2
|
Chen X, Liang H, He X, Li W, Nian Z, Mahmood Z, Huo Y, Ji S. Exploring the triplet state properties of thio-benzothioxanthene imides with applications in TTA-upconversion and photopolymerization. Chem Commun (Camb) 2024; 60:11132-11135. [PMID: 39269145 DOI: 10.1039/d4cc04049j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Thio-benzothioxanthene imide (BTXI) exhibits long excited state lifetime (τT = 17.7 μs) and high ISC efficiency (ΦΔ = 97%). For the first time, BTXI derivatives were used as photosensitizers for triplet-triplet annihilation upconversion, achieving the highest efficiency of 13.8%. In addition, thio-BTXI derivatives were used as photoinitiators for photopolymerization, resulting in a series of green light-activated radical polymerization systems.
Collapse
Affiliation(s)
- Xiaoping Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China.
| | - Hui Liang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China.
| | - Xitong He
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China.
| | - Weiqiang Li
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China.
| | - Zhiyao Nian
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China.
| | - Zafar Mahmood
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China.
| | - Yanping Huo
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China.
| | - Shaomin Ji
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China.
| |
Collapse
|
3
|
Ye C, Huang R, Chiou MF, Wang B, Li D, Bao H. Synthesis of a new fluorophore: wavelength-tunable bisbenzo[ f]isoindolylidenes. Chem Sci 2023; 14:13151-13158. [PMID: 38023512 PMCID: PMC10664550 DOI: 10.1039/d3sc04445a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023] Open
Abstract
The creation of new functional molecules is a central task in chemical synthesis. Herein, we report the synthesis of a new type of fluorophore, bisbenzo[f]isoindolylidenes, from easily accessible dipropargyl benzenesulfonamides. Wavelength-tunable fluorophores emitting strong fluorescence of green to red light were obtained in this reaction. Late-stage modifications and incorporation of bioactive molecules into these fluorophores give rise to potential applications in biological studies. Detailed computational and experimental studies were conducted to elucidate the mechanism, and suggest a reaction sequence involving Garratt-Braverman type cyclization, isomerization, fragmentation, dimerization and oxidation.
Collapse
Affiliation(s)
- Changqing Ye
- State Key Laboratory of Structural Chemistry, Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences 155 Yangqiao Road West Fuzhou Fujian 350002 P. R. China
| | - Rui Huang
- State Key Laboratory of Structural Chemistry, Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences 155 Yangqiao Road West Fuzhou Fujian 350002 P. R. China
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University Fuzhou Fujian 350002 P. R. China
| | - Mong-Feng Chiou
- State Key Laboratory of Structural Chemistry, Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences 155 Yangqiao Road West Fuzhou Fujian 350002 P. R. China
| | - Bo Wang
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University Fuzhou Fujian 350002 P. R. China
| | - Daliang Li
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University Fuzhou Fujian 350002 P. R. China
| | - Hongli Bao
- State Key Laboratory of Structural Chemistry, Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences 155 Yangqiao Road West Fuzhou Fujian 350002 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
4
|
Ortiz-Rodríguez LA, Fang YG, Niogret G, Hadidi K, Hoehn SJ, Folkwein HJ, Jockusch S, Tor Y, Cui G, Levi L, Crespo-Hernández CE. Thieno[3,4- d]pyrimidin-4(3 H)-thione: an effective, oxygenation independent, heavy-atom-free photosensitizer for cancer cells. Chem Sci 2023; 14:8831-8841. [PMID: 37621444 PMCID: PMC10445467 DOI: 10.1039/d3sc02592f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/24/2023] [Indexed: 08/26/2023] Open
Abstract
All-organic, heavy-atom-free photosensitizers based on thionation of nucleobases are receiving increased attention because they are easy to make, noncytotoxic, work both in the presence and absence of molecular oxygen, and can be readily incorporated into DNA and RNA. In this contribution, the DNA and RNA fluorescent probe, thieno[3,4-d]pyrimidin-4(1H)-one, has been thionated to develop thieno[3,4-d]pyrimidin-4(3H)-thione, which is nonfluorescent and absorbs near-visible radiation with about 60% higher efficiency. Steady-state absorption and emission spectra are combined with transient absorption spectroscopy and CASPT2 calculations to delineate the electronic relaxation mechanisms of both pyrimidine derivatives in aqueous and acetonitrile solutions. It is demonstrated that thieno[3,4-d]pyrimidin-4(3H)-thione efficiently populates the long-lived and reactive triplet state generating singlet oxygen with a quantum yield of about 80% independent of solvent. It is further shown that thieno[3,4-d]pyrimidin-4(3H)-thione exhibits high photodynamic efficacy against monolayer melanoma cells and cervical cancer cells both under normoxic and hypoxic conditions. Our combined spectroscopic, computational, and in vitro data demonstrate the excellent potential of thieno[3,4-d]pyrimidin-4(1H)-thione as a heavy-atom-free PDT agent and paves the way for further development of photosensitizers based on the thionation of thieno[3,4-d]pyrimidine derivatives. Collectively, the experimental and computational results demonstrate that thieno[3,4-d]pyrimidine-4(3H)-thione stands out as the most promising thiobase photosensitizer developed to this date.
Collapse
Affiliation(s)
| | - Ye-Guang Fang
- Key Lab of Theoretical and Computational Photochemistry, Ministry of Education, Chemistry College, Beijing Normal University Beijing 100875 China
| | - Germain Niogret
- Department of Chemistry and Biochemistry, University of California San Diego La Jolla CA 92093 USA
| | - Kaivin Hadidi
- Department of Chemistry and Biochemistry, University of California San Diego La Jolla CA 92093 USA
| | - Sean J Hoehn
- Department of Chemistry, Case Western Reserve University Cleveland OH 44106 USA
| | - Heather J Folkwein
- Department of Chemistry, Case Western Reserve University Cleveland OH 44106 USA
| | - Steffen Jockusch
- Center for Photochemical Sciences, Bowling Green State University Bowling Green Ohio 43403 USA
| | - Yitzhak Tor
- Department of Chemistry and Biochemistry, University of California San Diego La Jolla CA 92093 USA
| | - Ganglong Cui
- Key Lab of Theoretical and Computational Photochemistry, Ministry of Education, Chemistry College, Beijing Normal University Beijing 100875 China
| | - Liraz Levi
- Celloram Inc Cleveland OH 44106 USA
- Department of Pediatrics, Case Western Reserve University School of Medicine Cleveland Ohio 44106 USA
| | | |
Collapse
|
5
|
Chen YJ, Zhang H, Liu YZ, Shi L, Xiang FF, Lin RD, Liu YH, Chen SY, Yu XQ, Li K. Rational Design of pH-Independent and High-Fidelity Near-Infrared Tunable Fluorescent Probes for Tracking Leucine Aminopeptidase In Vivo. ACS Sens 2023; 8:2359-2367. [PMID: 37265237 DOI: 10.1021/acssensors.3c00470] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Accurate detection of target analytes and generation of high-fidelity fluorescence signals are particularly critical in life sciences and clinical diagnostics. However, the majority of current NIR-I fluorescent probes are vulnerable to pH effects resulting in signal distortion. In this work, a series of fluorescence-tunable and pH-independent probes are reported by combining optically tunable groups of unsymmetric Si-rhodamines and introducing the methoxy instead of the spiro ring on the benzene ring at position 9. To validate the concept, the leucine aminopeptidase response site was introduced into Si-2,6OMe-NH2 with the best optical properties to synthesize Si-LAP for monitoring the intrahepatic LAP in vivo. Therefore, the design approach may provide a new and practical strategy for designing innovative functional fluorescent probes and generating high-stability and high-fidelity fluorescent signals.
Collapse
Affiliation(s)
- Yu-Jin Chen
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29, Wangjiang Road, Chengdu 610064, P. R. China
| | - Hong Zhang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29, Wangjiang Road, Chengdu 610064, P. R. China
| | - Yan-Zhao Liu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29, Wangjiang Road, Chengdu 610064, P. R. China
| | - Lei Shi
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29, Wangjiang Road, Chengdu 610064, P. R. China
| | - Fei-Fan Xiang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29, Wangjiang Road, Chengdu 610064, P. R. China
| | - Ru-De Lin
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29, Wangjiang Road, Chengdu 610064, P. R. China
| | - Yan-Hong Liu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29, Wangjiang Road, Chengdu 610064, P. R. China
| | - Shan-Yong Chen
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29, Wangjiang Road, Chengdu 610064, P. R. China
| | - Xiao-Qi Yu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29, Wangjiang Road, Chengdu 610064, P. R. China
| | - Kun Li
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29, Wangjiang Road, Chengdu 610064, P. R. China
| |
Collapse
|
6
|
A new aggregation-induced emission-based fluorescent probe for effective detection of Hg2+ and its multiple applications. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
|
7
|
Zhang P, Tangadanchu VKR, Zhou C. Identification of Novel Antifungal Skeleton of Hydroxyethyl Naphthalimides with Synergistic Potential for Chemical and Dynamic Treatments. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238453. [PMID: 36500547 PMCID: PMC9739515 DOI: 10.3390/molecules27238453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/23/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
The invasion of pathogenic fungi poses nonnegligible threats to the human health and agricultural industry. This work exploited a family of hydroxyethyl naphthalimides as novel antifungal species with synergistic potential of chemical and dynamic treatment to combat the fungal resistance. These prepared naphthalimides showed better antifungal potency than fluconazole towards some tested fungi including Aspergillus fumigatus, Candida tropicalis and Candida parapsilosis 22019. Especially, thioether benzimidazole derivative 7f with excellent anti-Candida tropicalis efficacy (MIC = 4 μg/mL) possessed low cytotoxicity, safe hemolysis level and less susceptibility to induce resistance. Biochemical interactions displayed that 7f could form a supramolecular complex with DNA to block DNA replication, and constitute a biosupermolecule with cytochrome P450 reductase (CPR) from Candida tropicalis to hinder CPR biological function. Additionally, 7f presented strong lipase affinity, which facilitated its permeation into cell membrane. Moreover, 7f with dynamic antifungal potency promoted the production and accumulation of reactive oxygen species (ROS) in cells, which destroyed the antioxidant defence system, led to oxidative stress with lipid peroxidation, loss of glutathione, membrane dysfunction and metabolic inactivation, and eventually caused cell death. The chemical and dynamic antifungal synergistic effect initiated by hydroxyethyl naphthalimides was a reasonable treatment window for prospective development.
Collapse
Affiliation(s)
- Pengli Zhang
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
- Drug Discovery and Development Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Vijai Kumar Reddy Tangadanchu
- Department of Radiology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
- Correspondence: (V.K.R.T.); (C.Z.)
| | - Chenghe Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
- Correspondence: (V.K.R.T.); (C.Z.)
| |
Collapse
|
8
|
Zhang R, Lian L, Wang B, Zhu L, Ren Y, Shen J, Yu XQ, Hou JT. Observation of HOCl generation associated with diabetic cataract using a highly sensitive fluorescent probe. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 278:121385. [PMID: 35597158 DOI: 10.1016/j.saa.2022.121385] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Diagnosis of diabetic cataract (DC) in the early stage is of great significance for drug intervention and surgery circumvention for DC patients. However, the lack of reliable imaging tools greatly limits the diagnosis of early DC. In this context, a fluorescent probe BBPy for hypochlorous acid (HOCl) is presented based on the oxidation of phenothiazine. The probe displays apparent emission enhancement at 562 nm toward HOCl with high selectivity, superb sensitivity (detection limit: 12.6 nM), and rapid response (within seconds). Using the probe, the HOCl generation in diabetic human lens epithelial cells was monitored, as well as the HOCl down-regulation during antioxidant treatment. Therefore, it is proposed that HOCl can be a promising biomarker for DC and fluorescence imaging technique can be regarded as a candidate tool for DC diagnosis.
Collapse
Affiliation(s)
- Ruirui Zhang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Lili Lian
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325035, China; Eye Hospital of Wenzhou Medical University, Wenzhou 325003, China
| | - Bingya Wang
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325035, China
| | - Lei Zhu
- Institute of Biomedical Materials Industry Technology, Hubei Engineering University, Xiaogan 432000, China
| | - Yueping Ren
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325035, China; Eye Hospital of Wenzhou Medical University, Wenzhou 325003, China.
| | - Jianliang Shen
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325035, China
| | - Xiao-Qi Yu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, China; Department of Chemistry, Xihua University, Chengdu 610039, China.
| | - Ji-Ting Hou
- Institute of Biomedical Materials Industry Technology, Hubei Engineering University, Xiaogan 432000, China; School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325035, China.
| |
Collapse
|
9
|
Yu Z, Huang W, Shi L, Ke S, Xu S. Selective probes targeting c-MYC Pu22 G-quadruplex and their application in live mice imaging. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.09.087] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
10
|
Zhao X, Zhang F, Lei Z. The pursuit of polymethine fluorophores with NIR-II emission and high brightness for in vivo applications. Chem Sci 2022; 13:11280-11293. [PMID: 36320587 PMCID: PMC9533410 DOI: 10.1039/d2sc03136a] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/25/2022] [Indexed: 11/21/2022] Open
Abstract
Polymethine cyanine dyes, as the most important class of organic near-infrared-II (NIR-II) fluorophores, recently received increasing attention due to their high molar extinction coefficients, intensive fluorescence brightness, and flexible wavelength tunability for fluorescent bioimaging applications. Very recently, remarkable advances have been made in the development of NIR-II polymethine fluorophores with improved optical performance, mainly including tunable fluorescence, improved brightness, improved water solubility and stability. In this review, we summarize the recent research advances in molecular tailoring design strategies of NIR-II polymethine fluorophores, and then emphasize the representative bioimaging and biosensing applications. The potential challenges and perspectives of NIR-II polymethine fluorophores in this emerging field are also discussed. This review may provide guidance and reference for further development of high-performance NIR-II polymethine fluorophores to boost their clinical translation in the future. Overview of historical development for polymethine fluorophores with NIR-II emission and high brightness for in vivo applications.![]()
Collapse
Affiliation(s)
- Xuan Zhao
- Minhang Hospital and Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201203, China
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai 200433, China
| | - Fan Zhang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai 200433, China
| | - Zuhai Lei
- Minhang Hospital and Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201203, China
| |
Collapse
|
11
|
Li L, Lin Z, Cheng Y, Tang Y, Zhang Z. A cysteine-triggered fluorogenic donor base on native chemical ligation for tracking H 2S delivery in vivo. Analyst 2021; 146:7374-7378. [PMID: 34816826 DOI: 10.1039/d1an01809d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A hydrogen sulfide (H2S) donor is a fundamental molecular tool used as an exogenous source in biological studies and therapies. However, finding a controllable and visual fluorescent H2S donor is difficult. We report a new H2S donor, HSD560, the H2S release of which is triggered by cysteine. Importantly, the H2S generation is accompanied with enhanced green fluorescence, which could be utilized to track H2S release in cells using microscopy. H2S release from HSD560 undergoes a non-enzymatic native chemical ligation (NCL) process, which provides an accurate match with activated fluorescence and localization of H2S in zebrafish.
Collapse
Affiliation(s)
- Li Li
- Guangxi Scientific Research Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning 530200, China.
| | - Zhenmei Lin
- Guangxi Scientific Research Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning 530200, China.
| | - Yongfang Cheng
- Guangxi Scientific Research Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning 530200, China.
| | - Yaoping Tang
- Guangxi Scientific Research Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning 530200, China.
| | - Ziqian Zhang
- Guangxi Scientific Research Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning 530200, China.
| |
Collapse
|
12
|
Łapkowski M. Perinone-New Life of an Old Molecule. MATERIALS 2021; 14:ma14226880. [PMID: 34832283 PMCID: PMC8620774 DOI: 10.3390/ma14226880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 11/16/2022]
Abstract
A review of publications on the synthesis and properties of a family of compounds called perinones was carried out. The basic molecule has been known for several decades mainly as a photostable pigment, and in recent years it has become increasingly used in organic electronics. This paper describes the methods of synthesis of low molecular weight compounds and polymers based on that molecule; the basic spectroscopic, photochemical, electrochemical and electronic properties important for the construction of organic electronics and optoelectronics devices are also discussed.
Collapse
Affiliation(s)
- Mieczysław Łapkowski
- Faculty of Chemistry, Silesian University of Technology, Strzody 9, 44-100 Gliwice, Poland;
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 M. Curie-Sklodowska Street, 41-819 Zabrze, Poland
| |
Collapse
|
13
|
Identification of a novel antifungal backbone of naphthalimide thiazoles with synergistic potential for chemical and dynamic treatment. Future Med Chem 2021; 13:2047-2067. [PMID: 34672778 DOI: 10.4155/fmc-2021-0162] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Aim: The high incidence and prevalence of fungal infections call for new antifungal drugs. This work was to develop naphthalimide thiazoles as potential antifungal agents. Results & methodology: These compounds showed significant antifungal potency toward some tested fungi. Especially, naphthalimide thiazole 4h with excellent anti-Candida tropicalis efficacy possessed good hemolysis level, low toxicity and no obvious resistance. Deciphering the mechanism showed that 4h interacted with DNA and disrupted the antioxidant defense system of C. tropicalis. Compound 4h also triggered membrane depolarization, leakage of cytoplasmic contents and LDH inhibition. Simultaneously, 4h rendered metabolic inactivation and eradicated the formed biofilms of C. tropicalis. Conclusion: The multifaceted synergistic effect initiated by naphthalimide thiazoles is a reasonable treatment window for prospective development.
Collapse
|
14
|
|
15
|
Zhang X, Zhang M, Yan Y, Wang M, Li J, Yu Y, Xiao Y, Luo X, Qian X, Yang Y. Dihydro-Si-rhodamine for live-cell localization microscopy. Chem Commun (Camb) 2021; 57:7553-7556. [PMID: 34240730 DOI: 10.1039/d1cc02596a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fluorophores with photo-modulatory fluorescence properties are valuable for cutting-edge localization microscopy. The existing probes are either photo-activatable, or photo-switchable, but not both. We report a probe (DH-SiR), a leuco-dye obtained by reduction of Si-rhodamine, with both photo-activatable and photo-switchable fluorescence. The potential for super-resolution microscopy was showcased.
Collapse
Affiliation(s)
- Xiaodong Zhang
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
| | - Mengmeng Zhang
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
| | - Yu Yan
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China.
| | - Mingkang Wang
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
| | - Jin Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
| | - Yang Yu
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
| | - Yi Xiao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China.
| | - Xiao Luo
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Xuhong Qian
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
| | - Youjun Yang
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
16
|
Luo X, Chen Y, Li Y, Sun Z, Zhu W, Qian X, Yang Y. Structurally-thrifty and visible-absorbing fluorophores. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 245:118907. [PMID: 32932032 DOI: 10.1016/j.saa.2020.118907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/13/2020] [Accepted: 08/29/2020] [Indexed: 06/11/2023]
Abstract
Fluorophores with a minimal push-pull backbone are actively pursued due to their potentials in biological labelling. Herein a series of structurally-thrifty and visible-absorbing fluorophores (SDXs) were successfully constructed following the D'D-π-A design strategy, in which a secondary donor (D') was introduced in conjugation with the donor (D) to enhance its electron donating capability. For a very small scaffold, SDXs exhibit a surprisingly long-wavelength absorption band in the visible spectral range (λabs = 420 nm) and a strong green fluorescence emission (λem = 530 nm) with a fluorescence quantum yield up to 0.84. Notably, fluorescence of SDXs was quenched in hydrogen-bonding solvents, e.g. MeOH and H2O. This phenomenon renders SDXs feasibility for imaging of cellular non-hydrogen-bonding microenvironment, as demonstrated with BEAS-2B cells. These results proved that the D'D-π-A is a powerful design strategy to construct novel structurally-thrifty fluorophores.
Collapse
Affiliation(s)
- Xiao Luo
- State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China; School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Yan Chen
- State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yanchun Li
- State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zhenglong Sun
- Suzhou Institute of Biomedical Engineering and Technology (SIBET), Chinese Academy of Sciences, Suzhou, Jiangsu 215163, China.
| | - Weihong Zhu
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Xuhong Qian
- State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Youjun Yang
- State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|