1
|
Li J, Shang E, Li X, Tian J, Xu Z, Li J. Efficient ofloxacin degradation via peroxymonosulfate activation using an S-scheme MoS 2/Co 3O 4 heterojunction composite under visible light: Performance and mechanistic insights. ENVIRONMENTAL RESEARCH 2024; 262:119891. [PMID: 39218336 DOI: 10.1016/j.envres.2024.119891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/25/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Sulfate-radical-mediated photocatalysis technology peroxymonosulfate (PMS) activation via visible light irradiation shows great promise for water treatment applications. However, its effectiveness largely depends on the bifunctional performance of photocatalysis and PMS activation provided by the catalysts. In this study, we successfully synthesized a novel S-scheme MoS2/Co3O4 (MC) heterojunction composite by a hydrothermal method and employed it for the first time to activate PMS for ofloxacin (OFX) degradation under visible light irradiation. The MC-5/PMS/Vis system achieved an impressive 85.11% OFX degradation efficiency within 1 min and complete OFX removal within 15 min under optimal conditions, with an apparent first-order kinetics rate constant of 0.429 min-1. Reactive species trapping experiments and electron spin resonance analysis identified 1O2, h+, and •O2- as the primary active species responsible for OFX degradation. Photoelectrochemical analyses and density functional theory calculations indicated the formation of a built-in electric field between MoS2 and Co3O4, which enhanced the separation and migration of photoinduced carriers. Additionally, the Co-Mo interaction further increased the yield of dominant reactive species, thereby boosting photocatalytic activity. This work underscores the potential of visible-light-assisted PMS-mediated photocatalysis using Co3O4-based catalysts for effective pollutant control.
Collapse
Affiliation(s)
- Jianwei Li
- College of Science and Technology, Hebei Agricultural University, Huanghua, 61100, China
| | - Enxiang Shang
- College of Science and Technology, Hebei Agricultural University, Huanghua, 61100, China.
| | - Xuebing Li
- College of Science and Technology, Hebei Agricultural University, Huanghua, 61100, China
| | - Jiajia Tian
- College of Science and Technology, Hebei Agricultural University, Huanghua, 61100, China
| | - Zesheng Xu
- Chinese Academy for Environmental Planning, Beijing, 100041, China
| | - Jiwen Li
- College of Science and Technology, Hebei Agricultural University, Huanghua, 61100, China.
| |
Collapse
|
2
|
Feng X, You F, Yuan R, Ding L, Wang T, Min Y, Wang K. Self-validating photoelectrochemical/photoelectrochromic visual sensing platform for ciprofloxacin precise detection in milk. Anal Chim Acta 2024; 1330:343282. [PMID: 39489963 DOI: 10.1016/j.aca.2024.343282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/10/2024] [Accepted: 09/26/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND In the process of food production, ciprofloxacin (CIP), a highly prescribed fluoroquinolone antibiotic, is often excessively used to reduce the risk of bacterial infection. However, this overuse can cause severe harm to human health, including allergic responses, gastrointestinal complications, and potential renal dysfunction. The development of a robust and precise detection method for CIP is crucial, given the interconnection between food security and human health. Compared to the single-mode detection methods currently in use, dual-mode detection provides enhanced accuracy in detecting results due to its inherent self-validation and self-correction capabilities. RESULTS Herein, a photoelectrochemical and photoelectrochromic self-validated dual-mode sensing platform was developed to detect CIP in milk by laser etching method, signal generation (SG) region, signal output (SO) region and conductive channel was integrated on the same fluoide-doped tin oxide electrode and Ti3C2/ZnO composite was modified in the electron SG region, and Prussian blue (PB) was electrodeposited in the SO region. By irradiating the SG region, photogenerated electrons are generated and injected into the SO region through the conductive pathway, resulting in the reduction of the PB to Prussian white (PW). Because the binding of CIP to its specifically recognized aptamers hinders electron transfer, a "Signal-Off" response mechanism can be used for simultaneous quantitative detection of CIP using photocurrent or color changes, which presents a great advantage in the detection process. SIGNIFICANCE By integrating different detection mechanisms within a single linear range, the constructed dual-mode sensor has a wide detection range and low detection limit in milk samples. Additionally, it shows good selectivity in anti-interference experiments, providing a new idea for the development of visual analysis and detection platforms for food safety.
Collapse
Affiliation(s)
- Xujing Feng
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Fuheng You
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Ruishuang Yuan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Lijun Ding
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China; Key Laboratory of Modern Agriculture Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, 212013, PR China; Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, OE, School of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Tianshuo Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Yinmin Min
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Kun Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China; Key Laboratory of Modern Agriculture Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, 212013, PR China; Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, OE, School of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| |
Collapse
|
3
|
Lin B, Luo Y, Xie D, Ren Y, Zhao P, Yue J. pH-Responsive Charge Convertible Hyperbranched Poly(ionic liquid) Nanoassembly with High Biocompatibility for Resistance-Free Antimicrobial Applications. NANO LETTERS 2024. [PMID: 38836517 DOI: 10.1021/acs.nanolett.4c01608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
As a potential alternative to antibiotics, hyperbranched poly(ionic liquid)s (HPILs) have demonstrated significant potential in combating bacterial biofilms. However, their high cation density poses a high risk of toxicity, greatly limiting their in vivo applications. In this study, we constructed a biocompatible HPIL (HPIL-Glu) from a hyperbranched polyurea core with modified terminals featuring charge-convertible ionic liquids. These ionic liquid moieties consist of an ammonium-based cation and a gluconate (Glu) organic counter. HPIL-Glu could form a homogeneous nanoassembly in water and exhibited a pH-responsive charge conversion property. Under neutral conditions, Glu shielded the positively charged surface, minimizing the toxicity. In a mildly acidic environment, Glu protonation exposes cationic moieties to biofilm eradication. Comprehensive antimicrobial assessments demonstrate that HPIL-Glu effectively kills bacteria and promotes the healing of bacteria-infected chronic wounds. Furthermore, prolonged exposure to HPIL-Glu does not induce antimicrobial resistance.
Collapse
Affiliation(s)
- Bingyan Lin
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, People's Republic of China
| | - Yao Luo
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, People's Republic of China
| | - Donglin Xie
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, People's Republic of China
| | - Yijin Ren
- Department of Orthodontics, University of Groningen and University Medical Center Groningen, Hanzeplein 1, 9700 RB Groningen, The Netherlands
| | - Pei Zhao
- Laboratory Animal Center, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, People's Republic of China
| | - Jun Yue
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, People's Republic of China
| |
Collapse
|
4
|
Gao H, Xing Z, Liu J, Chen X, Zhou N, Zheng Y, Tang L, Jin L, Gao J, Meng Z. Bioinspired Photoelectronic Synergy Coating with Antifogging and Antibacterial Properties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:10589-10599. [PMID: 38728854 DOI: 10.1021/acs.langmuir.4c00455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
Optically transparent glass with antifogging and antibacterial properties is in high demand for endoscopes, goggles, and medical display equipment. However, many of the previously reported coatings have limitations in terms of long-term antifogging and efficient antibacterial properties, environmental friendliness, and versatility. In this study, inspired by catfish and sphagnum moss, a novel photoelectronic synergy antifogging and antibacterial coating was prepared by cross-linking polyethylenimine-modified titanium dioxide (PEI-TiO2), polyvinylpyrrolidone (PVP), and poly(acrylic acid) (PAA). The as-prepared coating could remain fog-free under hot steam for more than 40 min. The experimental results indicate that the long-term antifogging properties are due to the water absorption and spreading characteristics. Moreover, the organic-inorganic hybrid of PEI and TiO2 was first applied to enhance the antibacterial performance. The Staphylococcus aureus and the Escherichia coli growth inhibition rates of the as-prepared coating reached 97 and 96% respectively. A photoelectronic synergy antifogging and antibacterial mechanism based on the positive electrical and photocatalytic properties of PEI-TiO2 was proposed. This investigation provides insight into designing multifunctional bioinspired surface materials to realize antifogging and antibacterial that can be applied to medicine and daily lives.
Collapse
Affiliation(s)
- Hanpeng Gao
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, P. R. China
| | - Zetian Xing
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, P. R. China
| | - Jiaxi Liu
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022, P. R. China
| | - Xiaomin Chen
- Department of Nursing, First Hospital of Qinhuangdao, Qinhuangdao 066000, P. R. China
| | - Na Zhou
- Department of Nursing, First Hospital of Qinhuangdao, Qinhuangdao 066000, P. R. China
| | - Ying Zheng
- Department of Nursing, First Hospital of Qinhuangdao, Qinhuangdao 066000, P. R. China
| | - Lianlian Tang
- Department of Nursing, First Hospital of Qinhuangdao, Qinhuangdao 066000, P. R. China
| | - Liang Jin
- Department of Clinical Laboratory, First Hospital of Qinhuangdao, Qinhuangdao 066000, P. R. China
| | - Jun Gao
- Department of Nursing, First Hospital of Qinhuangdao, Qinhuangdao 066000, P. R. China
| | - Zong Meng
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, P. R. China
| |
Collapse
|
5
|
Huo D, Liu T, Huang K, Que C, Jiang S, Yang Y, Tan S, Huang L. AgBiS 2@CQDs/Ti nanocomposite coatings for combating implant-associated infections by photodynamic /photothermal therapy. BIOMATERIALS ADVANCES 2024; 158:213763. [PMID: 38227988 DOI: 10.1016/j.bioadv.2024.213763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/18/2023] [Accepted: 01/06/2024] [Indexed: 01/18/2024]
Abstract
Biofilm-mediated implant-associated infections are one of the most serious complications of implantation surgery, posing a grave threat to patient well-being. Effectively addressing bacterial infections is crucial for the success of implantation procedures. In this study, we prepared a bismuth sulfide silver@carbon quantum dot composite coating (AgBiS2@CQDs/Ti) on a medical titanium surface by surface engineering design to treat implant-associated infections. The photocatalytic/photothermal activity test results confirmed the excellent photogenerated ROS and photothermal properties of AgBiS2@CQDs/Ti under near-infrared laser irradiation. In vitro antibacterial and in vivo anti-infection experiments showed that the coating combined with photodynamic and photothermal therapies to eradicate bacteria and disrupt mature biofilms under 1064 nm laser irradiation. Consequently, AgBiS2@CQDs/Ti shows promise as an implant coating for treating implant-associated infections post-surgery, thereby enhancing the success rate of implantation procedures. This study also provides a new idea for combating implant-associated infections.
Collapse
Affiliation(s)
- Dongliang Huo
- Guangdong Engineering & Technology Research Centre of Graphene-like Materials and Products, Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, PR China
| | - Ting Liu
- Guangdong Engineering & Technology Research Centre of Graphene-like Materials and Products, Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, PR China
| | - Kangkang Huang
- Guangdong Engineering & Technology Research Centre of Graphene-like Materials and Products, Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, PR China
| | - Changhui Que
- Guangdong Engineering & Technology Research Centre of Graphene-like Materials and Products, Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, PR China
| | - Shuoyan Jiang
- Guangdong Engineering & Technology Research Centre of Graphene-like Materials and Products, Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, PR China
| | - Yuxia Yang
- Guangdong Engineering & Technology Research Centre of Graphene-like Materials and Products, Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, PR China
| | - Shaozao Tan
- Guangdong Engineering & Technology Research Centre of Graphene-like Materials and Products, Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, PR China.
| | - Langhuan Huang
- Guangdong Engineering & Technology Research Centre of Graphene-like Materials and Products, Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, PR China.
| |
Collapse
|
6
|
Pulingam T, Appaturi JN, Gayathiri M, Sudesh K. TiO 2 loaded on glycidol functionalized poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) nanobiocomposite film for photocatalytic and antibacterial activities. Int J Biol Macromol 2023; 253:127216. [PMID: 37793528 DOI: 10.1016/j.ijbiomac.2023.127216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/19/2023] [Accepted: 10/01/2023] [Indexed: 10/06/2023]
Abstract
The rapid acceleration of industrialization and urbanization has exacerbated water pollution, which is primarily caused by the presence of highly toxic, non-biodegradable contaminants in industrial waste and effluents. In response to this urgent issue, a novel nanobiocomposite film with titanium dioxide (TiO2) loaded onto a poly(3-hydroxybutyrate-co-18 mol% 3-hydroxyhexanoate) (18PHBH) matrix was developed to serve as an effective dual-function material with photocatalytic and antibacterial properties. Through Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR), Diffuse reflectance ultraviolet-visible (DRUV-Vis), Scanning Electron Microscope (SEM), and X-ray diffraction (XRD) analyses, the physicochemical properties of the TiO2/Gly/18PHBH nanobiocomposite film were exhaustively characterized, revealing effective TiO2 loading and uniform distribution on the film's surface. The film exhibited extraordinary photocatalytic degradation of methylene blue (MB) dye, with the 5TiO2/Gly/18PHBH film demonstrating the greatest efficiency. In addition, antibacterial testing revealed that the film was effective against 99.8 % of Staphylococcus aureus and 96.9 % of Pseudomonas aeruginosa. These results demonstrate the potential of polyhydroxyalkanoate-based films as exceptional nanoparticle matrices and position the 5TiO2/Gly/18PHBH film as a versatile candidate for applications in photocatalysis and antibacterial interventions, providing innovative solutions to critical environmental challenges.
Collapse
Affiliation(s)
- Thiruchelvi Pulingam
- School of Biological Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | | | - Muniandy Gayathiri
- School of Biological Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Kumar Sudesh
- School of Biological Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia.
| |
Collapse
|
7
|
Zulkifli FZA, Ito M, Uno T, Kubo M. Synthesis and Photocatalytic Activity of Novel Polycyclopentadithiophene. Polymers (Basel) 2023; 15:4091. [PMID: 37896335 PMCID: PMC10610433 DOI: 10.3390/polym15204091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/02/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
A novel π-conjugated polymer based on cyclopentadithiophene (CPDT) and poly(4,4']-(((4Hcyclopenta[2,1-b:3,4-b']dithiophene-4,4-diyl)bis(ethane-2,1-diyl))bis(oxy))bis(4-oxobutanoic acid)) (PCPDT-CO2H) was prepared as a sparingly soluble material. The generation of hydroxyl radicals from PCPDT-CO2H in water was confirmed by using coumarin as a hydroxyl radical indicator. Furthermore, PCPDT-CO2H was found to catalyze the oxidative hydroxylation of arylboronic acid and the oxidation of benzaldehyde, indicating that PCPDT-CO2H can be a promising candidate for metal-free and 100% organic heterogeneous photocatalysts.
Collapse
Affiliation(s)
- Farah Zayanah Ahmad Zulkifli
- Division of Applied Chemistry, Graduate School of Engineering, Mie University, 1577 Kurimamachiya-cho, Tsu 514-8507, Mie, Japan; (M.I.); (T.U.)
| | | | | | - Masataka Kubo
- Division of Applied Chemistry, Graduate School of Engineering, Mie University, 1577 Kurimamachiya-cho, Tsu 514-8507, Mie, Japan; (M.I.); (T.U.)
| |
Collapse
|
8
|
Guo J, Gan W, Chen R, Zhang M, Sun Z. Au nanoparticle sensitized blue TiO 2 nanorod arrays for efficient Gatifloxacin photodegradation. RSC Adv 2023; 13:28299-28306. [PMID: 37767117 PMCID: PMC10521361 DOI: 10.1039/d3ra05552c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023] Open
Abstract
TiO2 nanorod arrays have been widely used in photocatalytic processes, but their poor visible light absorption and rapid carrier recombination limit their application. Both introducing oxygen vacancies and using precious metals as surface plasmon resonance (SPR) stimulators are effective strategies to enhance their photocatalytic performance. Herein, Au nanoparticle sensitized blue TiO2 nanorod arrays (Au/B-TiO2) were successfully fabricated for efficient Gatifloxacin photodegradation. The degradation efficiency of Gatifloxacin was up to 95.0%. Moreover, the corresponding reaction rate constant (Ka) was up to 0.02007 min-1. Additionally, it was suggested that Gatifloxacin could be subject to three different degradation pathways. The superior catalytic activity of Au/B-TiO2 is a result of the combined effect of the two components. Firstly, TiO2 nanorod arrays provide a larger surface area for Au deposition and act as efficient transfer channels. Secondly, the presence of oxygen vacancies in blue TiO2 nanorod arrays enhances the catalytic activity. Thirdly, Au acts as a SPR activator, providing a large number of high-energy electrons in the photocatalysis process. Lastly, the improved light capture capabilities are essential for efficient removal of Gatifloxacin. This work provides a new approach for the construction of a high-performance heterojunction photocatalyst in advanced oxidation processes.
Collapse
Affiliation(s)
- Jun Guo
- School of Electronic Engineering, Huainan Normal University Huainan 232038 P. R China
- School of Materials Science and Engineering, Anhui University Hefei 230601 P. R China
| | - Wei Gan
- School of Materials Science and Engineering, Anhui University Hefei 230601 P. R China
| | - Ruixin Chen
- School of Materials Science and Engineering, Anhui University Hefei 230601 P. R China
| | - Miao Zhang
- School of Materials Science and Engineering, Anhui University Hefei 230601 P. R China
| | - Zhaoqi Sun
- School of Materials Science and Engineering, Anhui University Hefei 230601 P. R China
| |
Collapse
|
9
|
Feizpoor S, Habibi-Yangjeh A, Luque R. Preparation of TiO 2/Fe-MOF n‒n heterojunction photocatalysts for visible-light degradation of tetracycline hydrochloride. CHEMOSPHERE 2023:139101. [PMID: 37290505 DOI: 10.1016/j.chemosphere.2023.139101] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/24/2023] [Accepted: 05/31/2023] [Indexed: 06/10/2023]
Abstract
Visible-light-assisted photocatalysis has been recognized as an effective solution to the degradation of various pollutants including antibiotics, pesticides, herbicides, microplastics, and organic dyes. Herein, an n-n heterojunction TiO2/Fe-MOF photocatalyst is reported, designed via hydrothermal synthesis route. TiO2/Fe-MOF photocatalyst was characterized by XPS, BET, EIS, EDS, DRS, PL, FTIR, XRD, TEM, SEM and HRTEM techniques. Inspired by XRD, FTIR, XPS, EDS, TEM, SEM, and HRTEM analyses, the successful synthesis of n-n heterojunction TiO2/Fe-MOF photocatalysts was proved. The migration efficiency of the light-induced electron-hole pairs was confirmed by the PL and EIS tests. TiO2/Fe-MOF exhibited a significant performance for tetracycline hydrochloride (TC) removal under visible light irradiation. TC removal efficiency for TiO2/Fe-MOF (15%) nanocomposite reached 97% within 240 min, ca. 11 times higher than pure TiO2. The photocatalytic enhancement of TiO2/Fe-MOF could be attributed to the broadening the light response range, forming an n-n junction between Fe-MOF and TiO2 components, suppressing charge recombination. Based on recycling experiments, TiO2/Fe-MOF had a good potential to be used in consecutive TC degradation tests.
Collapse
Affiliation(s)
- Solmaz Feizpoor
- Department of Chemistry, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Aziz Habibi-Yangjeh
- Department of Chemistry, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran.
| | - Rafael Luque
- Departamento de Química Organica, Campus de Rabanales, Universidad de Cordoba, Edificio Marie Curie (C-3), Ctra. N-IV Km. 396, Cordoba, 14014, Spain; Universidad ECOTEC, Km. 13.5 Samborondón, Samborondón, EC092302, Ecuador
| |
Collapse
|
10
|
Ji L, Liu L, Li H, Ji Y. The molecular design and characterization of a transparent and flexible TiO2/polymer nanocomposite with antibacterial and anti-UV light properties. JOURNAL OF POLYMER RESEARCH 2023. [DOI: 10.1007/s10965-023-03530-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
11
|
Novel graphene quantum dots modified NH2-MIL-125 photocatalytic composites for effective antibacterial property and mechanism insight. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
12
|
Bharti B, Li H, Ren Z, Zhu R, Zhu Z. Recent advances in sterilization and disinfection technology: A review. CHEMOSPHERE 2022; 308:136404. [PMID: 36165840 DOI: 10.1016/j.chemosphere.2022.136404] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 06/27/2022] [Accepted: 09/07/2022] [Indexed: 06/16/2023]
Abstract
Sterilization and disinfection of pollutants and microorganisms have been extensively studied in order to address the problem of environmental contamination, which is a crucial issue for public health and economics. Various form of hazardous materials/pollutants including microorganisms and harmful gases are released into the environment that enter into the human body either through inhalation, adsorption or ingestion. The human death rate rises due to various respiratory ailments, strokes, lung cancer, and heart disorders related with these pollutants. Hence, it is essential to control the environmental pollution by applying economical and effective sterilization and disinfections techniques to save life. In general, numerous forms of traditional physical and chemical sterilization and disinfection treatments, such as dry and moist heat, radiation, filtration, ethylene oxide, ozone, hydrogen peroxide, etc. are known along with advanced techniques. In this review we summarized both advanced and conventional techniques of sterilization and disinfection along with their uses and mode of action. This review gives the knowledge about the advantages, disadvantages of both the methods comparatively. Despite, the effective solution given by the advanced sterilization and disinfection technology, joint technologies of sterilization and disinfection has proven to be more effective innovation to protect the indoor and outdoor environments.
Collapse
Affiliation(s)
- Bandna Bharti
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China.
| | - Hanliang Li
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Zhaoyong Ren
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Rongshu Zhu
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China.
| | - Zhenye Zhu
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, PR China.
| |
Collapse
|
13
|
Maria Jose L, Anna Thomas S, Aravind A, Ma YR, Anil Kadam S. Effect of Ni Doping on the Adsorption and Visible light Photocatalytic Activity of ZnO Hexagonal Nanorods. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Alkanad K, Hezam A, Al-Zaqri N, Bajiri MA, Alnaggar G, Drmosh QA, Almukhlifi HA, Neratur Krishnappagowda L. One-Step Hydrothermal Synthesis of Anatase TiO 2 Nanotubes for Efficient Photocatalytic CO 2 Reduction. ACS OMEGA 2022; 7:38686-38699. [PMID: 36340094 PMCID: PMC9631917 DOI: 10.1021/acsomega.2c04211] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/03/2022] [Indexed: 05/14/2023]
Abstract
The hydrothermal dissolution-recrystallization process is a key step in the crystal structure of titania-based nanotubes and their composition. This work systematically studies the hydrothermal conditions for directly synthesizing anatase TiO2 nanotubes (ATNTs), which have not been deeply discussed elsewhere. It has been well-known that ATNTs can be synthesized by the calcination of titanate nanotubes. Herein, we found the ATNTs can be directly synthesized by optimizing the reaction temperature and time rather than calcination of titanate nanotubes, where at each temperature, there is a range of reaction times in which ATNTs can be prepared. The effect of NaOH/TiO2 ratio and starting materials was explored, and it was found that ATNTs can be prepared only if the precursor is anatase TiO2, using rutile TiO2 leads to forming titanate nanotubes. As a result, ATNTs produced directly without calcination have excellent photocatalytic CO2 reduction than titanate nanotubes and ATNTs prepared by titanate calcination.
Collapse
Affiliation(s)
- Khaled Alkanad
- Department
of Studies in Physics, University of Mysore, Manasagangotri, Mysuru570 006, India
| | - Abdo Hezam
- Leibniz
Institute for Catalysis at the University of Rostock, 18059Rostock, Germany
| | - Nabil Al-Zaqri
- Department
of Chemistry, College of Science, King Saud
University, PO Box 2455, Riyadh11451, Saudi Arabia
| | - Mohammed Abdullah Bajiri
- Department
of Studies and Research in Industrial Chemistry, School of Chemical
Sciences, Kuvempu University, Shankaraghatta577 451, India
| | - Gubran Alnaggar
- Department
of Studies in Chemistry, University of Mysore, Manasagangotri, Mysuru570006, India
| | - Qasem Ahmed Drmosh
- Interdisciplinary
Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum and Minerals, Dhahran31261, Saudi Arabia
| | - Hanadi A. Almukhlifi
- Department
of Chemistry, Faculty of Science, University
of Tabuk, P.O. Box 741, Tabuk47512, Saudi Arabia
| | | |
Collapse
|
15
|
Wang N, Wang J, Zhao Q, Ge C, Hou B, Hu Y, Ning Y. Photogenerated cathodic protection properties of Ag/Ag3PO4/TiO2 nanocomposites. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
16
|
Qiao Y, Liu X, Jia Z, Zhang P, Gao L, Liu B, Qiao L, Zhang L. In Situ Growth Intercalation Structure MXene@Anatase/Rutile TiO 2 Ternary Heterojunction with Excellent Phosphoprotein Detection in Sweat. BIOSENSORS 2022; 12:865. [PMID: 36291003 PMCID: PMC9599406 DOI: 10.3390/bios12100865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 09/28/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
Abnormal protein phosphorylation may relate to diseases such as Alzheimer's, schizophrenia, and Parkinson's. Therefore, the real-time detection of phosphoproteins in sweat was of great significance for the early knowledge, detection, and treatment of neurological diseases. In this work, anatase/rutile TiO2 was in situ grown on the MXene surface to constructing the intercalation structure MXene@anatase/rutile TiO2 ternary heterostructure as a sensing platform for detecting phosphoprotein in sweat. Here, the intercalation structure of MXene acted as electron and diffusion channels for phosphoproteins. The in situ grown anatase/rutile TiO2 with n-n-type heterostructure provided specific adsorption sites for the phosphoproteins. The determination of phosphoprotein covered concentrations in sweat, with linear range from 0.01 to 1 mg/mL, along with a low LOD of 1.52 μM. It is worth noting that, since the macromolecular phosphoprotein was adsorbed on the surface of the material, the electrochemical signal gradually decreased with the increase of phosphoprotein concentration. In addition, the active sites in the MXene@anatase/rutile TiO2 ternary heterojunction and synergistic effect of the heterojunction were verified by first-principle calculations to further realize the response to phosphoproteins. Additionally, the effective diffusion capacity and mobility of phosphoprotein molecules in the ternary heterojunction structure were studied by molecular dynamics simulation. Furthermore, the constructed sensing platform showed high selectivity, repeatability, reproducibility, and stability, and this newly developed sensor can detect for phosphoprotein in actual sweat samples. This satisfactory sensing strategy could be promoted to realize the noninvasive and continuous detection of sweat.
Collapse
Affiliation(s)
- Yuting Qiao
- School of Mechanical Engineering, Qinghai University, Xining 810016, China
| | - Xianrong Liu
- School of Mechanical Engineering, Qinghai University, Xining 810016, China
| | - Zhi Jia
- School of Mechanical Engineering, Qinghai University, Xining 810016, China
| | - Peng Zhang
- School of Mechanical Engineering, Qinghai University, Xining 810016, China
| | - Li Gao
- School of Mechanical Engineering, Qinghai University, Xining 810016, China
| | - Bingxin Liu
- School of Mechanical Engineering, Qinghai University, Xining 810016, China
| | - Lijuan Qiao
- Research Center of Basic Medical Science, Medical College, Qinghai University, Xining 810016, China
| | - Lei Zhang
- Department of Mechanical Engineering, University of Alaska Fairbanks, Fairbanks, AK 755905, USA
| |
Collapse
|
17
|
Asim M, Zhang S, Ai M, Maryam B, Wang Y, Li X, Yang J, Zou JJ, Pan L. Photohydrolysis of Ammonia Borane for Effective H 2 Evolution via Hot Electron-Assisted Energy Cascade of Au-WO 2.72/TiO 2. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Muhammad Asim
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Shuguang Zhang
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Minhua Ai
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Bushra Maryam
- School of Environmental Sciences and Engineering, Tianjin University, Tianjin 300072, China
| | - Yutong Wang
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Xidi Li
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Jin Yang
- DongFang Boiler Group Co., Ltd, Chengdu 610000, China
| | - Ji-Jun Zou
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
- Zhejiang Institute of Tianjin University, Ningbo, Zhejiang 315201, China
| | - Lun Pan
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
- Zhejiang Institute of Tianjin University, Ningbo, Zhejiang 315201, China
| |
Collapse
|
18
|
Ren Y, Zhao Z, Jiang W, Zhang G, Tan Y, Guan Y, Zhou L, Cui L, Choi SW, Li MX. Preparation of Y2O3/TiO2-Loaded Polyester Fabric and Its Photocatalytic Properties under Visible Light Irradiation. Polymers (Basel) 2022; 14:polym14142760. [PMID: 35890537 PMCID: PMC9325216 DOI: 10.3390/polym14142760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/28/2022] [Accepted: 07/01/2022] [Indexed: 11/16/2022] Open
Abstract
In this study, Y2O3/TiO2-loaded polyester fabric was prepared to improve the catalytic activity of the TiO2 and to increase its reuse efficiency. The samples were systematically characterized by scanning electron microscopy (SEM), X-ray diffractometry (XRD), X-ray photoelectron spectroscopy (XPS), and infrared spectroscopy (FT-IR). Furthermore, the degradation performance of methyl orange in the presence of simulated visible light irradiation was also investigated. The results showed that the TiO2 in the Y2O3/TiO2 composite photocatalyst was suitably anatase. In addition, Y2O3/TiO2-loaded polyester fabric had higher photocatalytic performance than that of pure polyester fabric under visible light and the degradation rate reached 83% after 120 min of light exposure but remained above 50% after repeated exposure (three times). Compared to the pure polyester fabric, Y2O3/TiO2-loaded polyester fabric had self-cleaning effects in methyl blue and soy sauce solutions under visible light.
Collapse
Affiliation(s)
- Yu Ren
- School of Textile and Clothing, Nantong University, Nantong 226019, China; (Y.R.); (Z.Z.); (W.J.); (G.Z.); (Y.T.)
| | - Ziyao Zhao
- School of Textile and Clothing, Nantong University, Nantong 226019, China; (Y.R.); (Z.Z.); (W.J.); (G.Z.); (Y.T.)
| | - Wenwen Jiang
- School of Textile and Clothing, Nantong University, Nantong 226019, China; (Y.R.); (Z.Z.); (W.J.); (G.Z.); (Y.T.)
| | - Guangyu Zhang
- School of Textile and Clothing, Nantong University, Nantong 226019, China; (Y.R.); (Z.Z.); (W.J.); (G.Z.); (Y.T.)
| | - Yuxin Tan
- School of Textile and Clothing, Nantong University, Nantong 226019, China; (Y.R.); (Z.Z.); (W.J.); (G.Z.); (Y.T.)
| | - Yongyin Guan
- Xin Feng Ming Group, Huzhou Zhongshi Technology Co., Ltd., Huzhou 313000, China; (Y.G.); (L.Z.); (L.C.)
| | - Long Zhou
- Xin Feng Ming Group, Huzhou Zhongshi Technology Co., Ltd., Huzhou 313000, China; (Y.G.); (L.Z.); (L.C.)
| | - Li Cui
- Xin Feng Ming Group, Huzhou Zhongshi Technology Co., Ltd., Huzhou 313000, China; (Y.G.); (L.Z.); (L.C.)
| | - Sung Woong Choi
- Department of Mechanical System Engineering, Gyeongsang National University, Tongyeong 53064, Korea;
| | - Mei-Xian Li
- School of Textile and Clothing, Nantong University, Nantong 226019, China; (Y.R.); (Z.Z.); (W.J.); (G.Z.); (Y.T.)
- Correspondence:
| |
Collapse
|
19
|
Always-on photocatalytic antibacterial facemask with mini UV-LED array. MATERIALS TODAY SUSTAINABILITY 2022; 18. [PMCID: PMC8828298 DOI: 10.1016/j.mtsust.2022.100117] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The facemask is a device to protect yourself and others against pandemics, such as coronavirus disease 2019 (COVID-19), and adding a functional filter to the facemask could offer extra protection against infectious microbes (such as bacteria and viruses) to the wearer. Here, we designed and fabricated an always-on photocatalytic antibacterial facemask, which comprised a reusable polypropylene filter layer coated with the photocatalytic laminated ZnO/TiO2 bilayer and a separate UV-LEDs layer to supply UV whenever necessary. The fabricated photocatalytic filter was able to be directly inserted into the reusable facemask together with the UV-LEDs layer. This facemask could be used repeatedly and sustainably anytime and anywhere regardless of solar illumination. The photocatalytic filter exhibited an excellent photocatalytic antibacterial effect likely due to recombination suppression of electrons and holes of ZnO/TiO2 bilayer and wetting transition from hydrophilic to superhydrophilic state on the surface of the filter. Thanks to the kirigami pattern in both photocatalytic filter and UV-LEDs layer, full-face covering, breathability, flexibility, and the snug fit are believed to be improved. Although further in-depth studies are still needed and there is a long way to go, we expect our design idea on the facemask to be considered in various fields.
Collapse
|
20
|
Suresh Babu K, Padmanaban A, Narayanan V. Surface tuned Au-ZnO nanorods for enhanced electrochemical sensing ability towards the detection of gallic acid. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
21
|
Solar-Light-Driven Ag9(SiO4)2NO3 for Efficient Photocatalytic Bactericidal Performance. JOURNAL OF COMPOSITES SCIENCE 2022. [DOI: 10.3390/jcs6040108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Photocatalytic materials are being investigated as effective bactericides due to their superior ability to inactivate a broad range of dangerous microbes. In this study, the following two types of bacteria were employed for bactericidal purposes: Gram-negative Escherichia coli (E. coli) and Gram-positive Staphylococcus aureus (S. aureus). The shape, crystal structure, element percentage, and optical properties of Ag9(SiO4)2NO3 were examined after it was successfully synthesized by a standard mixing and grinding processing route. Bactericidal efficiency was recorded at 100% by the following two types of light sources: solar and simulated light, with initial photocatalyst concentration of 2 µg/mL, and 97% and 95% of bactericidal activity in ultra-low photocatalyst concentration of 0.2 µg/mL by solar and simulated light, respectively, after 10 min. The survival rate was studied for 6 min, resulting in 99.8% inhibition at the photocatalyst dose of 2 µg/mL. The mechanism of bactericidal efficiency was found to be that the photocatalyst has high oxidation potential in the valence band. Consequently, holes play a significant part in bactericidal efficiency.
Collapse
|
22
|
Jing F, Guo Y, Li B, Chen YF, Jia C, Li J. Enhanced photocatalytic hydrogen production under visible light of an organic-inorganic hybrid material based on enzo[1,2-b:4,5-b']dithiophene polymer and TiO2. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.07.056] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
23
|
Fu S, Zhao X, Yang L, Qin G, Zhang E. A novel Ti-Au alloy with strong antibacterial properties and excellent biocompatibility for biomedical application. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2022; 133:112653. [PMID: 35034820 DOI: 10.1016/j.msec.2022.112653] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/08/2021] [Accepted: 01/04/2022] [Indexed: 12/15/2022]
Abstract
In order to avoid the toxic and side effects on human body of long-term dissolution of metal ions from antibacterial titanium alloys, Au element with non-toxicity and non-side effect was selected as the alloying element to prepare a new Ti-Au alloy with strong antibacterial property. We produced Ti-Au(S) sintered alloy by powder metallurgy and Ti-Au ingot alloy by ingot metallurgy, and investigated the influence of the secondary phase on the relative antimicrobial properties and antibacterial mechanism in this work. The results indicated that the aged Ti-Au(T6) alloy and Ti-Au(S) sintered alloy exhibited strong antibacterial rate against S. aureus due to the formation of Ti3Au phases. In vitro cell culture (MC3T3 cells) experiments showed that Ti-Au alloys had good cytocompatibility and osteogenic properties. The following viewpoints of antibacterial mechanism are that the Ti3Au destroyed the ROS homeostasis of bacteria, causing oxidative stress in bacterial cells and preventing from the biofilms formation.
Collapse
Affiliation(s)
- Shan Fu
- Key Laboratory for Anisotropy and Texture of Materials (MoE), School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
| | - Xiaotong Zhao
- Key Laboratory for Anisotropy and Texture of Materials (MoE), School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
| | - Lei Yang
- Key Laboratory for Anisotropy and Texture of Materials (MoE), School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China; Research Center for Metallic Wires, Northeastern University, Shenyang 110819, China
| | - Gaowu Qin
- Key Laboratory for Anisotropy and Texture of Materials (MoE), School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China; Research Center for Metallic Wires, Northeastern University, Shenyang 110819, China
| | - Erlin Zhang
- Key Laboratory for Anisotropy and Texture of Materials (MoE), School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China; Research Center for Metallic Wires, Northeastern University, Shenyang 110819, China.
| |
Collapse
|
24
|
Li Q, Lu Z, Yang H, Cai J, Yin X, Zhao Y, Xiao L, Hou L. Photoinduced organocatalyzed controlled radical polymerization feasible over a wide range of wavelengths. Polym Chem 2022. [DOI: 10.1039/d1py01444g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
We successfully synthesized a catalyst with a wide absorption range (300–1000 nm) for controlled radical polymerization of PEGMA in aqueous solution and MMA in bulk under the irradiation of white, blue, green, red, and NIR LED light, and sunlight.
Collapse
Affiliation(s)
- Qiuyu Li
- Department of Materials-Oriented Chemical Engineering, School of Chemical Engineering, Fuzhou University, Fuzhou 350116, P.R. China
| | - Zhen Lu
- Department of Materials-Oriented Chemical Engineering, School of Chemical Engineering, Fuzhou University, Fuzhou 350116, P.R. China
- Qingyuan Innovation Laboratory, Quanzhou 362801, P.R. China
| | - Hongjie Yang
- Department of Materials-Oriented Chemical Engineering, School of Chemical Engineering, Fuzhou University, Fuzhou 350116, P.R. China
| | - Jingyu Cai
- Department of Materials-Oriented Chemical Engineering, School of Chemical Engineering, Fuzhou University, Fuzhou 350116, P.R. China
- Qingyuan Innovation Laboratory, Quanzhou 362801, P.R. China
| | - Xiangyu Yin
- Department of Materials-Oriented Chemical Engineering, School of Chemical Engineering, Fuzhou University, Fuzhou 350116, P.R. China
| | - Yulai Zhao
- Department of Materials-Oriented Chemical Engineering, School of Chemical Engineering, Fuzhou University, Fuzhou 350116, P.R. China
| | - Longqiang Xiao
- Department of Materials-Oriented Chemical Engineering, School of Chemical Engineering, Fuzhou University, Fuzhou 350116, P.R. China
- Qingyuan Innovation Laboratory, Quanzhou 362801, P.R. China
| | - Linxi Hou
- Department of Materials-Oriented Chemical Engineering, School of Chemical Engineering, Fuzhou University, Fuzhou 350116, P.R. China
- Fujian Key Laboratory of Advanced Manufacturing Technology of Specialty Chemicals, Fuzhou University, Fuzhou 350116, P.R. China
| |
Collapse
|
25
|
Novel N,C,S-TiO 2/WO 3/rGO Z-scheme heterojunction with enhanced visible-light driven photocatalytic performance. J Colloid Interface Sci 2021; 610:49-60. [PMID: 34920216 DOI: 10.1016/j.jcis.2021.12.050] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 01/21/2023]
Abstract
Novel N,C,S-TiO2/WO3/rGO Z scheme photocatalyst was successfully synthesized from graphite, TIOT, and ammonium metatungstate precursors. Material characteristics such as crystal structure, surface morphology, functional groups, specific surface area, elemental composition, band gap energy, and electron-hole recombination were characterized by XRD, TEM, BET, SEM/EDX, FT-IR, UV-VIS, and PL methods. The as-synthesized novel N,C,S-TiO2/WO3/rGO Z-scheme heterojunction photocatalyst exhibited visible light-driven photocatalytic activity (the band gap energy = 2.24 eV), could generate both effective electrons and holes, and presented the lowest electron-hole recombination rate compared to all individual components. Different factors impacting the photocatalytic decomposition of Direct Blue 71 (DB 71) by the N,C,S-TiO2/WO3/rGO system were studied. The results showed that pH of the solution, catalyst load, DB 71 initial concentration, and reaction time affected the DB 71 photocatalytic degradation efficiency. The DB 71 degradation completed after 100 min with a typical efficiency of over 91%, which was much better than other photocatalytic systems. The DB 71 degradation process followed the pseudo-first-order kinetics model with coefficients of determination > 0.95 for all conditions. The photocatalyst was easily regenerated, and exhibited a very good stability, with a photocatalytic degradation efficiency of over 83.0% after 3 cycles.
Collapse
|
26
|
Nakashima K, Hironaka K, Oouchi K, Ajioka M, Kobayashi Y, Yoneda Y, Yin S, Kakihana M, Sekino T. Optimizing TiO 2 through Water-Soluble Ti Complexes as Raw Material for Controlling Particle Size and Distribution of Synthesized BaTiO 3 Nanocubes. ACS OMEGA 2021; 6:32517-32527. [PMID: 34901601 PMCID: PMC8655777 DOI: 10.1021/acsomega.1c04013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 11/02/2021] [Indexed: 06/14/2023]
Abstract
Barium titanate (BaTiO3) nanocubes with a narrow particle size distribution were synthesized using a three-step approach. First, a water-soluble Ti complex was synthesized using a hydrolysis method. Next, the titanium dioxide (TiO2) raw material was synthesized via a hydrothermal method using various water-soluble titanium (Ti) complexes. The TiO2 exhibited various particle sizes and crystal structures (anatase, rutile, or brookite) depending on the water-soluble Ti complex and the hydrothermal conditions used in its synthesis. Finally, BaTiO3 nanocubes were subsequently created through a hydrothermal method using the synthesized TiO2 particles and barium hydroxide octahydrate [Ba(OH)2·8H2O] as raw materials. The present study clarifies that the particle size of the BaTiO3 nanocubes depends on the particle size of the TiO2 raw material. BaTiO3 particles with a narrow size distribution were obtained when the TiO2 particles exhibited a narrow size distribution. We found that the best conditions for the creation of BaTiO3 nanocubes using TiO2 involved using lactic acid as a complexing agent, which resulted in a particle size of 166 nm on average. This particle size is consistent with an average of the width of the cubes measured from corner to corner diagonally, which corresponds to a side length of 117 nm. In addition, surface reconstruction of the BaTiO3 was clarified via electron microscopy observations, identifying the outermost surface as a Ti layer. Electron tomography using high-angle annular dark-field (HAADF)-scanning transmission electron microscopy (STEM) confirmed the three-dimensional (3D) structure of the obtained BaTiO3 nanocubes.
Collapse
Affiliation(s)
- Kouichi Nakashima
- Department
of Materials Science and Engineering, Graduate School of Science and
Engineering, Ibaraki University, 4-12-1, Nakanarusawa, Hitachi, Ibaraki 316-8511, Japan
| | - Kouta Hironaka
- Department
of Materials Science and Engineering, Graduate School of Science and
Engineering, Ibaraki University, 4-12-1, Nakanarusawa, Hitachi, Ibaraki 316-8511, Japan
| | - Kazuma Oouchi
- Department
of Materials Science and Engineering, Graduate School of Science and
Engineering, Ibaraki University, 4-12-1, Nakanarusawa, Hitachi, Ibaraki 316-8511, Japan
| | - Mao Ajioka
- Department
of Biomolecular Functional Engineering, College of Engineering, Ibaraki University, 4-12-1, Nakanarusawa, Hitachi, Ibaraki 316-8511, Japan
| | - Yoshio Kobayashi
- Department
of Materials Science and Engineering, Graduate School of Science and
Engineering, Ibaraki University, 4-12-1, Nakanarusawa, Hitachi, Ibaraki 316-8511, Japan
| | - Yasuhiro Yoneda
- Reaction
Dynamics Research Division, Japan Atomic
Energy Agency, 1-1-1,
Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Shu Yin
- Institute
of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1
Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Masato Kakihana
- SANKEN
(The Institute of Scientific and Industrial Research), Osaka University, 8-1, Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Tohru Sekino
- SANKEN
(The Institute of Scientific and Industrial Research), Osaka University, 8-1, Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| |
Collapse
|
27
|
Shin D, Lee DH, Lee CG, Park KS. Synergistic Effects of Fluorine and WO 3 Nanoparticles on the Surface of TiO 2 Hollow Spheres for Enhanced Photocatalytic Activity under Visible Light Irradiation. ACS OMEGA 2021; 6:30942-30948. [PMID: 34841137 PMCID: PMC8613809 DOI: 10.1021/acsomega.1c03220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
TiO2 is an attractive catalyst for the photocatalytic degradation of organic pollutants. However, owing to its large band gap, it can only be activated by ultraviolet (UV) light, which constitutes a small portion of solar energy. Therefore, there has been significant interest in extending its light absorption range from UV to visible light. In this study, fluorinated TiO2 hollow spheres (FTHSs) were prepared via a rapid and simple wet chemical process using ammonium hexafluorotitanate, and then FTHS/WO3 heterostructures with different weight ratios of the FTHS and WO3 nanoparticles were synthesized via a simple wet impregnation method. The formation of the hybrid structure was confirmed by various characterization techniques. The photocatalytic activity of the synthesized photocatalysts in the photodegradation of rhodamine B, a model pollutant, was evaluated under visible light irradiation. The FTHS/WO3 heterostructures exhibited significantly improved photocatalytic activity compared to the bare FTHS or WO3 nanoparticles. The photodegradation efficiency of the FTHS/WO3 heterostructure in the present study was up to 0.0581 min-1. Detailed mechanisms that lead to the enhanced photocatalytic activity of the heterostructures are discussed. In addition, comparative experiments reveal that the photodegradation efficiency of the FTHS/WO3 heterostructure under visible light irradiation is superior to that of the P25/WO3 heterostructure prepared from the commercially available TiO2 catalyst (P25) via the same impregnation method.
Collapse
Affiliation(s)
- Dongyoon Shin
- Material
Science & Chemical Engineering Center, Institute for Advanced Engineering (IAE), Yongin 175-28, Republic of Korea
- Institute
for Physical Science and Technology, University
of Maryland, College Park, Maryland 20742, United States
- Department
of Physics, University of Maryland, College Park, Maryland 20742, United States
| | - Duk-Hee Lee
- Material
Science & Chemical Engineering Center, Institute for Advanced Engineering (IAE), Yongin 175-28, Republic of Korea
| | - Chan-Gi Lee
- Material
Science & Chemical Engineering Center, Institute for Advanced Engineering (IAE), Yongin 175-28, Republic of Korea
| | - Kyung-Soo Park
- Material
Science & Chemical Engineering Center, Institute for Advanced Engineering (IAE), Yongin 175-28, Republic of Korea
| |
Collapse
|
28
|
Li Q, Ren C, Qiu C, He T, Zhang Q, Ling X, Xu Y, Su C. Promoting near-infrared photocatalytic activity of carbon-doped carbon nitride via solid alkali activation. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.05.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
29
|
Zeng J, Li Z, Jiang H, Wang X. Progress on photocatalytic semiconductor hybrids for bacterial inactivation. MATERIALS HORIZONS 2021; 8:2964-3008. [PMID: 34609391 DOI: 10.1039/d1mh00773d] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Due to its use of green and renewable energy and negligible bacterial resistance, photocatalytic bacterial inactivation is to be considered a promising sterilization process. Herein, we explore the relevant mechanisms of the photoinduced process on the active sites of semiconductors with an emphasis on the active sites of semiconductors, the photoexcited electron transfer, ROS-induced toxicity and interactions between semiconductors and bacteria. Pristine semiconductors such as metal oxides (TiO2 and ZnO) have been widely reported; however, they suffer some drawbacks such as narrow optical response and high photogenerated carrier recombination. Herein, some typical modification strategies will be discussed including noble metal doping, ion doping, hybrid heterojunctions and dye sensitization. Besides, the biosafety and biocompatibility issues of semiconductor materials are also considered for the evaluation of their potential for further biomedical applications. Furthermore, 2D materials have become promising candidates in recent years due to their wide optical response to NIR light, superior antibacterial activity and favorable biocompatibility. Besides, the current research limitations and challenges are illustrated to introduce the appealing directions and design considerations for the future development of photocatalytic semiconductors for antibacterial applications.
Collapse
Affiliation(s)
- Jiayu Zeng
- State Key Laboratory of Bioelectronics (Chien-Shiung Wu Lab), School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Ziming Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Hui Jiang
- State Key Laboratory of Bioelectronics (Chien-Shiung Wu Lab), School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Xuemei Wang
- State Key Laboratory of Bioelectronics (Chien-Shiung Wu Lab), School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| |
Collapse
|
30
|
Huang J, Wang J, Hao Z, Li C, Wang B, Qu Y. Fabrication of N-CQDs@W18O49 heterojunction with enhanced charge separation and photocatalytic performance under full-spectrum light irradiation. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.03.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
31
|
Qin Y, Wang X, Qiu P, Tian J. Enhanced Photocatalytic Antibacterial Properties of TiO 2 Nanospheres with Rutile/Anatase Heterophase Junctions and the Archival Paper Protection Application. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2585. [PMID: 34685026 PMCID: PMC8539383 DOI: 10.3390/nano11102585] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/24/2021] [Accepted: 09/28/2021] [Indexed: 11/17/2022]
Abstract
TiO2 has been generally studied for photocatalytic sterilization, but its antibacterial activities are limited. Herein, TiO2 nanospheres with rutile/anatase heterophase junctions are prepared by a wet chemical/annealing method. The large BET surface area and pore size are beneficial for the absorption of bacteria. The rutile/anatase heterojunctions narrow the bandgap, which enhances light absorption. The rutile/anatase heterojunctions also efficiently promote the photogenerated carriers' separation, finally producing a high yield of radical oxygen species, such as •O2- and •OH, to sterilize bacteria. As a consequence, the obtained TiO2 nanospheres with rutile/anatase heterojunctions present an improved antibacterial performance against E. coli (98%) within 3 h of simulated solar light irradiation, exceeding that of TiO2 nanospheres without annealing (amorphous) and TiO2 nanospheres annealing at 350 and 550 °C (pure anatase). Furthermore, we design a photocatalytic antibacterial spray to protect the file paper. Our study reveals that the TiO2 nanospheres with rutile/anatase heterojunctions are a potential candidate for maintaining the durability of paper in the process of archival protection.
Collapse
Affiliation(s)
- Yingying Qin
- Archives Department, China University of Petroleum (East China), Qingdao 266580, China;
| | - Xinyu Wang
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China; (X.W.); (P.Q.)
| | - Pengyuan Qiu
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China; (X.W.); (P.Q.)
| | - Jian Tian
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China; (X.W.); (P.Q.)
| |
Collapse
|
32
|
Sridevi A, Ramji B, Prasanna Venkatesan G, Sugumaran V, Selvakumar P. A facile synthesis of TiO2/BiOCl and TiO2/BiOCl/La2O3 heterostructure photocatalyst for enhanced charge separation efficiency with improved UV-light catalytic activity towards Rhodamine B and Reactive Yellow 86. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108715] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
33
|
Wang HP, Guan ZC, Shi HY, Wang X, Jin P, Song GL, Du RG. Ag/SnO2/TiO2 nanotube composite film used in photocathodic protection for stainless steel. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113353] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
34
|
Schneider G, Schweitzer B, Steinbach A, Pertics BZ, Cox A, Kőrösi L. Antimicrobial Efficacy and Spectrum of Phosphorous-Fluorine Co-Doped TiO 2 Nanoparticles on the Foodborne Pathogenic Bacteria Campylobacter jejuni, Salmonella Typhimurium, Enterohaemorrhagic E. coli, Yersinia enterocolitica, Shewanella putrefaciens, Listeria monocytogenes and Staphylococcus aureus. Foods 2021; 10:1786. [PMID: 34441563 PMCID: PMC8391345 DOI: 10.3390/foods10081786] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/23/2021] [Accepted: 07/29/2021] [Indexed: 11/25/2022] Open
Abstract
Contamination of meats and meat products with foodborne pathogenic bacteria raises serious safety issues in the food industry. The antibacterial activities of phosphorous-fluorine co-doped TiO2 nanoparticles (PF-TiO2) were investigated against seven foodborne pathogenic bacteria: Campylobacter jejuni, Salmonella Typhimurium, Enterohaemorrhagic E. coli, Yersinia enterocolitica, Shewanella putrefaciens, Listeria monocytogenes and Staphylococcus aureus. PF-TiO2 NPs were synthesized hydrothermally at 250 °C for 1, 3, 6 or 12 h, and then tested at three different concentrations (500 μg/mL, 100 μg/mL, 20 μg/mL) for the inactivation of foodborne bacteria under UVA irradiation, daylight exposure or dark conditions. The antibacterial efficacies were compared after 30 min of exposure to light. Distinct differences in the antibacterial activities of the PF-TiO2 NPs, and the susceptibilities of tested foodborne pathogenic bacterium species were found. PF-TiO2/3 h and PF-TiO2/6 h showed the highest antibacterial activity by decreasing the living bacterial cell number from ~106 by ~5 log (L. monocytogenes), ~4 log (EHEC), ~3 log (Y. enterolcolitca, S. putrefaciens) and ~2.5 log (S. aureus), along with complete eradication of C. jejuni and S. Typhimurium. Efficacy of PF-TiO2/1 h and PF-TiO2/12 h NPs was lower, typically causing a ~2-4 log decrease in colony forming units depending on the tested bacterium while the effect of PF-TiO2/0 h was comparable to P25 TiO2, a commercial TiO2 with high photocatalytic activity. Our results show that PF-co-doping of TiO2 NPs enhanced the antibacterial action against foodborne pathogenic bacteria and are potential candidates for use in the food industry as active surface components, potentially contributing to the production of meats that are safe for consumption.
Collapse
Affiliation(s)
- György Schneider
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Szigeti Street 12, H-7624 Pécs, Hungary; (B.S.); (A.S.); (B.Z.P.)
| | - Bettina Schweitzer
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Szigeti Street 12, H-7624 Pécs, Hungary; (B.S.); (A.S.); (B.Z.P.)
| | - Anita Steinbach
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Szigeti Street 12, H-7624 Pécs, Hungary; (B.S.); (A.S.); (B.Z.P.)
| | - Botond Zsombor Pertics
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Szigeti Street 12, H-7624 Pécs, Hungary; (B.S.); (A.S.); (B.Z.P.)
| | - Alysia Cox
- Department of Biotechnology, Nanophagetherapy Center, Enviroinvest Corporation, Kertváros Street 2, H-7632 Pécs, Hungary;
| | - László Kőrösi
- Research Institute for Viticulture and Oenology, University of Pécs, Pázmány Péter Street 4, H-7634 Pécs, Hungary;
| |
Collapse
|
35
|
Antibacterial and Freshness-Preserving Mechanisms of Chitosan-Nano-TiO2-Nano-Ag Composite Materials. COATINGS 2021. [DOI: 10.3390/coatings11080914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
With chitosan, nano-TiO2 and nano-Ag as raw materials, nano-TiO2 and nano-TiO2-Ag were modified by a surface modifier-sodium laurate. Chitosan (CTS), chitosan-nano-TiO2 (CTS-TiO2), and chitosan-nano-TiO2-nano-Ag (CTS-TiO2-Ag) composite materials and corresponding films were prepared by a solution co-blending method. Then, the antibacterial performances of the above three types of materials against Escherichia coli, Staphylococcus aureus, and Bacillus subtilis were compared. Moreover, potato and strawberry weight loss rates, peroxidase activity, and vitamin C contents after different film coating treatments were measured. Compared with CTS films, the CTS-TiO2-Ag and CTS-TiO2 composite films both showed better physical properties, and both demonstrated higher antibacterial effects, especially for E. coli. Measurement of physiological indices in fruits and vegetables showed that the freshness-preserving effect of CTS-TiO2-Ag coating films was the most significant. In all, the CTS-TiO2-Ag coating films can actively contribute to the storage of fruits and vegetables at room temperature, and better ensure product quality. Thus, such films are meaningful for research and development of new fruit freshness-keeping techniques and materials.
Collapse
|
36
|
Ren S, Zhang J, Lu H, Gao S, Li L, Rong P, Zhang X, Liu Y, Sang D. 3D Carambola‐Like CuO/TiO
2
Nanotube Heterostructures via Low‐Temperature Solution Process for Photocatalytic Activity. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100110] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Shuai Ren
- School of Materials Science and Engineering Harbin Institute of Technology Harbin 150001 China
| | - Jiejing Zhang
- School of Materials Science and Engineering Harbin Institute of Technology Harbin 150001 China
| | - Huiqing Lu
- Key Laboratory for Photonic and Electric Bandgap Materials Ministry of Education Harbin Normal University Harbin 150025 China
| | - Shiyong Gao
- Key Laboratory for Photonic and Electric Bandgap Materials Ministry of Education Harbin Normal University Harbin 150025 China
- School of Materials Science and Engineering Harbin Institute of Technology Harbin 150001 China
| | - Lin Li
- Key Laboratory for Photonic and Electric Bandgap Materials Ministry of Education Harbin Normal University Harbin 150025 China
| | - Ping Rong
- School of Materials Science and Engineering Harbin Institute of Technology Harbin 150001 China
| | - Xiaolei Zhang
- School of Materials Science and Engineering Harbin Institute of Technology Harbin 150001 China
| | - Yi Liu
- School of Materials Science and Engineering Harbin Institute of Technology Harbin 150001 China
| | - Dandan Sang
- School of Physical Science and Information Technology Shandong Key Laboratory of Optical Communication Science and Technology Liaocheng University Liaocheng 252059 China
| |
Collapse
|
37
|
Maitra S, Halder S, Maitra T, Roy S. Superior light absorbing CdS/vanadium sulphide nanowalls@TiO 2 nanorod ternary heterojunction photoanodes for solar water splitting. NEW J CHEM 2021. [DOI: 10.1039/d0nj06082h] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Vanadium sulphide is an emerging infrared active photocatalyst that has not been utilized to its maximum potential.
Collapse
Affiliation(s)
- Soumyajit Maitra
- Department of Chemical Engineering
- University of Calcutta
- Kolkata
- India
| | - Somoprova Halder
- Department of Chemical Engineering
- University of Calcutta
- Kolkata
- India
| | - Toulik Maitra
- Department of Chemical Engineering
- University of Calcutta
- Kolkata
- India
| | - Subhasis Roy
- Department of Chemical Engineering
- University of Calcutta
- Kolkata
- India
| |
Collapse
|