1
|
Chen M, Wang J, Cai F, Guo J, Qin X, Zhang H, Chen T, Ma L. Chirality-driven strong thioredoxin reductase inhibition. Biomaterials 2024; 311:122705. [PMID: 39047537 DOI: 10.1016/j.biomaterials.2024.122705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 07/04/2024] [Accepted: 07/13/2024] [Indexed: 07/27/2024]
Abstract
Overexpression of thioredoxin reductase (TXNRD) plays crucial role in tumorigenesis. Therefore, designing TXNRD inhibitors is a promising strategy for targeted anticancer drug development. However, poor selectivity has always been a challenge, resulting in unavoidable toxicity in clinic. Herein we demonstrate a strategy to develop highly selective chiral metal complexes-based TXNRD inhibitors. By manipulating the conformation of two distinct weakly interacting groups, we optimize the compatibility between the drug and the electrophilic group within the active site of TXNRD to enhance their non-covalent interaction, thus effectively avoids the poor selectivity deriving from covalent drug interaction, on the basis of ensuring the strong inhibition. Detailed experimental and computational results demonstrate that the chiral isomeric drugs bind to the active site of TXNRD, and the interaction strength is well modulated by chirality. Especially, the meso-configuration, in which the two large sterically hindered active groups are positioned on opposite sides of the drug, exhibits the highest number of non-covalent interactions and most effective inhibition on TXNRD. Taken together, this work not only provides a novel approach for developing highly selective proteinase inhibitors, but also sheds light on possible underlying mechanisms for future application.
Collapse
Affiliation(s)
- Mingkai Chen
- Department of Chemistry, State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, Laboratory of Viral Pathogenesis & Infection Prevention and Control, Jinan University, Guangzhou, 510632, China
| | - Junping Wang
- Department of Chemistry, State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, Laboratory of Viral Pathogenesis & Infection Prevention and Control, Jinan University, Guangzhou, 510632, China
| | - Fei Cai
- Department of Chemistry, State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, Laboratory of Viral Pathogenesis & Infection Prevention and Control, Jinan University, Guangzhou, 510632, China
| | - Junxian Guo
- Department of Chemistry, State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, Laboratory of Viral Pathogenesis & Infection Prevention and Control, Jinan University, Guangzhou, 510632, China
| | - Xiaoyu Qin
- Department of Chemistry, State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, Laboratory of Viral Pathogenesis & Infection Prevention and Control, Jinan University, Guangzhou, 510632, China
| | - Huajie Zhang
- Department of Chemistry, State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, Laboratory of Viral Pathogenesis & Infection Prevention and Control, Jinan University, Guangzhou, 510632, China
| | - Tianfeng Chen
- Department of Chemistry, State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, Laboratory of Viral Pathogenesis & Infection Prevention and Control, Jinan University, Guangzhou, 510632, China.
| | - Li Ma
- Department of Chemistry, State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, Laboratory of Viral Pathogenesis & Infection Prevention and Control, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
2
|
Lv W, Chen Y, Hong W, Lan L, Chen J, Guo F, Zou X. Biomimetic Gd-Metal-Organic Framework Radiosensitizer for Near-Infrared Fluorescence Imaging-Guided Radiotherapy toward Nasopharyngeal Carcinoma. ACS OMEGA 2024; 9:38272-38283. [PMID: 39281913 PMCID: PMC11391537 DOI: 10.1021/acsomega.4c06191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/16/2024] [Accepted: 08/23/2024] [Indexed: 09/18/2024]
Abstract
Radiotherapy (RT) is recognized as a primary treatment modality for Nasopharyngeal carcinoma (NPC). However, enhancing RT's targeting accuracy and selectivity remains a significant challenge. In this study, we present an innovative radiosensitizer, Gd-metal-organic framework (MOF)-based nanocarrier coated with indocyanine green (ICG) and red blood cell membrane (RBCM), designed to bypass immune clearance and achieve prolonged circulation within the bloodstream. This design significantly enhances tumor localization and systemic circulation, as evidenced by in vivo analyses. The strategic accumulation of the Gd-MOF-ICG nanocarrier at the tumor site facilitates precise tumor localization and sensitization to RT, leveraging the RBCM camouflage to enhance the tumor uptake potential. Our comprehensive study introduces a potent approach for optimizing RT in NPC treatment through this advanced theranostic nanoplatform, which combines material science with biomedical engineering to augment the effectiveness of RT and underscores the significance of precision in cancer therapy. This strategy offers a promising avenue for clinical application and further research in targeted cancer treatments.
Collapse
Affiliation(s)
- Wenlong Lv
- Department of Radiotherapy, Cancer Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
- Department of Radiotherapy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
- Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Yanbin Chen
- Department of Radiotherapy, Cancer Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
- Department of Radiotherapy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Wencong Hong
- Department of Comprehensive Oncology, The Hospital of Nanan City, Nanan 362300, China
| | - Linzhen Lan
- Department of Radiotherapy, Cancer Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
- Department of Radiotherapy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Jun Chen
- Department of Radiotherapy, Cancer Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
- Department of Radiotherapy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Feibao Guo
- Department of Radiotherapy, Cancer Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
- Department of Radiotherapy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
- Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Xi Zou
- Department of Radiotherapy, Cancer Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
- Department of Radiotherapy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
- Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| |
Collapse
|
3
|
Lv A, Li G, Zhang P, Tao R, Li X, Ren X, Li P, Liu X, Yuan XA, Liu Z. Design and anticancer behaviour of cationic/neutral half-sandwich iridium(III) imidazole-phenanthroline/phenanthrene complexes. J Inorg Biochem 2024; 257:112612. [PMID: 38761579 DOI: 10.1016/j.jinorgbio.2024.112612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/17/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
Considerable attention has been devoted to the exploration of organometallic iridium(III) (IrIII) complexes for their potential as metallic anticancer drugs. In this study, twelve half-sandwich IrIII imidazole-phenanthroline/phenanthrene complexes were prepared and characterized. Complexes exhibited promising in-vitro anti-proliferative activity, and some are obviously superior to cisplatin towards A549 cells. These complexes possessed suitable fluorescence, and a non-energy-dependent uptake pathway was identified, subsequently leading to their accumulation in the lysosome and the lysosomal damage. Additionally, complexes could inhibit the cell cycle (G1-phase) and catalyze intracellular NADH oxidation, thus substantiating the elevation of intracellular reactive oxygen species (ROS) level, which confirming the oxidative mechanism. Western blotting further confirmed that complexes could induce A549 cell apoptosis through the lysosomal-mitochondrial anticancer pathway, which was inconsistent with cisplatin. In summary, these complexes offer fresh concepts for the development of organometallic non‑platinum anticancer drugs.
Collapse
Affiliation(s)
- Ao Lv
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Guangxiao Li
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Pei Zhang
- College of Life Sciences, Qufu Normal University, Qufu 273165, Shandong, China
| | - Rui Tao
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Xiaoshuang Li
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Xueyan Ren
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Peixuan Li
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Xicheng Liu
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Xiang-Ai Yuan
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Zhe Liu
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| |
Collapse
|
4
|
Liu C, Wang W, Lai H, Chen Y, Li L, Li H, Zhan M, Chen T, Cao W, Li X. Biosynthesis of fungus-based oral selenium microcarriers for radioprotection and immuno-homeostasis shaping against radiation-induced heart disease. Bioact Mater 2024; 37:393-406. [PMID: 38689659 PMCID: PMC11059443 DOI: 10.1016/j.bioactmat.2024.03.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 05/02/2024] Open
Abstract
Radiation-induced heart disease (RIHD), characterized by severe oxidative stress and immune dysregulation, is a serious condition affecting cancer patients undergoing thoracic radiation. Unfortunately, clinical interventions for RIHD are lacking. Selenium (Se) is a trace element with excellent antioxidant and immune-modulatory properties. However, its application in heart radioprotection remains challenging. Herein, we developed a novel bioactive Cordyceps militaris-based Se oral delivery system (Se@CM), which demonstrated superior radioprotection effects in vitro against X-ray-induced damage in H9C2 cells through suppressing excessive ROS generation, compared to the radioprotectant Amifostine. Moreover, Se@CM exhibited exceptional cardioprotective effects in vivo against X-ray irradiation, reducing cardiac dysfunction and myocardial fibrosis by balancing the redox equilibrium and modulating the expression of Mn-SOD and MDA. Additionally, Se@CM maintained immuno-homeostasis, as evidenced by the upregulated population of T cells and M2 macrophages through modulation of selenoprotein expression after irradiation. Together, these results highlight the remarkable antioxidant and immunity modulation properties of Se@CM and shed light on its promising application for cardiac protection against IR-induced disease. This research provides valuable insights into developing effective strategies for preventing and managing RIHD.
Collapse
Affiliation(s)
- Chang Liu
- Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai, 519000, PR China
- Zhuhai Jinan Selenium Source Nanotechnology Co., Ltd, Jinan University, Zhuhai 519000, China
| | - Weiyi Wang
- Department of Chemistry, Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China
| | - Haoqiang Lai
- Department of Chemistry, Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China
| | - Yikang Chen
- Guangdong Jinan Established Selenium Source Nano Technology Research Institute Co., Ltd., Guangzhou 510535, China
| | - Lvyi Li
- Department of Chemistry, Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China
| | - Haiwei Li
- Guangdong Jinan Established Selenium Source Nano Technology Research Institute Co., Ltd., Guangzhou 510535, China
| | - Meixiao Zhan
- Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai, 519000, PR China
| | - Tianfeng Chen
- Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai, 519000, PR China
- Department of Chemistry, Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China
| | - Wenqiang Cao
- Zhuhai Jinan Selenium Source Nanotechnology Co., Ltd, Jinan University, Zhuhai 519000, China
| | - Xiaoling Li
- Department of Chemistry, Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China
| |
Collapse
|
5
|
Liu X, Lv A, Zhang P, Chang J, Dong R, Liu M, Liu J, Huang X, Yuan XA, Liu Z. The anticancer application of half-sandwich iridium(III) ferrocene-thiosemicarbazide Schiff base complexes. Dalton Trans 2024; 53:552-563. [PMID: 38054240 DOI: 10.1039/d3dt02879h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Ferrocenyl derivatives and organometallic iridium(III) complexes have been prospective substitutes for platinum-based anticancer drugs. Eight half-sandwich iridium(III) ferrocene-thiosemicarbazide (Fc-TSC) Schiff base anticancer complexes were prepared in this study. These complexes displayed a dimeric structure and exhibited a particular fluorescence due to the "enol" orientation of the TSC pro-ligand. An energy-dependent pathway of the uptake mechanism was ascertained, which ended in the lysosome and led to lysosome damage and apoptosis. Flow cytometry confirmed that the complexes could block the cell cycle (G1 phase) and improve the levels of intracellular reactive oxygen species, indicating an anticancer mechanism of oxidation. Then, a lysosomal-mitochondrial anticancer pathway was verified through western blotting. In vivo toxicity assays confirmed that these complexes showed better anti-migration ability and less toxicity in comparison to cisplatin. Thus, these complexes provide a new strategy for the design of non-platinum organometallic anticancer drugs.
Collapse
Affiliation(s)
- Xicheng Liu
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Ao Lv
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Pei Zhang
- College of Life Sciences, Qufu Normal University, Qufu 273165, Shandong, China
| | - Jiaying Chang
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Ruixiao Dong
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Mengxian Liu
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Jiayi Liu
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Xiaoqing Huang
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Xiang-Ai Yuan
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Zhe Liu
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| |
Collapse
|
6
|
Hou Y, Sun B, Li R, Meng W, Zhang W, Jia N, Chen M, Chen J, Tang X. GSH-activatable camptothecin prodrug-loaded gold nanostars coated with hyaluronic acid for targeted breast cancer therapy via multiple radiosensitization strategies. J Mater Chem B 2023; 11:9894-9911. [PMID: 37830402 DOI: 10.1039/d3tb00965c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Breast cancer has overtaken lung cancer to rank as the top malignant tumor in terms of incidence. Herein, a gold nanostar (denoted as AuNS) is used for loading disulfide-coupled camptothecin-fluorophore prodrugs (denoted as CPT-SS-FL) to form a nanocomposite of AuNS@CPT-SS-FL (denoted as AS), which, in turn, is further encapsulated with hyaluronic acid (HA) to give the final nanoplatform of AuNS@CPT-SS-FL@HA (denoted as ASH). ASH effectively carries the prodrug and targets the CD44 receptor on the surface of tumor cells. The endogenously overexpressed glutathione (GSH) in tumor cells breaks the disulfide bond to activate the prodrug and release the radiosensitizer drug camptothecin (CPT) and the fluorescence imaging reagent rhodamine derivative as a fluorophore (FL). The released FL can track the precise release position of the radiosensitizer camptothecin in tumor cells in real time. The AuNS has strong X-ray absorption and deposition ability due to the high atomic coefficient of elemental Au (Z = 79). At the same time, the AuNS can alleviate the tumor microenvironment (TME) hypoxia through its mild photothermal therapy (PTT). Therefore, through the multiple radiosensitizing effects of GSH depletion, the high atomic coefficient of Au, and hypoxia alleviation, accompanied by the radiosensitizer camptothecin, the designed ASH nanoplatform can effectively induce strong immunogenic cell death (ICD) at the tumor site via radiosensitizing therapy combined with PTT. This work provides a new way of constructing a structurally compact and highly functionalized hierarchical system toward efficient breast cancer treatment through ameliorating the TME with multiple modalities.
Collapse
Affiliation(s)
- Yingke Hou
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Bin Sun
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Rongtian Li
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Wei Meng
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Wenhua Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Nuan Jia
- Southern University of Science and Technology Hospital, Shenzhen 518055, China
| | - Ming Chen
- The People's Hospital of Gaozhou, Gaozhou 525200, China.
| | - Jinxiang Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Xiaoyan Tang
- Department of Chemistry and Materials Engineering, Jiangsu Key Laboratory of Advanced Functional Materials, Changshu Institute of Technology, Changshu 215500, China.
| |
Collapse
|
7
|
Wang YP, Duan XH, Huang YH, Hou YJ, Wu K, Zhang F, Pan M, Shen J, Su CY. Radio- and Photosensitizing Os(II)-Based Nanocage for Combined Radio-/Chemo-/X-ray-Induced Photodynamic Therapies, NIR Imaging, and Drug Delivery. ACS APPLIED MATERIALS & INTERFACES 2023; 15:43479-43491. [PMID: 37694454 DOI: 10.1021/acsami.3c08503] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Integration of clinical imaging and collaborative multimodal therapies into a single nanomaterial for multipurpose diagnosis and treatment is of great interest to theranostic nanomedicine. Here, we report a rational design of a discrete Os-based metal-organic nanocage Pd6(OsL3)828+ (MOC-43) as a versatile theranostic nanoplatform to meet the following demands simultaneously: (1) synergistic treatments of radio-, chemo-, and X-ray-induced photodynamic therapies (X-PDT) for breast cancer, (2) NIR imaging for cancer cell tracking and tumor-targeting, and (3) anticancer drug transport through a host-guest strategy. The nanoscale MOC-43 incorporates high-Z Os-element to interact with X-ray irradiation for dual radiosensitization and photosensitization, showing efficient energy transfer to endogenous oxygen in cancer cells to enhance X-PDT efficacy. It also features intrinsic NIR emission originating from metal-to-ligand charge transfer (MLCT) as an excellent imaging probe. Meanwhile, its 12 pockets can capture and concentrate low-water-soluble molecules for anticancer drug delivery. These multifunctions are implemented and demonstrated by micellization of coumarin-loaded cages with DSPE-PEG2000 into coumarin ⊂ MOC-43 nanoparticles (CMNPs) for efficient subcellular endocytosis and uptake. The cancer treatments in vitro/in vivo show promising antitumor performance, providing a conceptual protocol to combine cage-cargo drug transport with diagnosis and treatment for collaborative cancer theranostics by virtue of multifunction synergism on a single-nanomaterial platform.
Collapse
Affiliation(s)
- Ya-Ping Wang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| | - Xiao-Hui Duan
- Department of Radiology, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510030, China
| | - Yin-Hui Huang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| | - Ya-Jun Hou
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| | - Kai Wu
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| | - Fang Zhang
- Department of Radiology, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510030, China
| | - Mei Pan
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| | - Jun Shen
- Department of Radiology, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510030, China
| | - Cheng-Yong Su
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
8
|
Chen S, Zhang Z, Wei L, Fan Z, Li Y, Wang X, Feng T, Huang H. Photo-catalytic Staphylococcus aureus inactivation and biofilm destruction with novel bis-tridentate iridium(iii) photocatalyst. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
9
|
Zhou S, Tian H, Yan J, Zhang Z, Wang G, Yu X, Sang W, Li B, Mok GS, Song J, Dai Y. IR780/Gemcitabine-conjugated metal-phenolic network enhanced photodynamic cancer therapy. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|
10
|
Yang Y, Jiang Y, Xie B, Shi S, Pi F, Chen M, Sang C, Xu L, Chen T. Selenadiazole derivative-loaded metal azolate frameworks facilitate NK cell immunotherapy by sensitizing tumor cells and shaping immuno-suppressive microenvironments. Biomater Sci 2023; 11:1517-1529. [PMID: 36606484 DOI: 10.1039/d2bm01752k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The low sensitivity of tumor cells and immunosuppressive microenvironments lead to unsatisfactory efficacy of natural killer (NK) cell immunotherapy. In this work, we developed a safe and effective combination treatment strategy by integrating a selenadiazole derivative (PSeD)-loaded metal azolate framework (PSeD@MAF-4(R)) with NK cells derived from cancer patients against a xenograft human breast tumor model. Intriguingly, it was found that only PSeD@MAF-4(R) pretreatment on tumor cells exhibited synergistic effects with NK cells in inhibiting tumor cell growth by up-regulating NKG2D and its ligands to maximize the interactions between NK and MCF-7 cells. Moreover, PSeD@MAF-4(R) pretreatment could significantly enhance the degranulation of NK cells and regulate their secretions of pro- or anti-inflammatory cytokines (e.g. IL-6, IL-10, and TGF-β). Furthermore, PSeD@MAF-4(R) could significantly enhance the penetration capability of NK cells into tumor spheroids. The combination treatment mainly induced G1 phase arrest and activated multiple caspase-mediated apoptosis of tumor cells. In vivo evidence showed that PSeD@MAF-4(R) combined with NK cells could highly efficiently combat breast tumor progression via inducing and activating innate immune cell (DC and NK cell) infiltrations within tumor tissues while shaping the suppressive tumor microenvironment by down-regulating the expression of TGF-β. This developed strategy may provide important information for developing NK cell-based combination cancer immunotherapy with high efficacy and good safety profiles.
Collapse
Affiliation(s)
- Yahui Yang
- Department of Chemistry, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China.
| | - Yalin Jiang
- Department of Chemistry, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China.
| | - Bin Xie
- Department of Chemistry, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China.
| | - Sujiang Shi
- Department of Chemistry, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China.
| | - Fen Pi
- Department of Chemistry, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China.
| | - Mingkai Chen
- Department of Chemistry, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China.
| | - Chengcheng Sang
- Department of Chemistry, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China.
| | - Ligeng Xu
- Department of Chemistry, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China.
| | - Tianfeng Chen
- Department of Chemistry, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
11
|
He Z, Li X, Zhang H, Liu X, Han S, Abdurahman A, Shen L, Du X, Li N, Yang X, Liu Q. A novel vanadium complex VO(p-dmada) inhibits neuroinflammation induced by lipopolysaccharide. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
12
|
Feng B, Zhang Y, Liu T, Chan L, Chen T, Zhao J. Selenium speciation determines the angiogenesis effect through regulating selenoproteins to trigger ROS-mediated cell apoptosis and cell cycle arrest. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
13
|
Designing anticancer combretastatin A-4 analogues with aggregation-induced emission characteristics. Sci China Chem 2022. [DOI: 10.1007/s11426-021-1197-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
Li J, Luo H, Zhu X, Zhao J, Chen T. Designing DNA cage-based immuno-fluorescence strategy for rapid diagnosis of clinical cervical cancer tissues. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.08.088] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
15
|
Zhang H, Zhang Y, Cao J, Ma L, Chen T. Stable high-oxidation-state complex in situ Mn(V)-Mn(III) transition to achieve highly efficient cervical cancer therapy. Chem Commun (Camb) 2022; 58:3759-3762. [PMID: 35103726 DOI: 10.1039/d1cc06819a] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Designing metal complexes to target the vulnerable redox balance in cancer cells is a promising strategy to realize successful cancer therapy. The synthesized stable nitridomanganese(V) complex MnV(N) (salen) not only reacts with GSH to achieve in situ Mn(V)-Mn(III) transformation to down-regulate the antioxidant system, but also catalyzes H2O2 to higher oxidation capacity ROS to up-regulate the intracellular oxidative level, finally resulting in cancer cell death.
Collapse
Affiliation(s)
- Hanjie Zhang
- Department of Chemistry, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China.
| | - Yuequn Zhang
- Department of Chemistry, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China.
| | - Jianrong Cao
- Department of Chemistry, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China.
| | - Li Ma
- Department of Chemistry, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China.
| | - Tianfeng Chen
- Department of Chemistry, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
16
|
Sonkar C, Sarkar S, Mukhopadhyay S. Ruthenium(ii)-arene complexes as anti-metastatic agents, and related techniques. RSC Med Chem 2022; 13:22-38. [PMID: 35224494 PMCID: PMC8792825 DOI: 10.1039/d1md00220a] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/15/2021] [Indexed: 09/18/2023] Open
Abstract
With the discovery of cisplatin, a vast area of applications of metallodrugs in cancer treatment was opened but due to the side effects caused by the cisplatin complexes, researchers began to look for alternatives with similar anticancer properties but fewer side effects. Ruthenium was found to be a promising candidate, considering its significant anticancer properties and low side effects. Several ruthenium complexes, viz. NAMI-A, KP1019, KP1339, and TLD1433, have entered clinical trials. Some other arene ruthenium complexes such as RM175 and RAPTA-C have also entered clinical trials but very few of them have shown anti-metastatic properties. Herein, we provide information and probable mechanistic pathways for ruthenium(ii)-arene complexes that have been studied, so far, for their anti-metastatic activities. Also, we discuss the techniques and their significance for determining the anti-metastatic effects of the complexes.
Collapse
Affiliation(s)
- Chanchal Sonkar
- Department of Biosciences and Biomedical Engineering, School of Engineering, Indian Institute of Technology Indore Khandwa Road, Simrol Indore 453552 MP India
| | - Sayantan Sarkar
- Department of Chemistry, School of Basic Sciences, Indian Institute of Technology Indore Khandwa Road, Simrol Indore 453552 MP India
| | - Suman Mukhopadhyay
- Department of Biosciences and Biomedical Engineering, School of Engineering, Indian Institute of Technology Indore Khandwa Road, Simrol Indore 453552 MP India
- Department of Chemistry, School of Basic Sciences, Indian Institute of Technology Indore Khandwa Road, Simrol Indore 453552 MP India
| |
Collapse
|
17
|
Shao M, Yao M, Liu X, Gao C, Liu W, Guo J, Zong J, Sun X, Liu Z. In Vitro and In Vivo of Triphenylamine-Appended Fluorescent Half-Sandwich Iridium(III) Thiosemicarbazones Antitumor Complexes. Inorg Chem 2021; 60:17063-17073. [PMID: 34709784 DOI: 10.1021/acs.inorgchem.1c02250] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Half-sandwiched structure iridium(III) complexes appear to be an attractive organometallic antitumor agents in recent years. Here, four triphenylamine-modified fluorescent half-sandwich iridium(III) thiosemicarbazone (TSC) antitumor complexes were developed. Because of the "enol" configuration of the TSC ligands, these complexes formed a unique dimeric configuration. Aided by the appropriate fluorescence properties, studies found that complexes could enter tumor cells in an energy-dependent mode, accumulate in lysosomes, and result in the damage of lysosome integrity. Complexes could block the cell cycle, improve the levels of intrastitial reactive oxygen species, and lead to apoptosis, which followed an antitumor mechanism of oxidation. Compared with cisplatin, the antitumor potential in vivo and vitro confirmed that Ir4 could effectively inhibit tumor growth. Meanwhile, Ir4 could avoid detectable side effects in the experiments of safety evaluation. Above all, half-sandwich iridium(III) TSC complexes are expected to be an encouraging candidate for the treatment of malignant tumors.
Collapse
Affiliation(s)
- Mingxiao Shao
- Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Meimei Yao
- Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Xicheng Liu
- Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Chao Gao
- Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Weiyan Liu
- Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Jinghang Guo
- Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Jiawen Zong
- Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Xinzhuo Sun
- Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Zhe Liu
- Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| |
Collapse
|
18
|
Brachytherapy Approach Using 177Lu Conjugated Gold Nanostars and Evaluation of Biodistribution, Tumor Retention, Dosimetry and Therapeutic Efficacy in Head and Neck Tumor Model. Pharmaceutics 2021; 13:pharmaceutics13111903. [PMID: 34834318 PMCID: PMC8623985 DOI: 10.3390/pharmaceutics13111903] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/02/2021] [Accepted: 11/05/2021] [Indexed: 12/14/2022] Open
Abstract
Brachytherapy can provide sufficient doses to head and neck squamous cell carcinoma (HNSCC) with minimal damage to nearby normal tissues. In this study, the β--emitter 177Lu was conjugated to DTPA-polyethylene glycol (PEG) decorated gold nanostars (177Lu-DTPA-pAuNS) used in surface-enhanced Raman scattering and photothermal therapy (PTT). The accumulation and therapeutic efficacy of 177Lu-DTPA-pAuNS were compared with those of 177Lu-DTPA on an orthotopic HNSCC tumor model. The SPECT/CT imaging and biodistribution studies showed that 177Lu-DTPA-pAuNS can be accumulated in the tumor up to 15 days, but 177Lu-DTPA could not be detected at 24 h after injection. The tumor viability and growth were suppressed by injected 177Lu-DTPA-pAuNS but not nonconjugated 177Lu-DTPA, as evaluated by bioluminescent imaging. The radiation-absorbed dose of the normal organ was the highest in the liver (0.33 mSv/MBq) estimated in a 73 kg adult, but that of tumorsphere (0.5 g) was 3.55 mGy/MBq, while intravenous injection of 177Lu-DTPA-pAuNS resulted in 1.97 mSv/MBq and 0.13 mGy/MBq for liver and tumorsphere, respectively. We also observed further enhancement of tumor-suppressive effects by a combination of 177Lu-DTPA-pAuNS and PTT compared to 177Lu-DTPA-pAuNS alone. In conclusion, 177Lu-DTPA-pAuNS may be considered as a potential radiopharmaceutical agent for HNSCC brachytherapy.
Collapse
|
19
|
Chen M, Huang X, Shi H, Lai J, Ma L, Lau TC, Chen T. Cr(V)-Cr(III) in-situ transition promotes ROS generation to achieve efficient cancer therapy. Biomaterials 2021; 276:120991. [PMID: 34237506 DOI: 10.1016/j.biomaterials.2021.120991] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 06/19/2021] [Accepted: 06/22/2021] [Indexed: 01/29/2023]
Abstract
The development of metal-based anticancer drugs is of considerable interest and significance in inorganic medicine. In contrast to noble metal-based small molecules, the anticancer property of earth abundant metal-based small molecules is much less explored which are usually essential trace element for the human body. Among earth abundant metals, chromium (Cr) in the +3 valent is an essential trace element for the human body to low down the blood lipids and maintain the blood sugar; on the other hand, Cr(VI) are known to be highly toxic due to their oxidation power. To design stable high-valent Cr small molecules to construct Cr(high-valent)-Cr(III) in-situ transition system to achieve low-toxic and highly efficient anti-cancer therapy is a very desirable approach. Herein we report the Cr(V)-Cr(III) in-situ transition system promotes ROS generation to achieve efficient cancer therapy in vivo and in vitro. To the best of our knowledge, these Cr-based small molecules are the first stable Cr(V) compounds with potent anticancer efficacy, especially towards malignant cancers.
Collapse
Affiliation(s)
- Mingkai Chen
- Department of Chemistry, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China
| | - Xiaoting Huang
- Department of Chemistry, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China
| | - Huatian Shi
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong, China
| | - Jie Lai
- Department of Chemistry, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China
| | - Li Ma
- Department of Chemistry, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China.
| | - Tai-Chu Lau
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong, China.
| | - Tianfeng Chen
- Department of Chemistry, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|