1
|
Al-Fakih GOA, Ilyas RA, Atiqah A, Atikah MSN, Saidur R, Dufresne A, Saharudin MS, Abral H, Sapuan SM. Advanced functional materials based on nanocellulose/Mxene: A review. Int J Biol Macromol 2024; 278:135207. [PMID: 39256123 DOI: 10.1016/j.ijbiomac.2024.135207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/11/2024] [Accepted: 08/28/2024] [Indexed: 09/12/2024]
Abstract
The escalating need for a sustainable future has driven the advancement of renewable functional materials. Nanocellulose, derived from the abundant natural biopolymer cellulose, demonstrates noteworthy characteristics, including high surface area, crystallinity, mechanical strength, and modifiable chemistry. When combined with two-dimensional (2D) graphitic materials, nanocellulose can generate sophisticated hybrid materials with diverse applications as building blocks, carriers, scaffolds, and reinforcing constituents. This review highlights the progress of research on advanced functional materials based on the integration of nanocellulose, a versatile biopolymer with tailorable properties, and MXenes, a new class of 2D transition metal carbides/nitrides known for their excellent conductivity, mechanical strength, and large surface area. By addressing the challenges and envisioning future prospects, this review underscores the burgeoning opportunities inherent in MXene/nanocellulose composites, heralding a sustainable frontier in the field of materials science.
Collapse
Affiliation(s)
- Ghassan O A Al-Fakih
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia
| | - R A Ilyas
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia; Centre for Advance Composite Materials (CACM), Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia; Institute of Tropical Forest and Forest Products (INTROP), Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Centre of Excellence for Biomass Utilization, Universiti Malaysia Perlis, 02600 Arau, Perlis, Malaysia.
| | - A Atiqah
- Institute of Microengineering and Nanoelectronics, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - M S N Atikah
- Department of Chemical and Environmental Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - R Saidur
- Research Centre for Nano-Materials and Energy Technology, School of Engineering and Technology, Sunway University, Bandar Sunway, Malaysia
| | - Alain Dufresne
- University Grenoble Alpes, CNRS, Grenoble INP, LGP2, F-38000 Grenoble, France
| | | | - Hairul Abral
- Laboratory of Nanoscience and Technology, Department of Mechanical Engineering, Andalas University, Padang, Sumatera Barat, Indonesia; Research Collaboration Center for Nanocellulose, BRIN-Andalas University, Padang, Indonesia
| | - S M Sapuan
- Advanced Engineering Materials and Composite Research Centre (AEMC), Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
2
|
Liao P, Song J, Qiu Z, Wen C, Zhang X, Guo L, Xu H. A Ti 3C 2T x@PANI core-shell heterostructure assembled into a 3D porous hydrogel as a free-standing electrode for high-energy supercapacitors. Phys Chem Chem Phys 2023; 25:31770-31780. [PMID: 37965755 DOI: 10.1039/d3cp01965a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Although Ti3C2Tx MXenes have attracted attention in electrochemical energy storage devices due to their excellent electronic conductivity, controllable layer structure, and huge redox active surface area, the application of Ti3C2Tx as supercapacitor (SC) electrode materials is severely limited by the ineffective chemical ion transport kinetics caused by self-restacking. In order to increase the interlayer spacing of Ti3C2Tx, the intercalation method is hailed as an effective process. Herein, polyaniline (PANI) nanorods as intercalators were synthesized by the polymerization of an aniline (ANI) monomer chemisorbed onto Ti3C2Tx wrinkled nanosheets, and the formation of a Ti3C2Tx@PANI heterostructure is conducive to the large interlayer voids. Then, the heterostructure was integrated into a three-dimensional (3D) porous cross-linked framework via a simple graphene oxide (GO)-assisted self-convergence hydrothermal strategy with low temperatures. Due to the synergistic effect among each component and 3D porous interconnected structure, the hierarchical Ti3C2Tx@PANI-reduced graphene oxide (RGO) heterostructure hydrogel possesses the advantages of excellent electrical conductivity, high specific capacitance, repressive aggregation, and large electrochemical active area. Heterostructure hydrogel electrodes (without binders) display excellent electrochemical performance with a specific capacitance as high as 301.0 F g-1 at 1 A g-1, 90.74% capacitance retention over 10 000 cycles, and a maximum energy density of 44.6 W h kg-1 at a power density of 504.7 W kg-1. Our study provides a fresh strategy for constructing a 3D Ti3C2Tx-based framework applicable to other MXenes in the design of hybrid structures for maximizing their potential applications in energy storage.
Collapse
Affiliation(s)
- Peng Liao
- College of Mathematics & Physics, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Jian Song
- College of Mathematics & Physics, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Zenghui Qiu
- College of Mathematics & Physics, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Cheng Wen
- College of Mathematics & Physics, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Xin Zhang
- College of Mathematics & Physics, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Lin Guo
- State Key Laboratory of Catalytic Materials and Reaction Engineering, Research Center of Renewable Energy, Research Institute of Petroleum Processing, SINOPEC, Beijing, 100083, China.
| | - Haijun Xu
- College of Mathematics & Physics, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
3
|
Yang Z, Wang Y, Hu Y, Zhuang Y, Ji X, Yang G, He M. A morphology control engineered strategy of Ti 3C 2T x/sulfated cellulose nanofibril composite film towards high-performance flexible supercapacitor electrode. Int J Biol Macromol 2023:124828. [PMID: 37217052 DOI: 10.1016/j.ijbiomac.2023.124828] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/02/2023] [Accepted: 05/08/2023] [Indexed: 05/24/2023]
Abstract
2D Ti3C2Tx MXene is an ideal material for fabricating supercapacitor electrodes due to its excellent physical-chemical properties. However, the inherent self-stacking, narrow interlayer spacing, and low general mechanical strength limit its application in flexible supercapacitors. Herein, facile structural engineering strategies by drying (vacuum drying, freeze drying, and spin drying) were proposed to fabricate 3D high-performance Ti3C2Tx/sulfated cellulose nanofibril (SCNF) self-supporting film supercapacitor electrodes. Compared with other composite films, the freeze-dried Ti3C2Tx/SCNF composite film exhibited a looser interlayer structure with more space which was conducive to charge storage and ion transport in the electrolyte. Therefore, the freeze-dried Ti3C2Tx/SCNF composite film exhibited a higher specific capacitance (220 F/g) compared to the vacuum-dried Ti3C2Tx/SCNF composite film (191 F/g) and the spin-dried Ti3C2Tx/SCNF composite film (211 F/g). After 5000 cycles, the capacitance retention rate of the freeze-dried Ti3C2Tx/SCNF film electrode was close to 100 %, showing excellent cycle performance. Meanwhile, the tensile strength of freeze-dried Ti3C2Tx/SCNF composite film (13.7 MPa) was much greater than that of the pure film (7.4 MPa). This work demonstrated a facile strategy for control of Ti3C2Tx/SCNF composite film interlayer structure by drying for fabricating well-designed structured flexible and free-standing supercapacitor electrodes.
Collapse
Affiliation(s)
- Zhengbang Yang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Ying Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Yaru Hu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Yuntang Zhuang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Xingxiang Ji
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Guihua Yang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Ming He
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| |
Collapse
|
4
|
Lai H, Chen Z, Zhuo H, Hu Y, Zhao X, Yi J, Zheng H, Shi G, Tong Y, Meng L, Peng X, Zhong L. Defect reduction to enhance the mechanical strength of nanocellulose carbon aerogel. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
|
5
|
He M, Guan M, Zhan R, Zhou K, Fu H, Wang X, Zhong F, Ding M, Jia C. Two-Dimensional Materials Applied in Membranes of Redox Flow Battery. Chem Asian J 2023; 18:e202201152. [PMID: 36534005 DOI: 10.1002/asia.202201152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
Redox flow batteries (RFBs) are one of the most promising techniques to store and convert green and renewable energy, benefiting from their advantages of high safety, flexible design and long lifespan. Membranes with fast and selective ions transport are required for the advances of RFBs. Remarkably, two-dimensional (2D) materials with high mechanical and chemical stability, strict size exclusion and abundantly modifiable functional groups, have attracted extensive attentions in the applications of energy fields. Herein, the improvements and perspectives of 2D materials working for ionic transportation and sieving in RFBs membranes are presented. The characteristics of various materials and their advantages and disadvantages in the applications of RFBs membranes particularly are focused. This review is expected to provide a guidance for the design of membranes based on 2D materials for RFBs.
Collapse
Affiliation(s)
- Murong He
- Institute of Energy Storage Technology, Changsha University of Science & Technology, Changsha, 410114, P. R. China.,College of Materials Science and Engineering, Changsha University of Science & Technology, Changsha, 410114, P. R. China
| | - Minyuan Guan
- Huzhou Power Supply Company of State Grid Zhejiang Electric Power Company Ltd., Huzhou, 313000, P. R. China
| | - Ruifeng Zhan
- Huzhou Power Supply Company of State Grid Zhejiang Electric Power Company Ltd., Huzhou, 313000, P. R. China.,Huzhou Electric Power Design Institute Company Ltd., Huzhou, 313000, P. R. China
| | - Kaiyun Zhou
- Huzhou Power Supply Company of State Grid Zhejiang Electric Power Company Ltd., Huzhou, 313000, P. R. China
| | - Hu Fu
- Institute of Energy Storage Technology, Changsha University of Science & Technology, Changsha, 410114, P. R. China.,College of Materials Science and Engineering, Changsha University of Science & Technology, Changsha, 410114, P. R. China
| | - Xinan Wang
- Institute of Energy Storage Technology, Changsha University of Science & Technology, Changsha, 410114, P. R. China.,College of Materials Science and Engineering, Changsha University of Science & Technology, Changsha, 410114, P. R. China
| | - Fangfang Zhong
- Institute of Energy Storage Technology, Changsha University of Science & Technology, Changsha, 410114, P. R. China.,College of Materials Science and Engineering, Changsha University of Science & Technology, Changsha, 410114, P. R. China
| | - Mei Ding
- Institute of Energy Storage Technology, Changsha University of Science & Technology, Changsha, 410114, P. R. China.,College of Materials Science and Engineering, Changsha University of Science & Technology, Changsha, 410114, P. R. China
| | - Chuankun Jia
- Institute of Energy Storage Technology, Changsha University of Science & Technology, Changsha, 410114, P. R. China.,College of Materials Science and Engineering, Changsha University of Science & Technology, Changsha, 410114, P. R. China
| |
Collapse
|
6
|
Gao Z, Shan D, He J, Huang T, Mao Y, Tan H, Shi H, Li T, Xie T. Effects and mechanism on cadmium adsorption removal by CaCl 2-modified biochar from selenium-rich straw. BIORESOURCE TECHNOLOGY 2023; 370:128563. [PMID: 36592869 DOI: 10.1016/j.biortech.2022.128563] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
As every-one knows, cadmium contamination poses a significant and permanent threat to people and aquatic life. Therefore, research on how to remove cadmium from wastewater is essential to protect the natural environment. In this study, agricultural and forestry waste straw sprayed with selenium-enriched foliar fertilizer was prepared as biochar, which was altered by calcium chloride (CaCl2) to remove Cd2+ from water. The outcomes demonstrated that biochar generated by pyrolysis at 700 °C (BC700) had the best adsorption effect. Secondly, pseudo-second-order kinetics and Langmuir adsorption models were used to predict the Cd2+ adsorption. Finally, electrostatic adsorption, ion exchange, and complexation of oxygen functional groups (OFGs) were demonstratedto be the main adsorption mechanisms. These conclusions indicate that selenium-rich straw biochar is a novel adsorbent for agroforestry waste recovery. Meanwhile, this work will offer a promising strategy for the overall utilization of rice straw.
Collapse
Affiliation(s)
- Zongyu Gao
- Key Laboratory of Water Environment Evolution and Pollution Control in Three Gorges Reservoir (Chongqing Three Gorges University), Wan Zhou 404100, China; Chongqing Key Laboratory of Environmental Materials & Remediation Technologies, College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences, Yongchuan 402160, China
| | - Dexin Shan
- Chongqing Key Laboratory of Environmental Materials & Remediation Technologies, College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences, Yongchuan 402160, China.
| | - Jiahong He
- Chongqing Key Laboratory of Environmental Materials & Remediation Technologies, College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences, Yongchuan 402160, China
| | - Tao Huang
- Chongqing Key Laboratory of Environmental Materials & Remediation Technologies, College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences, Yongchuan 402160, China
| | - Yuan Mao
- Chongqing Key Laboratory of Environmental Materials & Remediation Technologies, College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences, Yongchuan 402160, China
| | - Haiping Tan
- Chongqing Key Laboratory of Environmental Materials & Remediation Technologies, College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences, Yongchuan 402160, China
| | - Huiting Shi
- Key Laboratory of Water Environment Evolution and Pollution Control in Three Gorges Reservoir (Chongqing Three Gorges University), Wan Zhou 404100, China; Chongqing Key Laboratory of Environmental Materials & Remediation Technologies, College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences, Yongchuan 402160, China
| | - Tingzhen Li
- Key Laboratory of Water Environment Evolution and Pollution Control in Three Gorges Reservoir (Chongqing Three Gorges University), Wan Zhou 404100, China
| | - Taiping Xie
- School of Materials Science and Engineering, Yangtze Normal University, Chongqing 408100, China; School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
7
|
Yang Y, Sha L, Zhao H, Guo Z, Wu M, Lu P. Recent advances in cellulose microgels: Preparations and functionalized applications. Adv Colloid Interface Sci 2023; 311:102815. [PMID: 36427465 DOI: 10.1016/j.cis.2022.102815] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/02/2022] [Accepted: 11/15/2022] [Indexed: 11/20/2022]
Abstract
Microgels are soft, deformable, permeable, and stimuli-responsive microscopic polymeric particles that are now emerging as prospective multifunctional soft materials for delivery systems, interface stabilization, cell cultures and tissue engineering. Cellulose microgels are emerging biopolymeric microgels with unique characteristics such as abound hydroxyl structure, admirable designability, multiscale pore network and excellent biocompatibility. This review summarizes the fabrication strategies for microgel, then highlights the fabrication routes for cellulose microgels, and finally elaborates cellulose microgels' bright application prospects with unique characteristics in the fields of controlled release, interface stabilization, coating, purification, nutrition/drug delivery, and bio-fabrication. The challenges to be addressed for further applications and considerable scope for development in future of cellulose microgels are also discussed.
Collapse
Affiliation(s)
- Yang Yang
- College of Light Industry and Food Engineering, Guangxi Key Laboratory of Clean Pulp and Papermaking and Pollution Control, Guangxi University, Nanning, Guangxi 530004, China
| | - Lishan Sha
- College of Light Industry and Food Engineering, Guangxi Key Laboratory of Clean Pulp and Papermaking and Pollution Control, Guangxi University, Nanning, Guangxi 530004, China
| | - Han Zhao
- College of Light Industry and Food Engineering, Guangxi Key Laboratory of Clean Pulp and Papermaking and Pollution Control, Guangxi University, Nanning, Guangxi 530004, China
| | - Zhaojun Guo
- College of Light Industry and Food Engineering, Guangxi Key Laboratory of Clean Pulp and Papermaking and Pollution Control, Guangxi University, Nanning, Guangxi 530004, China
| | - Min Wu
- College of Light Industry and Food Engineering, Guangxi Key Laboratory of Clean Pulp and Papermaking and Pollution Control, Guangxi University, Nanning, Guangxi 530004, China
| | - Peng Lu
- College of Light Industry and Food Engineering, Guangxi Key Laboratory of Clean Pulp and Papermaking and Pollution Control, Guangxi University, Nanning, Guangxi 530004, China.
| |
Collapse
|