1
|
Liu Y, Cheng L, Zhou S, Niu C, Taylor Isimjan T, Yang X. Electronic regulation of hcp-Ru by d-d orbital coupling for robust electrocatalytic hydrogen oxidation in alkaline electrolytes. J Colloid Interface Sci 2025; 677:997-1004. [PMID: 39178678 DOI: 10.1016/j.jcis.2024.08.136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/02/2024] [Accepted: 08/18/2024] [Indexed: 08/26/2024]
Abstract
Bimetallic alloys hold exceptional promise as candidate materials because they offer a diverse parameter space for optimizing electronic structures and catalytic sites. Herein, we fabricate ruthenium-cobalt alloy nanoparticles uniformly dispersed within hollow mesoporous carbon spheres (hcp-RuCo@C) via impregnation and pyrolysis strategies. The intriguing hollow mesopore structure of hcp-RuCo@C facilitates efficient contact between active sites and reactants, thereby accelerating hydrogen oxidation reaction (HOR) kinetics. As anticipated, the hcp-RuCo@C showcases remarkable exchange current density and mass activity of 3.73 mA cm-2 and 2.8 mA μgRu-1, respectively, surpassing those of commercial Pt/C and documented Ru-based electrocatalysts. Notably, hcp-RuCo@C demonstrates robust resistance to 1000 ppm CO, a trait lacking in Pt/C catalysts. Comprehensive experimental results reveal that the alloying-induced d-d electronic interactions between Ru and Co species significantly optimizes hydrogen binding energy (HBE) and hydroxide binding energy (OHBE). This optimization promotes the vital Volmer step, ameliorating the alkaline HOR properties of hcp-RuCo@C.
Collapse
Affiliation(s)
- Yi Liu
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Lianrui Cheng
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Shuqing Zhou
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Chenggong Niu
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Tayirjan Taylor Isimjan
- Saudi Arabia Basic Industries Corporation (SABIC) at King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| | - Xiulin Yang
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China.
| |
Collapse
|
2
|
Su L, Wu H, Zhang S, Cui C, Zhou S, Pang H. Insight Into Intermediate Behaviors and Design Strategies of Platinum Group Metal-Based Alkaline Hydrogen Oxidation Catalysts. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2414628. [PMID: 39558771 DOI: 10.1002/adma.202414628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Indexed: 11/20/2024]
Abstract
Hydrogen oxidation reaction (HOR) can effectively convert the hydrogen energy through the hydrogen fuel cells, which plays an increasingly important role in the renewable hydrogen cycle. Nevertheless, when the electrolyte pH changes from acid to base, even with platinum group metal (PGM) catalysts, the HOR kinetics declines with several orders of magnitude. More critically, the pivotal role of reaction intermediates and interfacial environment during intermediate behaviors on alkaline HOR remains controversial. Therefore, exploring the exceptional PGM-based alkaline HOR electrocatalysts and identifying the reaction mechanism are indispensable for promoting the commercial development of hydrogen fuel cells. Consequently, the fundamental understanding of the HOR mechanism is first introduced, with emphases on the adsorption/desorption process of distinct reactive intermediates and the interfacial structure during catalytic process. Subsequently, with the guidance of reaction mechanism, the latest advances in the rational design of advanced PGM-based (Pt, Pd, Ir, Ru, Rh-based) alkaline HOR catalysts are discussed, focusing on the correlation between the intermediate behaviors and the electrocatalytic performance. Finally, given that the challenges standing in the development of the alkaline HOR, the prospect for the rational catalysts design and thorough mechanism investigation towards alkaline HOR are emphatically proposed.
Collapse
Affiliation(s)
- Lixin Su
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Hao Wu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Shaokun Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Chenxi Cui
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Shengnan Zhou
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
- State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China
| |
Collapse
|
3
|
Ma S, Chen D, Xu J, Ye Z, Zhang J. Glassy Carbon Electrodes Modified with Ru Nanoparticles Loaded in B-Doped Imidazolium Porous Organic Polymers for Hydrogen Evolution Reaction. Chem Asian J 2024:e202401042. [PMID: 39422668 DOI: 10.1002/asia.202401042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/19/2024]
Abstract
Porous organic polymers (POPs) are a type of porous material composed of organic structural units connected by covalent bonds and POPs have been used as efficient electrocatalysts for hydrogen evolution reaction (HER). Herein, glassy carbon electrode (GCE) is chemically modified by B-doped imidazolium-based porous organic polymers loaded with Ru nanoparticles on the GCE surface. The incorporation of B in the POPs regulates the electronic structure of electrocatalysts to enhance their inherent electrocatalytic activity for HER. The optimized modified electrode GCE-Ru/PIM-Br2 exhibits a low overpotential of 271 mV at a current density of 10 mA cm-2 with a small Tafel slope (80 mV dec-1) in acidic solutions, and shows long-term stability for up to 22 h. This work presents a strategy to develop B-doped porous electrodes with loaded metal nanoparticles to strengthen the catalytic performance of electrocatalysts.
Collapse
Affiliation(s)
- Shasha Ma
- MOE Laboratory of Polymeric Composite and Functional Materials, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Di Chen
- MOE Laboratory of Polymeric Composite and Functional Materials, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Jie Xu
- MOE Laboratory of Polymeric Composite and Functional Materials, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Zhaobin Ye
- MOE Laboratory of Polymeric Composite and Functional Materials, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Jianyong Zhang
- MOE Laboratory of Polymeric Composite and Functional Materials, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| |
Collapse
|
4
|
Yu X, Li Y, Pei C, Zhao Z, Lu Y, Zhou W, Guo D, Li W, Kim JK, Park HS, Pang H. Interfacial Regulation of Rice-Grain-like Iron-Nickel Phosphide Nanorods on Phosphorus-Doped Graphene Architectures as Bifunctional Electrocatalysts for Water Splitting. Inorg Chem 2024; 63:18945-18954. [PMID: 39321124 DOI: 10.1021/acs.inorgchem.4c03303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
The design of bimetallic metal-organic frameworks (MOFs) with a hierarchical structure is important to improve the electrocatalytic performance of catalysts due to their synergistic effect on different metal ions. In this work, the catalyst comprises bimetallic iron-nickel MOF-derived FeNi phosphides, intricately integrated with phosphorus-doped reduced graphene oxide architectures (FeNi2P-C/P-rGA) through the hydrothermal and phosphating treatments. The hierarchical architecture of the catalyst is beneficial for exposing active sites and facilitating electron transfer. The FeNi2P-C/P-rGA catalyst exhibits excellent performance in the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in alkaline electrolytes. Notably, FeNi2P-C/P-rGA requires only the overpotential of 93 and 210 mV to achieve a current density of 10 mA cm-2 for the HER and OER with small values of Tafel slope and charge transfer resistance, respectively. Furthermore, the catalyst exhibits boosted activity for overall water splitting with a low potential of 1.56 V. This work can be considered to extend the design of multilevel catalysts in the application of water splitting.
Collapse
Affiliation(s)
- Xu Yu
- Institute of Innovation Materials and Energy, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Yong Li
- Institute of Innovation Materials and Energy, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Chengang Pei
- School of Chemical Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-Ro, Suwon 16419, Republic of Korea
| | - Zhixin Zhao
- Institute of Innovation Materials and Energy, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Yanhui Lu
- Institute of Innovation Materials and Energy, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Wenfeng Zhou
- Institute of Innovation Materials and Energy, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Donglei Guo
- Key Laboratory of Function-oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, P. R. China
| | - Wenqiang Li
- Key Laboratory of Function-oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, P. R. China
| | - Jung Kyu Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-Ro, Suwon 16419, Republic of Korea
| | - Ho Seok Park
- School of Chemical Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-Ro, Suwon 16419, Republic of Korea
| | - Huan Pang
- Institute of Innovation Materials and Energy, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| |
Collapse
|
5
|
Zhang J, Deng W, Weng Y, Jiang J, Mao H, Zhang W, Lu T, Long D, Jiang F. Intercalated PtCo Electrocatalyst of Vanadium Metal Oxide Increases Charge Density to Facilitate Hydrogen Evolution. Molecules 2024; 29:1518. [PMID: 38611798 PMCID: PMC11013459 DOI: 10.3390/molecules29071518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/16/2024] [Accepted: 03/18/2024] [Indexed: 04/14/2024] Open
Abstract
Efforts to develop high-performance electrocatalysts for the hydrogen evolution reaction (HER) are of utmost importance in ensuring sustainable hydrogen production. The controllable fabrication of inexpensive, durable, and high-efficient HER catalysts still remains a great challenge. Herein, we introduce a universal strategy aiming to achieve rapid synthesis of highly active hydrogen evolution catalysts using a controllable hydrogen insertion method and solvothermal process. Hydrogen vanadium bronze HxV2O5 was obtained through controlling the ethanol reaction rate in the oxidization process of hydrogen peroxide. Subsequently, the intermetallic PtCoVO supported on two-dimensional graphitic carbon nitride (g-C3N4) nanosheets was prepared by a solvothermal method at the oil/water interface. In terms of HER performance, PtCoVO/g-C3N4 demonstrates superior characteristics compared to PtCo/g-C3N4 and PtCoV/g-C3N4. This superiority can be attributed to the notable influence of oxygen vacancies in HxV2O5 on the electrical properties of the catalyst. By adjusting the relative proportions of metal atoms in the PtCoVO/g-C3N4 nanomaterials, the PtCoVO/g-C3N4 nanocomposites show significant HER overpotential of η10 = 92 mV, a Tafel slope of 65.21 mV dec-1, and outstanding stability (a continuous test lasting 48 h). The nanoarchitecture of a g-C3N4-supported PtCoVO nanoalloy catalyst exhibits exceptional resistance to nanoparticle migration and corrosion, owing to the strong interaction between the metal nanoparticles and the g-C3N4 support. Pt, Co, and V simultaneous doping has been shown by Density Functional Theory (DFT) calculations to enhance the density of states (DOS) at the Fermi level. This augmentation leads to a higher charge density and a reduction in the adsorption energy of intermediates.
Collapse
Affiliation(s)
- Jingjing Zhang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China; (J.Z.); (J.J.); (H.M.); (W.Z.); (T.L.)
| | - Wei Deng
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China; (J.Z.); (J.J.); (H.M.); (W.Z.); (T.L.)
| | - Yun Weng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textile, Donghua University, Shanghai 201620, China;
| | - Jingxian Jiang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China; (J.Z.); (J.J.); (H.M.); (W.Z.); (T.L.)
| | - Haifang Mao
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China; (J.Z.); (J.J.); (H.M.); (W.Z.); (T.L.)
| | - Wenqian Zhang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China; (J.Z.); (J.J.); (H.M.); (W.Z.); (T.L.)
| | - Tiandong Lu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China; (J.Z.); (J.J.); (H.M.); (W.Z.); (T.L.)
| | - Dewu Long
- Key Laboratory in Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China;
| | - Fei Jiang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China; (J.Z.); (J.J.); (H.M.); (W.Z.); (T.L.)
| |
Collapse
|
6
|
Yu X, Lin L, Pei C, Ji S, Sun Y, Wang Y, Kyu Kim J, Seok Park H, Pang H. Immobilizing Bimetallic RuCo Nanoalloys on Few-Layered MXene as a Robust Bifunctional Electrocatalyst for Overall Water Splitting. Chemistry 2024; 30:e202303524. [PMID: 37965774 DOI: 10.1002/chem.202303524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/15/2023] [Accepted: 11/15/2023] [Indexed: 11/16/2023]
Abstract
Doping Co atoms into Ru lattices can tune the electronic structure of active sites, and the conductive MXene can adjust the electrical conductivity of catalysts, which are both favorable for improving the electrocatalytic activity of the catalyst for water splitting. Here, ruthenium-cobalt bimetallic nanoalloys coupled with exfoliated Ti3 C2 Tx MXene (RuCo-Ti3 C2 Tx ) have been constructed by ice-templated and thermal activation. Due to the strong interaction between the RuCo nanoalloys and conductive MXene, RuCo-Ti3 C2 Tx not only exhibits an excellent hydrogen evolution reaction (HER) performance with a low overpotential and Tafel slope (60 mV, 34.8 mV dec-1 in 0.5 M H2 SO4 and 52 mV, 38.7 mV dec-1 in 1 M KOH), but also good oxygen evolution reaction (OER) performance in an alkaline electrolyte (266 mV, 111.1 mV dec-1 in 1 M KOH). The assembled RuCo-Ti3 C2 Tx ||RuCo-Ti3 C2 Tx electrolyzer requires a lower potential (1.56 V) than does the Pt/C||RuO2 electrolyzer at 10 mA cm-2 . A boosted catalytic HER activity from immobilizing the RuCo nanoalloys on MXene was unveiled by density functional theory calculations. This study provides a feasible and efficient strategy for developing MXene-based catalysts for overall water splitting.
Collapse
Affiliation(s)
- Xu Yu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China
| | - Longjie Lin
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China
| | - Chengang Pei
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, 440-746, Republic of Korea
| | - Shenjing Ji
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China
| | - Yuanyuan Sun
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China
| | - Yang Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China
| | - Jung Kyu Kim
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, 440-746, Republic of Korea
| | - Ho Seok Park
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, 440-746, Republic of Korea
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China
| |
Collapse
|
7
|
An L, Yang J, Zhu J, Yang C, Zhao X, Wang D. Heterostructural Ni-Ni 0.2 Mo 0.8 N Interface Engineering Boosts Alkaline Hydrogen Electrocatalysis. CHEMSUSCHEM 2023:e202300218. [PMID: 37042524 DOI: 10.1002/cssc.202300218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/04/2023] [Indexed: 06/16/2023]
Abstract
Exploring efficient and low-cost bifunctional catalysts for hydrogen evolution reaction (HER) and hydrogen oxidation reaction (HOR) is highly desirable for the achievement of unitized regenerative fuel cells. Herein, a facile method to prepare hetero-interfacial Ni-Ni0.2 Mo0.8 N nanosheets with tailored d-band for efficient alkaline hydrogen electrocatalysis is presented. Mechanism studies indicate that interface engineering can downshift the d-band center of Ni-Ni0.2 Mo0.8 N nanosheets due to the electron transfer from Ni to Ni0.2 Mo0.8 N, which weakens the binding strength of reaction intermediates, thereby boosting the catalytic performance. Relative to pure Ni, Ni-Ni0.2 Mo0.8 N nanosheets show a lower overpotential of 83 mV at -10 mA cm-2 and good stability during 2,000 cycles for HER. Meanwhile, Ni-Ni0.2 Mo0.8 N nanosheets exhibit an improved exchange current density for HOR with a 10.2-fold enhancement in comparison with that of pure Ni. This work provides valuable insight into the reasonable design of efficient energy-related electrocatalysts based on the tailoring of d-band center by interface engineering.
Collapse
Affiliation(s)
- LuLu An
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Junhao Yang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Jiang Zhu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Chang Yang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Xu Zhao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Deli Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| |
Collapse
|
8
|
Zhang XB, Xia L, Zhao G, Zhang B, Chen Y, Chen J, Gao M, Jiang Y, Liu Y, Pan H, Sun W. Fast and Durable Alkaline Hydrogen Oxidation Reaction at the Electron-Deficient Ruthenium-Ruthenium Oxide Interface. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208821. [PMID: 36484270 DOI: 10.1002/adma.202208821] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 12/02/2022] [Indexed: 06/17/2023]
Abstract
The slow hydrogen oxidation reaction (HOR) kinetics under alkaline conditions remain a critical challenge for the practical application of alkaline exchange membrane fuel cells. Herein, Ru/RuO2 in-plane heterostructures are designed with abundant active Ru-RuO2 interface domains as efficient electrocatalysts for the HOR in alkaline media. The experimental and theoretical results demonstrate that interfacial Ru and RuO2 domains at Ru-RuO2 interfaces are the optimal H and OH adsorption sites, respectively, endowing the well-defined Ru(100)/RuO2 (200) interface as the preferential region for fast alkaline hydrogen electrocatalysis. More importantly, the metallic Ru domains become electron deficient due to the strong interaction with RuO2 domains and show substantially improved inoxidizability, which is vital to maintain durable HOR electrocatalytic activity. The optimal Ru/RuO2 heterostructured electrocatalyst exhibits impressive alkaline HOR activity with an exchange current density of 8.86 mA cm-2 and decent durability. The exceptional electrocatalytic performance of Ru/RuO2 in-plane heterostructure can be attributed to the robust and multifunctional Ru-RuO2 interfaces endowed by the unique metal-metal oxide domains.
Collapse
Affiliation(s)
- Xiaoyu Baohua Zhang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
- Zhejiang Carbon Neutral Innovation Institute and College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Lixue Xia
- State Key Laboratory of Silicate Materials for Architectures, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Guoqiang Zhao
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Bingxing Zhang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Yaping Chen
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Jian Chen
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Mingxia Gao
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Yinzhu Jiang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Yongfeng Liu
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Hongge Pan
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Wenping Sun
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, P. R. China
| |
Collapse
|
9
|
Enhancing hydrogen electrocatalytic oxidation on Ni3N/MoO2 in-plane heterostructures in alkaline solution. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(22)64126-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
10
|
Yang C, Li Y, Ge C, Jiang W, Cheng G, Zhuang L, Luo W. The role of hydroxide binding energy in alkaline hydrogen oxidation reaction kinetics on
RuCr
nanosheet. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Chaoyi Yang
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan Hubei 430072 P. R. China
| | - Yunbo Li
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan Hubei 430072 P. R. China
| | - Chuangxin Ge
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan Hubei 430072 P. R. China
| | - Wenyong Jiang
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan Hubei 430072 P. R. China
| | - Gongzhen Cheng
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan Hubei 430072 P. R. China
| | - Lin Zhuang
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan Hubei 430072 P. R. China
| | - Wei Luo
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan Hubei 430072 P. R. China
- Hubei Key Lab on Organic and Polymeric Opto‐Electronic Materials, Wuhan University Wuhan Hubei 430072 P. R. China
| |
Collapse
|
11
|
Li Y, Yang C, Ge C, Yao N, Yin J, Jiang W, Cong H, Cheng G, Luo W, Zhuang L. Electronic Modulation of Ru Nanosheet by d-d Orbital Coupling for Enhanced Hydrogen Oxidation Reaction in Alkaline Electrolytes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202404. [PMID: 35754182 DOI: 10.1002/smll.202202404] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/02/2022] [Indexed: 06/15/2023]
Abstract
The alkaline polymer electrolyte fuel cells (APEFCs) hold great promise for using nonnoble metal-based electrocatalysts toward the cathodic oxygen reduction reaction (ORR), but are hindered by the sluggish anodic hydrogen oxidation reaction (HOR) in alkaline electrolytes. Here, a strategy is reported to promote the alkaline HOR performance of Ru by incorporating 3d-transition metals (V, Fe, Co, and Ni), where the conduction band minimum (CBM) level of Ru can be rationally tailored through strong d-d orbital coupling. As expected, the obtained RuFe nanosheet exhibits outstanding HOR performance with the mass activity of 233.46 A gPGM -1 and 23-fold higher than the Ru catalyst, even threefold higher than the commercial Pt/C. APEFC employing this RuFe as anodic catalyst gives a peak power density of 1.2 W cm-2 , outperforming the documented Pt-free anodic catalyst-based APEFCs. Experimental results and density functional theory calculations suggest the enhanced OH-binding energy and reduced formation energy of water derived from the downshifted CBM level of Ru contribute to the enhanced HOR activity.
Collapse
Affiliation(s)
- Yunbo Li
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, P. R. China
| | - Chaoyi Yang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, P. R. China
| | - Chuangxin Ge
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, P. R. China
| | - Na Yao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, P. R. China
| | - Jinlong Yin
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, P. R. China
| | - Wenyong Jiang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, P. R. China
| | - Hengjiang Cong
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, P. R. China
| | - Gongzhen Cheng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, P. R. China
| | - Wei Luo
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, P. R. China
- Suzhou Institute of Wuhan University, Suzhou, Jiangsu, 215123, P. R. China
| | - Lin Zhuang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, P. R. China
| |
Collapse
|
12
|
Li Z, An L, Song M, Zhao T, Zhang J, Zhang C, Li Z, Wang D. Tuning the hydrogen and hydroxyl adsorption on Ru nanoparticles for hydrogen electrode reactions via size controlling. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.06.045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|