1
|
Li Y, Li C, Liu S, Wang Q, Tang Z, Qu J, Ye J, Lu Y, Wang J, Zhang K, Fu Y, Xu J. Nano-photosensitizers with gallic acid-involved Fe-O-Cu "electronic storage station" bridging ligand-to-metal charge transfer for efficient catalytic theranostics. J Colloid Interface Sci 2024; 676:974-988. [PMID: 39068841 DOI: 10.1016/j.jcis.2024.07.193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/18/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
NH2-MIL-88B (Fe) (MOF) is a promising photocatalytic material for antitumor therapy because of its distinctive electronic structure. However, inadequate separation of photo-generated electrons and slow reaction rate in low/high-valence iron (Fe) cycles limit their clinical application. In the present study, "electronic storage station" as a ligand-to-metal charge transfer bridge bond was constructed to inhibit recombination of electron/hole under 650 nm laser irradiation. Cupric (Cu) ions and gallic acid (GA) were self-assembled into a MOF (denoted as CGMOF) to create an FeO(GA)Cu bridge bond. GA, characterized by robust electron delocalization and abundant electron-donating groups, significantly enhances electron transfer efficiency for photodynamic therapy (PDT). CGMOF can respond to endogenous glutathione and release cuprous ions, accelerating the iron ion/ferrous ion cycles for chemodynamic therapy (CDT). The released Fe species can serve as T2-weighted magnetic resonance imaging contrast. Extended X-ray absorption fine structure spectra confirmed the presence of GA-containing FeOCu bonds in CGMOF. Furthermore, a series of photo-electrochemical tests confirmed that the formation of FeO(GA)Cu bond prominently elevated the redox capacity and increased the carrier density of CGMOF by 2.74-fold compared to that of MOF. In addition, cinnamaldehyde was grafted onto CGMOF for tumor-responsive hydrogen peroxide self-supply. Concurrently, hyaluronic acid was surface-modified to achieve the targeted delivery of nano-photosensitizers. In summary, this study presents an innovative approach for engineering Fe-based metal-organic frameworks for synergetic PDT/CDT applications.
Collapse
Affiliation(s)
- Yunlong Li
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China
| | - Chunsheng Li
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China
| | - Shuang Liu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China
| | - Qiang Wang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China
| | - Zhengyang Tang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China
| | - Jiawei Qu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China
| | - Jin Ye
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China
| | - Yong Lu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China; School of Laboratory Medicine, Wannan Medical College, Wuhu, Anhui 241002, PR China
| | - Jun Wang
- Liuzhou People's Hospital Affiliated to Guangxi Medical University, Liuzhou 545000, PR China.
| | - Kefen Zhang
- Guangxi University of Science and Technology, Liuzhou 545006, PR China
| | - Yujie Fu
- College of Forestry, Beijing Forestry University, Beijing 100083, PR China
| | - Jiating Xu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China; Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Northeast Forestry University, Harbin 150040, PR China.
| |
Collapse
|
2
|
Qiu J, Ahmad F, Ma J, Sun Y, Liu Y, Xiao Y, Xu L, Shu T, Zhang X. From synthesis to applications of biomolecule-protected luminescent gold nanoclusters. Anal Bioanal Chem 2024; 416:3923-3944. [PMID: 38705905 DOI: 10.1007/s00216-024-05303-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/07/2024] [Accepted: 04/11/2024] [Indexed: 05/07/2024]
Abstract
Gold nanoclusters (AuNCs) are a class of novel luminescent nanomaterials that exhibit unique properties of ultra-small size, featuring strong anti-photo-bleaching ability, substantial Stokes shift, good biocompatibility, and low toxicity. Various biomolecules have been developed as templates or ligands to protect AuNCs with enhanced stability and luminescent properties for biomedical applications. In this review, the synthesis of AuNCs based on biomolecules including amino acids, peptides, proteins and DNA are summarized. Owing to the advantages of biomolecule-protected AuNCs, they have been employed extensively for diverse applications. The biological applications, particularly in bioimaging, biosensing, disease therapy and biocatalysis have been described in detail herein. Finally, current challenges and future potential prospects of bio-templated AuNCs in biological research are briefly discussed.
Collapse
Affiliation(s)
- Jiafeng Qiu
- Shenzhen Key Laboratory for Nano-Biosensing Technology, Research Center for Biosensor and Nanotheranostic, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China
- Marshall Laboratory of Biomedical Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Faisal Ahmad
- Shenzhen Key Laboratory for Nano-Biosensing Technology, Research Center for Biosensor and Nanotheranostic, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China
- Marshall Laboratory of Biomedical Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Jianxin Ma
- Shenzhen Key Laboratory for Nano-Biosensing Technology, Research Center for Biosensor and Nanotheranostic, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China
- Marshall Laboratory of Biomedical Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yanping Sun
- Shenzhen Key Laboratory for Nano-Biosensing Technology, Research Center for Biosensor and Nanotheranostic, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China
- Marshall Laboratory of Biomedical Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Ying Liu
- Shenzhen Key Laboratory for Nano-Biosensing Technology, Research Center for Biosensor and Nanotheranostic, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China
- Marshall Laboratory of Biomedical Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yelan Xiao
- Shenzhen Key Laboratory for Nano-Biosensing Technology, Research Center for Biosensor and Nanotheranostic, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China.
- Marshall Laboratory of Biomedical Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Long Xu
- Shenzhen Key Laboratory for Nano-Biosensing Technology, Research Center for Biosensor and Nanotheranostic, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China
- Marshall Laboratory of Biomedical Engineering, Shenzhen University, Shenzhen, 518060, China
- Department of Gastroenterology and Hepatology, Shenzhen University General Hospital, Shenzhen, China
| | - Tong Shu
- Shenzhen Key Laboratory for Nano-Biosensing Technology, Research Center for Biosensor and Nanotheranostic, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China.
- Marshall Laboratory of Biomedical Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Xueji Zhang
- Shenzhen Key Laboratory for Nano-Biosensing Technology, Research Center for Biosensor and Nanotheranostic, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China
- Marshall Laboratory of Biomedical Engineering, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
3
|
Pan X, Yao Y, Zhang M, Yuan X, Yao Q, Hu W. Enzyme-mimic catalytic activities and biomedical applications of noble metal nanoclusters. NANOSCALE 2024; 16:8196-8215. [PMID: 38572762 DOI: 10.1039/d4nr00282b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Noble metal (e.g., Au and Ag) nanoclusters (NCs), which exhibit structural complexity and hierarchy comparable to those of natural proteins, have been increasingly pursued in artificial enzyme research. The protein-like structure of metal NCs not only ensures enzyme-mimic catalytic activity, including peroxidase-, catalase-, and superoxide dismutase-mimic activities, but also affords an unprecedented opportunity to correlate the catalytic performance with the cluster structure at the molecular or atomic levels. In this review, we aim to summarize the recent progress in programming and demystify the enzyme-mimic catalytic activity of metal NCs, presenting the state-of-the-art understandings of the structure-property relationship of metal NC-based artificial enzymes. By leveraging on a concise anatomy of the hierarchical structure of noble metal NCs, we manage to unravel the structural origin of the catalytic performance of metal NCs. Noteworthily, it has been proven that the surface ligands and metal-ligand interface of metal NCs are instrumental in influencing enzyme-mimic catalytic activities. In addition to the structure-property correlation, we also discuss the synthetic methodologies feasible to tailoring the cluster structure at the atomic level. Prior to the closure of this review with our perspectives in noble metal NC-based artificial enzymes, we also exemplify the biomedical applications based on the enzyme-mimic catalysis of metal NCs with the theranostics of kidney injury, brain inflammation, and tumors. The fundamental and methodological advancements delineated in this review would be conducive to further development of metal NCs as an alternative family of artificial enzymes.
Collapse
Affiliation(s)
- Xinxin Pan
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Yidan Yao
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Manxi Zhang
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City, Fuzhou 350207, P. R. China
| | - Xun Yuan
- School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Qiaofeng Yao
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Wenping Hu
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| |
Collapse
|
4
|
Chen W, Mao W, Yin Y, Ma Z, Song M, Ma Z, Li T, Zhu J, Liu C, Yu H, Tang S, Shen W. Endogenous H 2S-activated Ag nanoparticles embedded in programmed DNA-cubes for specific visualization of colorectal cancer cells. Chem Commun (Camb) 2024; 60:4918-4921. [PMID: 38628069 DOI: 10.1039/d4cc00085d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
To avoid the unexpected aggregation and reduce the cytotoxicity of nanomaterials as optical probes in cell imaging applications, we propose a programmed DNA-cube as a carrier for silver nanoparticles (Ag NPs) to construct a specific hydrogen sulfide (H2S) responsive platform (Ag NP@DNA-cube) for diagnosing colorectal cancer (CRC) in this study. The DNA-cube maintains good dispersion of Ag NPs while providing excellent biocompatibility. Based on the characteristic overexpression of endogenous H2S in CRC cells, the Ag NPs are etched by H2S within target cells into silver sulfide quantum dots, thereby selectively illuminating the target cells. The Ag NP@DNA-cube exhibits a specific fluorescence response to CRC cells and achieves satisfactory imaging.
Collapse
Affiliation(s)
- Wenhui Chen
- School of Environment and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, P. R. China.
| | - Wei Mao
- School of Environment and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, P. R. China.
- Central-Southern Safety & Environmental Technology Institute Co. Ltd., Wuhan 430071, China
| | - Yuqi Yin
- School of Environment and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, P. R. China.
| | - Ziyu Ma
- School of Environment and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, P. R. China.
| | - Meiqi Song
- School of Environment and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, P. R. China.
| | - Zixiao Ma
- School of Environment and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, P. R. China.
| | - Tingting Li
- School of Environment and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, P. R. China.
| | - Jia Zhu
- School of Environment and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, P. R. China.
| | - Chang Liu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, P. R. China
| | - Hui Yu
- Department of Thoracic Surgery, Affiliated Hospital of Jiangsu University, No. 438, Jiefang Road, Zhenjiang 212000, Jiangsu Province, P. R. China
| | - Sheng Tang
- School of Environment and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, P. R. China.
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Wei Shen
- School of Environment and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, P. R. China.
| |
Collapse
|
5
|
Yang L, Hou P, Wei J, Li B, Gao A, Yuan Z. Recent Advances in Gold Nanocluster-Based Biosensing and Therapy: A Review. Molecules 2024; 29:1574. [PMID: 38611853 PMCID: PMC11013830 DOI: 10.3390/molecules29071574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 03/26/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
Gold nanoclusters (Au NCs) with bright emission and unique chemical reactivity characters have been widely applied for optical sensing and imaging. With a combination of surface modifications, effective therapeutic treatments of tumors are realized. In this review, we summarize the recently adopted biosensing and therapy events based on Au NCs. Homogeneous and fluorometric biosensing systems toward various targets, including ions, small molecules, reactive oxygen species, biomacromolecules, cancer cells, and bacteria, in vitro and in vivo, are presented by turn-off, turn-on, and ratiometric tactics. The therapy applications are concluded in three aspects: photodynamic therapy, photothermal therapy, and as a drug carrier. The basic mechanisms and performances of these systems are introduced. Finally, this review highlights the challenges and future trend of Au NC-based biosensing and therapy systems.
Collapse
Affiliation(s)
| | | | | | | | - Aijun Gao
- College of Chemistry, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhiqin Yuan
- College of Chemistry, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
6
|
Cui Y, Zhao J, Li H. Chromogenic Mechanisms of Colorimetric Sensors Based on Gold Nanoparticles. BIOSENSORS 2023; 13:801. [PMID: 37622887 PMCID: PMC10452725 DOI: 10.3390/bios13080801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/31/2023] [Accepted: 08/08/2023] [Indexed: 08/26/2023]
Abstract
The colorimetric signal readout method is widely used in visualized analyses for its advantages, including visualization of test results, simple and fast operations, low detection cost and fast response time. Gold nanoparticles (Au NPs), which not only exhibit enzyme-like activity but also have the advantages of tunable localized surface plasmon resonance (LSPR), high stability, good biocompatibility and easily modified properties, provide excellent platforms for the construction of colorimetric sensors. They are widely used in environmental monitoring, biomedicine, the food industry and other fields. This review focuses on the chromogenic mechanisms of colorimetric sensors based on Au NPs adopting two different sensing strategies and summarizes significant advances in Au NP-based colorimetric sensing with enzyme-like activity and tunable LSPR characteristics. In addition, the sensing strategies based on the LSPR properties of Au NPs are classified into four modulation methods: aggregation, surface modification, deposition and etching, and the current status of visual detection of various analytes is discussed. Finally, the review further discusses the limitations of current Au NP-based detection strategies and the promising prospects of Au NPs as colorimetric sensors, guiding the design of novel colorimetric sensors.
Collapse
Affiliation(s)
- Yanyun Cui
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China; (J.Z.); (H.L.)
| | | | | |
Collapse
|
7
|
Atulbhai SV, Singhal RK, Basu H, Kailasa SK. Perspectives of different colour-emissive nanomaterials in fluorescent ink, LEDs, cell imaging, and sensing of various analytes. LUMINESCENCE 2023; 38:867-895. [PMID: 35501299 DOI: 10.1002/bio.4272] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/19/2022] [Accepted: 04/18/2022] [Indexed: 11/06/2022]
Abstract
In the past 2 decades, multicolour light-emissive nanomaterials have gained significant interest in chemical and biological sciences because of their unique optical properties. These materials have drawn much attention due to their unique characteristics towards various application fields. The development of novel nanomaterials has become the pinpoint for different application areas. In this review, the recent progress in the area of multicolour-emissive nanomaterials is summarized. The different emissions (white, orange, green, red, blue, and multicolour) of nanostructure materials (metal nanoclusters, quantum dots, carbon dots, and rare earth-based nanomaterials) are briefly discussed. The potential applications of different colour-emissive nanomaterials in the development of fluorescent inks, light-emitting diodes, cell imaging, and sensing devices are briefly summarized. Finally, the future perspectives of multicolour-emissive nanomaterials are discussed.
Collapse
Affiliation(s)
- Sadhu Vibhuti Atulbhai
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat, India
| | - Rakesh Kumar Singhal
- Analytical Chemistry Division, Bhabha Atomic Research Center, Trombay, Mumbai, India
| | - Hirakendu Basu
- Analytical Chemistry Division, Bhabha Atomic Research Center, Trombay, Mumbai, India
| | - Suresh Kumar Kailasa
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat, India
| |
Collapse
|
8
|
Hou L, Gong F, Han Z, Wang Y, Yang Y, Cheng S, Yang N, Liu Z, Cheng L. H
X
V
2
O
5
Nanocatalysts Combined with Ultrasound for Triple Amplification of Oxidative Stress to Enhance Cancer Catalytic Therapy. Angew Chem Int Ed Engl 2022; 61:e202208849. [DOI: 10.1002/anie.202208849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Indexed: 10/16/2022]
Affiliation(s)
- Linqian Hou
- Institute of Functional Nano and Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Soochow University Suzhou 215123 China
| | - Fei Gong
- Institute of Functional Nano and Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Soochow University Suzhou 215123 China
| | - Zhihui Han
- Institute of Functional Nano and Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Soochow University Suzhou 215123 China
| | - Yuanjie Wang
- Institute of Functional Nano and Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Soochow University Suzhou 215123 China
| | - Yuqi Yang
- Institute of Functional Nano and Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Soochow University Suzhou 215123 China
| | - Shuning Cheng
- Institute of Functional Nano and Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Soochow University Suzhou 215123 China
| | - Nailin Yang
- Institute of Functional Nano and Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Soochow University Suzhou 215123 China
| | - Zhuang Liu
- Institute of Functional Nano and Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Soochow University Suzhou 215123 China
| | - Liang Cheng
- Institute of Functional Nano and Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Soochow University Suzhou 215123 China
| |
Collapse
|
9
|
Metallic deep eutectic solvents-assisted synthesis of Cu, Cl-doped carbon dots as oxidase-like and peroxidase-like nanozyme for colorimetric assay of hydroquinone and H2O2. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
10
|
Hou L, Gong F, Han Z, Wang Y, Yang Y, Cheng S, Yang N, Liu Z, Cheng L. HXV2O5 Nanocatalysts Combined with Ultrasound for Triple Amplification of Oxidative Stress to Enhance Cancer Catalytic Therapy. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Linqian Hou
- Soochow University Institute of Functional Nano & Soft Materials (FUNSOM) CHINA
| | - Fei Gong
- Soochow University Institute of Functional Nano & Soft Materials (FUNSOM) CHINA
| | - Zhihui Han
- Soochow University Institute of Functional Nano & Soft Materials (FUNSOM) CHINA
| | - Yuanjie Wang
- Soochow University Institute of Functional Nano & Soft Materials (FUNSOM) CHINA
| | - Yuqi Yang
- Soochow University Institute of Functional Nano & Soft Materials (FUNSOM) CHINA
| | - Shuning Cheng
- Soochow University Institute of Functional Nano & Soft Materials (FUNSOM) CHINA
| | - Nailin Yang
- Soochow University Institute of Functional Nano & Soft Materials (FUNSOM) CHINA
| | - Zhuang Liu
- Soochow University Institute of Functional Nano & Soft Materials (FUNSOM) CHINA
| | - Liang Cheng
- Soochow University No 199, Ren'ai Road 215123 Suzhou CHINA
| |
Collapse
|
11
|
Zhu S, Wang S, Liu C, Lyu M, Huang Q. Cu-Hemin Nanosheets and Indocyanine Green Co-Loaded Hydrogel for Photothermal Therapy and Amplified Photodynamic Therapy. Front Oncol 2022; 12:918416. [PMID: 35847901 PMCID: PMC9280130 DOI: 10.3389/fonc.2022.918416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/10/2022] [Indexed: 11/29/2022] Open
Abstract
Near-infrared (NIR) organic small molecule indocyanine green (ICG) could respond well to 808 nm laser to promote local high temperature and ROS generation for realizing photothermal therapy (PTT)/photodynamic therapy (PDT). However, the high content of GSH in the tumor microenvironment (TME) limited the further therapeutic performance of ICG. Herein, injectable agarose in situ forming NIR-responsive hydrogels (CIH) incorporating Cu-Hemin and ICG were prepared for the first time. When CIH system was located to the tumor tissue through local injection, the ICG in the hydrogel could efficiently convert the light energy emitted by the 808 nm laser into thermal energy, resulting in the heating and softening of the hydrogel matrix, which releases the Cu-Hemin. Then, the over-expressed GSH in the TME could also down-regulated by Cu-Hemin, which amplified ICG-mediated PDT. In vivo experiments validated that ICG-based PDT/PTT and Cu-Hemin-mediated glutathione depletion could eliminate cancer tissues with admirable safety. This hydrogel-based GSH-depletion strategy is instructive to improve the objective response rate of PDT.
Collapse
Affiliation(s)
- Shu Zhu
- Department of Molecular Pathology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuntao Wang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunping Liu
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meng Lyu
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qinqin Huang
- Department of Molecular Pathology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Qinqin Huang,
| |
Collapse
|