1
|
Xu X, Sun T, Zhou X, Liu Z, Zhang L. Specific and enzyme-free monitoring of propiconazole pesticide residues in vegetables with a portable nanozyme-based paper sensor. Food Chem 2025; 464:141686. [PMID: 39437679 DOI: 10.1016/j.foodchem.2024.141686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/28/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
The nanozyme-based colorimetric sensor shows promise for rapid pesticide detection but struggles with non-specific enzyme inhibition. This study developed a portable paper-based sensor for detecting the propiconazole (PC) pesticide using Fe@PCN-224 nanocubes (NCs). Characterization confirmed the successful synthesis of Fe@PCN-224 NCs, which displayed peroxidase-like activity. The specific interaction between PC's triazole ring and the Fe active site inhibited their activity, enabling selective detection with a limit of 8 × 10-9 mol L-1 and a linear range of 0.03 × 10-6 to 0.90 × 10-6 mol L-1. Kinetic studies revealed a Michaelis-Menten constants (Km) of 0.68 × 10-3 mol L-1 for TMB, indicating higher affinity in Fe@PCN-224 NCs. The electron paramagnetic resonance (EPR) analysis revealed the production of •OH, 1O2, O2•- during the catalytic reactions. By integrating smartphone technology, this portable sensor achieved recoveries from vegetable samples between 94.6 % and 109.2 %, demonstrating its potential as an accurate, cost-effective analytical tool for food safety and advancing nanozyme applications.
Collapse
Affiliation(s)
- Xu Xu
- College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Tongxin Sun
- College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Xinyue Zhou
- College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Zhuang Liu
- College of Science, Shenyang Agricultural University, Shenyang 110866, China.
| | - Lei Zhang
- College of Chemistry, Liaoning University, Shenyang 110036, China.
| |
Collapse
|
2
|
Wang B, Yu Y, Zhao R, Yan L, Tan T, Chen P, Ma C. A portable fluorescence sensing system for timely onsite perfluorooctane sulfonate detection based on an aggregate induced emission fluorescence sensor. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:7977-7984. [PMID: 39463139 DOI: 10.1039/d4ay01698j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Perfluorooctane sulfonate (PFOS), a ubiquitous persistent organic pollutant, has aroused growing concern due to its adverse effects on human health. Timely onsite monitoring of PFOS in heavily contaminated areas is crucial for effective pollution management and prevention of its spread. However, relevant PFOS detection methods have rarely been reported. Herein, we developed a fluorescence sensing system capable of achieving timely onsite detection of PFOS under outdoor conditions. First, aggregate induced emission (AIE) fluorescence sensors, TPE-PAs, were synthesized. The optimized sensor could selectively interact with PFOS through electrostatic attraction and hydrogen bonding and exhibited prominent fluorescence enhancement after treating with PFOS. There was a good linear relationship between the fluorescence enhancement and PFOS concentration in the range of 0.05-30 ppm, and the limit of detection was measured to be 0.047 ppm. In addition, owing to the AIE fluorescence mechanism and high concentration of TPE-PAs in the sensing medium, the sensor demonstrated excellent anti-interference performance. Second, we developed a portable fluorometer, by modifying the power supply and sample cell of a tiny fluorometer, and further integrated this modified fluorometer, the prepared fluorescence sensor, standard PFOS solutions and other consumables into a portable test system. This test system showed good detection accuracy and reliability and successfully achieved timely onsite PFOS detection in real water samples.
Collapse
Affiliation(s)
- Bin Wang
- Department of Chemistry, School of Science, Tianjin Chengjian University, Tianjin 300384, China.
| | - Yaning Yu
- Department of Chemistry, School of Science, Tianjin Chengjian University, Tianjin 300384, China.
| | - Rongxu Zhao
- Center for Analytical Science and Technology, School of Earth System Science, Tianjin University, Tianjin 300072, P. R. China
| | - Liang Yan
- Department of Chemistry, School of Science, Tianjin Chengjian University, Tianjin 300384, China.
| | - Tingfeng Tan
- Department of Chemistry, School of Science, Tianjin Chengjian University, Tianjin 300384, China.
| | - Peiyao Chen
- Tianjin Fire Research Institute of MEM, Tianjin 300381, China
| | - Chao Ma
- Center for Analytical Science and Technology, School of Earth System Science, Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|
3
|
Xu Y, Yin Q, Du N, Yi Y, Zhu G. An innovative homogeneous electrochemistry coupled with colorimetry dual-model sensing strategy for perfluorooctane sulfonate based on Cu@CuO aerogel nanozyme. Mikrochim Acta 2024; 191:693. [PMID: 39441415 DOI: 10.1007/s00604-024-06751-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/04/2024] [Indexed: 10/25/2024]
Abstract
By preparing Cu@CuO aerogel as a nanozyme which exhibits prominent peroxidase-like (POD) activity, an innovative homogeneous electrochemistry (HEC) coupled with the colorimetry dual-model sensing strategy is proposed to detect perfluorooctane sulfonate (PFOS) for the first time. Cu@CuO aerogel accelerates the oxidation process of colorless o-phenylenediamine to form yellow 2,3-diaminophenazinc (DAP), and meanwhile, DAP as an electroactive substance creates a reduction peak current upon the electrochemical measurements. Interestingly, in the presence of PFOS, the POD activity of Cu@CuO aerogel is inhibited since the specific coordination between PFOS and Cu(II) can cover the active sites, resulting in the color of the sensing system becoming light and the peak current of DAP decreasing. This innovative dual-mode detection method showed excellent electrochemical detection of PFOS in the concentration range 10.0 ~ 1125.0 nM with a limit of detection (LOD) as low as 3.3 nM and a LOD of 20.8 nM in the colorimetric detection in the range 62.3 ~ 875 nM. Furthermore, the sensor was successfully used for the analysis of real samples with an RSD value ≤ 6.5%. The successful application of this two-mode sensing method for the determination of PFOS holds promise for the detection of other contaminants in the future.
Collapse
Affiliation(s)
- Yuanyuan Xu
- School of the Environment and Safety Engineering, and Collaborative Innovation Center of Technology and Material of Water Treatment, Jiangsu University, Zhenjiang, 212013, PR China
| | - Qingqing Yin
- School of the Environment and Safety Engineering, and Collaborative Innovation Center of Technology and Material of Water Treatment, Jiangsu University, Zhenjiang, 212013, PR China
| | - Ningjing Du
- School of the Environment and Safety Engineering, and Collaborative Innovation Center of Technology and Material of Water Treatment, Jiangsu University, Zhenjiang, 212013, PR China
| | - Yinhui Yi
- School of the Environment and Safety Engineering, and Collaborative Innovation Center of Technology and Material of Water Treatment, Jiangsu University, Zhenjiang, 212013, PR China
- Fujian Key Laboratory of Agro-Products Quality & Safety, Fuzhou, 350003, PR China
- Key Laboratory of Agricultural Monitoring and Early Warning Technology, Ministry of Agriculture and Rural Affairs, Beijing, PR China
| | - Gangbing Zhu
- School of the Environment and Safety Engineering, and Collaborative Innovation Center of Technology and Material of Water Treatment, Jiangsu University, Zhenjiang, 212013, PR China.
- Fujian Key Laboratory of Inspection and Quarantine Technology Research, Fuzhou, PR China.
| |
Collapse
|
4
|
Dalapati R, Hunter M, Sk M, Yang X, Zang L. Fluorescence Turn-on Detection of Perfluorooctanoic Acid (PFOA) by Perylene Diimide-Based Metal-Organic Framework. ACS APPLIED MATERIALS & INTERFACES 2024; 16:32344-32356. [PMID: 38718353 DOI: 10.1021/acsami.4c03389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
A novel, water-stable, perylene diimide (PDI) based metal-organic framework (MOF), namely, U-1, has been synthesized for selective and sensitive detection of perfluorooctanoic acid (PFOA) in mixed aqueous solutions. The MOF shows highly selective fluorescence turn-on detection via the formation of a PFOA-MOF complex. This PFOA-MOF complex formation was confirmed by various spectroscopic techniques. The detection limit of the MOF for PFOA was found to be 1.68 μM in an aqueous suspension. Upon coating onto cellulose paper, the MOF demonstrated a significantly lower detection limit, down to 3.1 nM, which is mainly due to the concentrative effect of solid phase extraction (SPE). This detection limit is lower than the fluorescence sensors based on MOFs previously reported for PFAS detection. The MOF sensor is regenerable and capable of detecting PFOA in drinking and tap water samples. The PDI-MOF-based sensor reported herein represents a novel approach, relying on fluorescence turn-on response, that has not yet been thoroughly investigated for detecting per- and polyfluoroalkyl substances (PFAS) until now.
Collapse
Affiliation(s)
- Rana Dalapati
- Nano Institute of Utah, and Department of Materials Science and Engineering, University of Utah, Salt Lake City, Utah 84112, United States
| | - Matthew Hunter
- Nano Institute of Utah, and Department of Materials Science and Engineering, University of Utah, Salt Lake City, Utah 84112, United States
| | - Mostakim Sk
- Lab of Soft Interfaces, Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Xiaomei Yang
- Nano Institute of Utah, and Department of Materials Science and Engineering, University of Utah, Salt Lake City, Utah 84112, United States
| | - Ling Zang
- Nano Institute of Utah, and Department of Materials Science and Engineering, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
5
|
Xu X, Ma M, Zhou X, Zhao X, Feng D, Zhang L. Portable Hydrogel Kits Made with Bimetallic Nanozymes for Point-of-Care Testing of Perfluorooctanesulfonate. ACS APPLIED MATERIALS & INTERFACES 2024; 16:15959-15969. [PMID: 38511635 DOI: 10.1021/acsami.4c00844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Perfluorooctanesulfonate (PFOS), an emerging organic contaminant, necessitates robust on-site detection strategies to safeguard human health and ecological balance. This study introduces a novel point-of-care testing (POCT) platform, combining a hydrogel kit with nanozymes and smartphone technology, for the highly sensitive detection of PFOS. The strategy utilizes copper-substituted cobalt-based Prussian blue analogue nanoboxes (CuCo-PBA NBs), which exhibit intricate hollow structures and remarkable peroxidase-like catalytic activity, efficiently catalyzing the oxidation of chromogenic substrates with hydrogen peroxide (H2O2). Density functional theory calculations elucidate the adsorption dynamics of H2O2 on CuCo-PBA NBs, identifying the factors that improve the catalytic efficiency. The colorimetric POCT platform, integrating the hydrogel kit with a smartphone interface, demonstrates practical utility and achieves a detection limit of 1.43 × 10-8 mol L-1 for PFOS. This research not only presents a new nanozyme design for PFOS detection in diverse matrices, such as lake water, whole blood, urine, and milk, but also paves the way for developing a portable and efficient POCT platform for a variety of emerging contaminants.
Collapse
Affiliation(s)
- Xu Xu
- College of Chemistry, Liaoning University, No. 66 Chongshan Middle Road, Shenyang 110036, China
| | - Muyao Ma
- College of Chemistry, Liaoning University, No. 66 Chongshan Middle Road, Shenyang 110036, China
| | - Xinyue Zhou
- College of Chemistry, Liaoning University, No. 66 Chongshan Middle Road, Shenyang 110036, China
| | - Xin Zhao
- Ecology and Environmental Monitoring Center of Jilin Province, Changchun 130011, China
| | - Daming Feng
- College of Chemistry, Liaoning University, No. 66 Chongshan Middle Road, Shenyang 110036, China
| | - Lei Zhang
- College of Chemistry, Liaoning University, No. 66 Chongshan Middle Road, Shenyang 110036, China
| |
Collapse
|
6
|
Dong X, Zhang Z, Xiao H, Liu G, Lei SN, Wang Z, Yan X, Wang S, Tung CH, Wu LZ, Cong H. Assembly and Utility of a Drawstring-Mimetic Supramolecular Complex. Angew Chem Int Ed Engl 2024; 63:e202318368. [PMID: 38165266 DOI: 10.1002/anie.202318368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/20/2023] [Accepted: 01/02/2024] [Indexed: 01/03/2024]
Abstract
Inspired by the drawstring structure in daily life, here we report the development of a drawstring-mimetic supramolecular complex at the molecular scale. This complex consists of a rigid figure-of-eight macrocyclic host molecule and a flexible linear guest molecule which could interact through three-point non-covalent binding to form a highly selective and efficient host-guest assembly. The complex not only resembles the drawstring structure, but also mimics the properties of a drawstring with regard to deformations under external forces. The supramolecular drawstring can be utilized as an interlocked crosslinker for poly(methyl acrylate), and the corresponding polymer samples exhibit comprehensive enhancement of macroscopic mechanical performance including stiffness, strength, and toughness.
Collapse
Affiliation(s)
- Xiangyu Dong
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhaoming Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hongyan Xiao
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Guoquan Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Sheng-Nan Lei
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhao Wang
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xuzhou Yan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shutao Wang
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Chen-Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Huan Cong
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
7
|
Wang N, Yang W, Feng L, Xu XD, Feng S. A supramolecular artificial light-harvesting system based on a luminescent platinum(II) metallacage. Dalton Trans 2023; 52:15524-15529. [PMID: 37622328 DOI: 10.1039/d3dt01706k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
A trigonal luminescent metallacage was constructed by the coordination-driven self-assembly of m-pyridine-modified tetraphenylene ligands with organic Pt(II) acceptors, which exhibited excellent Aggregation-Induced Emission (AIE) properties. An efficient artificial light-harvesting system was successfully constructed by selecting the metallacage as the donor and the hydrophobic fluorescent dye Nile Red (NiR) as the donor molecule in a system of acetone/water (1/9, v/v), The absorption spectra of NiR and the emission spectra of the metallacage showed considerable overlap, achieving energy transfer from the metallacage to NiR.
Collapse
Affiliation(s)
- Ning Wang
- Key Laboratory of Special Functional Aggregated Materials of Ministry of Education, Shandong Key Laboratory of Advanced Silicone Materials and Technology, School of Chemistry and Chemical Engineering, National Engineering Research Center for Colloidal Materials, Shandong University, Jinan 250100, Shandong, China.
| | - Weiao Yang
- Key Laboratory of Special Functional Aggregated Materials of Ministry of Education, Shandong Key Laboratory of Advanced Silicone Materials and Technology, School of Chemistry and Chemical Engineering, National Engineering Research Center for Colloidal Materials, Shandong University, Jinan 250100, Shandong, China.
| | - Lei Feng
- Key Laboratory of Special Functional Aggregated Materials of Ministry of Education, Shandong Key Laboratory of Advanced Silicone Materials and Technology, School of Chemistry and Chemical Engineering, National Engineering Research Center for Colloidal Materials, Shandong University, Jinan 250100, Shandong, China.
| | - Xing-Dong Xu
- Key Laboratory of Special Functional Aggregated Materials of Ministry of Education, Shandong Key Laboratory of Advanced Silicone Materials and Technology, School of Chemistry and Chemical Engineering, National Engineering Research Center for Colloidal Materials, Shandong University, Jinan 250100, Shandong, China.
| | - Shengyu Feng
- Key Laboratory of Special Functional Aggregated Materials of Ministry of Education, Shandong Key Laboratory of Advanced Silicone Materials and Technology, School of Chemistry and Chemical Engineering, National Engineering Research Center for Colloidal Materials, Shandong University, Jinan 250100, Shandong, China.
| |
Collapse
|
8
|
Chen XL, Yu SQ, Huang XH, Gong HY. Bismacrocycle: Structures and Applications. Molecules 2023; 28:6043. [PMID: 37630294 PMCID: PMC10458016 DOI: 10.3390/molecules28166043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/03/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
In the past half-century, macrocycles with different structures and functions, have played a critical role in supramolecular chemistry. Two macrocyclic moieties can be linked to form bismacrocycle molecules. Compared with monomacrocycle, the unique structures of bismacrocycles led to their specific recognition and assembly properties, also a wide range of applications, including molecular recognition, supramolecular self-assembly, advanced optical material construction, etc. In this review, we focus on the structure of bismacrocycle and their applications. Our goal is to summarize and outline the possible future development directions of bismacrocycle research.
Collapse
Affiliation(s)
- Xu-Lang Chen
- Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China; (S.-Q.Y.); (X.-H.H.)
| | - Si-Qian Yu
- Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China; (S.-Q.Y.); (X.-H.H.)
| | - Xiao-Huan Huang
- Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China; (S.-Q.Y.); (X.-H.H.)
| | - Han-Yuan Gong
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
9
|
Simonini Steiner YT, Romano GM, Massai L, Lippi M, Paoli P, Rossi P, Savastano M, Bencini A. Pyrene-Containing Polyamines as Fluorescent Receptors for Recognition of PFOA in Aqueous Media. Molecules 2023; 28:4552. [PMID: 37299033 PMCID: PMC10254721 DOI: 10.3390/molecules28114552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/25/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023] Open
Abstract
The globally widespread perfluorooctanoic acid (PFOA) is a concerning environmental contaminant, with a possible toxic long-term effects on the environment and human health The development of sensible, rapid, and low-cost detection systems is a current change in modern environmental chemistry. In this context, two triamine-based chemosensors, L1 and L2, containing a fluorescent pyrene unit, and their Zn(II) complexes are proposed as fluorescent probes for the detection of PFOA in aqueous media. Binding studies carried out by means of fluorescence and NMR titrations highlight that protonated forms of the receptors can interact with the carboxylate group of PFOA, thanks to salt bridge formation with the ammonium groups of the aliphatic chain. This interaction induces a decrease in the fluorescence emission of pyrene at neutral and slightly acidic pH values. Similarly, emission quenching has also been observed upon coordination of PFOA by the Zn(II) complexes of the receptors. These results evidence that simple polyamine-based molecular receptors can be employed for the optical recognition of harmful pollutant molecules, such as PFOA, in aqueous media.
Collapse
Affiliation(s)
- Yschtar Tecla Simonini Steiner
- Department of Chemistry “Ugo Schiff”, Università degli Studi di Firenze, Via della Lastruccia 3, Sesto Fiorentino, 50019 Firenze, Italy; (Y.T.S.S.); (L.M.); (M.S.)
| | - Giammarco Maria Romano
- Department of Chemistry “Ugo Schiff”, Università degli Studi di Firenze, Via della Lastruccia 3, Sesto Fiorentino, 50019 Firenze, Italy; (Y.T.S.S.); (L.M.); (M.S.)
| | - Lara Massai
- Department of Chemistry “Ugo Schiff”, Università degli Studi di Firenze, Via della Lastruccia 3, Sesto Fiorentino, 50019 Firenze, Italy; (Y.T.S.S.); (L.M.); (M.S.)
| | - Martina Lippi
- Department of Industrial Engineering, Università di Firenze, Via Santa Marta 3, 50139 Firenze, Italy; (M.L.); (P.P.); (P.R.)
| | - Paola Paoli
- Department of Industrial Engineering, Università di Firenze, Via Santa Marta 3, 50139 Firenze, Italy; (M.L.); (P.P.); (P.R.)
| | - Patrizia Rossi
- Department of Industrial Engineering, Università di Firenze, Via Santa Marta 3, 50139 Firenze, Italy; (M.L.); (P.P.); (P.R.)
| | - Matteo Savastano
- Department of Chemistry “Ugo Schiff”, Università degli Studi di Firenze, Via della Lastruccia 3, Sesto Fiorentino, 50019 Firenze, Italy; (Y.T.S.S.); (L.M.); (M.S.)
| | - Andrea Bencini
- Department of Chemistry “Ugo Schiff”, Università degli Studi di Firenze, Via della Lastruccia 3, Sesto Fiorentino, 50019 Firenze, Italy; (Y.T.S.S.); (L.M.); (M.S.)
| |
Collapse
|
10
|
Shah MM, Ahmad K, Boota S, Jensen T, La Frano MR, Irudayaraj J. Sensor technologies for the detection and monitoring of endocrine-disrupting chemicals. Front Bioeng Biotechnol 2023; 11:1141523. [PMID: 37051269 PMCID: PMC10083357 DOI: 10.3389/fbioe.2023.1141523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/14/2023] [Indexed: 03/29/2023] Open
Abstract
Endocrine-disrupting chemicals (EDCs) are a class of man-made substances with potential to disrupt the standard function of the endocrine system. These EDCs include phthalates, perchlorates, phenols, some heavy metals, furans, dimethoate, aromatic hydrocarbons, some pesticides, and per- and polyfluoroalkyl substances (PFAS). EDCs are widespread in the environment given their frequent use in daily life. Their production, usage, and consumption have increased many-fold in recent years. Their ability to interact and mimic normal endocrine functions makes them a potential threat to human health, aquatics, and wild life. Detection of these toxins has predominantly been done by mass spectroscopy and/or chromatography-based methods and to a lesser extent by advanced sensing approaches such as electrochemical and/or colorimetric methods. Instrument-based analytical techniques are often not amenable for onsite detection due to the lab-based nature of these detecting systems. Alternatively, analytical approaches based on sensor/biosensor techniques are more attractive because they are rapid, portable, equally sensitive, and eco-friendly. Advanced sensing systems have been adopted to detect a range of EDCs in the environment and food production systems. This review will focus on advances and developments in portable sensing techniques for EDCs, encompassing electrochemical, colorimetric, optical, aptamer-based, and microbial sensing approaches. We have also delineated the advantages and limitations of some of these sensing techniques and discussed future developments in sensor technology for the environmental sensing of EDCs.
Collapse
Affiliation(s)
- Muhammad Musaddiq Shah
- Department of Biological Sciences, Faculty of Sciences, University of Sialkot, Sialkot, Pakistan
| | - Khurshid Ahmad
- College of Food Sciences and Engineering, Ocean University of China, Qingdao, Shandong, China
| | - Sonia Boota
- Department of Biological Sciences, Faculty of Sciences, University of Sialkot, Sialkot, Pakistan
| | - Tor Jensen
- Biomedical Research Center, Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, IL, United States
| | - Michael R. La Frano
- Metabolomics Core Facility, Roy J Carver Biotechnology Center, The University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Joseph Irudayaraj
- Biomedical Research Center, Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, IL, United States
- Department of Bioengineering, The University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Micro and Nanotechnology Laboratory, The University of Illinois at Urbana-Champaign, Urbana, IL, United States
- *Correspondence: Joseph Irudayaraj,
| |
Collapse
|
11
|
Wang K, Zhang R, Song Z, Zhang K, Tian X, Pangannaya S, Zuo M, Hu X. Dimeric Pillar[5]arene as a Novel Fluorescent Host for Controllable Fabrication of Supramolecular Assemblies and Their Photocatalytic Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206897. [PMID: 36683255 PMCID: PMC10037968 DOI: 10.1002/advs.202206897] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/28/2022] [Indexed: 06/17/2023]
Abstract
A dimeric fluorescent macrocycle m-TPE Di-EtP5 (meso-tetraphenylethylene dimeric ethoxypillar[5]arene) is synthesized based on the meso-functionalized ethoxy pillar[5]arene. Through the connectivity of two pillar[5]arenes by CC double bond, the central tetraphenylethylene (TPE) moiety is simultaneously formed. The resultant bicyclic molecule not only retains the host-guest properties of pillararenes but also introduces the interesting aggregation-induced emission properties inherent in the embedded TPE structure. Three dinitrile derivatives with various linkers are designed as guests (G1, G2, and G3) to form host-guest assemblies with m-TPE Di-EtP5. The morphological control and fluorescence properties of the assemblies are successfully realized. G1 with a shorter alkyl chain as the linker completely threads into the cavities of the host. G2, due to its longer chain length, forms a linear supramolecular polymer upon binding to m-TPE Di-EtP5. G3 differs from G2 by possessing a bulky phenyl group in the middle of the chain, which can be further assembled with m-TPE Di-EtP5 to form supramolecular layered polymer and precipitated out in solution, and can be efficiently applied to photocatalytic reactions.
Collapse
Affiliation(s)
- Kaiya Wang
- College of Materials Science and TechnologyNanjing University of Aeronautics and AstronauticsNanjing211106P. R. China
| | - Rongbo Zhang
- College of Materials Science and TechnologyNanjing University of Aeronautics and AstronauticsNanjing211106P. R. China
| | - Zejing Song
- College of Materials Science and TechnologyNanjing University of Aeronautics and AstronauticsNanjing211106P. R. China
| | - Kaituo Zhang
- College of Materials Science and TechnologyNanjing University of Aeronautics and AstronauticsNanjing211106P. R. China
| | - Xueqi Tian
- College of Materials Science and TechnologyNanjing University of Aeronautics and AstronauticsNanjing211106P. R. China
| | - Srikala Pangannaya
- College of Materials Science and TechnologyNanjing University of Aeronautics and AstronauticsNanjing211106P. R. China
| | - Minzan Zuo
- College of Materials Science and TechnologyNanjing University of Aeronautics and AstronauticsNanjing211106P. R. China
| | - Xiao‐Yu Hu
- College of Materials Science and TechnologyNanjing University of Aeronautics and AstronauticsNanjing211106P. R. China
| |
Collapse
|
12
|
Synthesis, structure, and host-guest chemistry of a pair of isomeric selenanthrene-bridged molecular cages. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
13
|
Chen Y, Yang X, Lu C, Yang Z, Wu W, Wang X. Novel colorimetric, photothermal and up-conversion fluorescence triple-signal sensor for rosmarinic acid detection. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.108099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
14
|
Cui B, Gao C, Fan J, Liu J, Feng B, Ruan X, Yang Y, Yuan Y, Chu K, Yan Z, Xia L. Integrating a Luminescent Porous Aromatic Framework into Indicator Papers for Facile, Rapid, and Selective Detection of Nitro Compounds. Molecules 2022; 27:molecules27196252. [PMID: 36234789 PMCID: PMC9572729 DOI: 10.3390/molecules27196252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Porous aromatic framework materials with high stability, sensitivity, and selectivity have great potential to provide new sensors for optoelectronic/fluorescent probe devices. In this work, a luminescent porous aromatic framework material (LNU-23) was synthesized via the palladium-catalyzed Suzuki cross-coupling reaction of tetrabromopyrene and 1,2-bisphenyldiborate pinacol ester. The resulting PAF solid exhibited strong fluorescence emission with a quantum yield of 18.31%, showing excellent light and heat stability. Because the lowest unoccupied molecular orbital (LUMO) of LNU-23 was higher than that of the nitro compounds, there was an energy transfer from the excited LNU-23 to the analyte, leading to the selective fluorescence quenching with a limit of detection (LOD) ≈ 1.47 × 10−5 M. After integrating the luminescent PAF powder on the paper by a simple dipping method, the indicator papers revealed a fast fluorescence response to gaseous nitrobenzene within 10 s, which shows great potential in outdoor fluorescence detection of nitro compounds.
Collapse
Affiliation(s)
- Bo Cui
- College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Changyuan Gao
- School of Environmental Science, Liaoning University, Shenyang 110036, China
| | - Jiating Fan
- College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Jinni Liu
- College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Bin Feng
- College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Xianghui Ruan
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Yajie Yang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Ye Yuan
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Kuo Chu
- School of Environmental Science, Liaoning University, Shenyang 110036, China
- Correspondence: (K.C.); (Z.Y.); (L.X.)
| | - Zhuojun Yan
- College of Chemistry, Liaoning University, Shenyang 110036, China
- Correspondence: (K.C.); (Z.Y.); (L.X.)
| | - Lixin Xia
- College of Chemistry, Liaoning University, Shenyang 110036, China
- Liaoning Key Laboratory of Chemical Additive Synthesis and Separation, Yingkou Institute of Technology, Yingkou 115014, China
- Correspondence: (K.C.); (Z.Y.); (L.X.)
| |
Collapse
|
15
|
Caroleo F, Magna G, Naitana ML, Di Zazzo L, Martini R, Pizzoli F, Muduganti M, Lvova L, Mandoj F, Nardis S, Stefanelli M, Di Natale C, Paolesse R. Advances in Optical Sensors for Persistent Organic Pollutant Environmental Monitoring. SENSORS (BASEL, SWITZERLAND) 2022; 22:2649. [PMID: 35408267 PMCID: PMC9002670 DOI: 10.3390/s22072649] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/15/2022] [Accepted: 03/25/2022] [Indexed: 05/17/2023]
Abstract
Optical chemical sensors are widely applied in many fields of modern analytical practice, due to their simplicity in preparation and signal acquisition, low costs, and fast response time. Moreover, the construction of most modern optical sensors requires neither wire connections with the detector nor sophisticated and energy-consuming hardware, enabling wireless sensor development for a fast, in-field and online analysis. In this review, the last five years of progress (from 2017 to 2021) in the field of optical chemical sensors development for persistent organic pollutants (POPs) is provided. The operating mechanisms, the transduction principles and the types of sensing materials employed in single selective optical sensors and in multisensory systems are reviewed. The selected examples of optical sensors applications are reported to demonstrate the benefits and drawbacks of optical chemical sensor use for POPs assessment.
Collapse
Affiliation(s)
- Fabrizio Caroleo
- Department of Chemical Science and Technologies, University of Rome “Tor Vergata”, 00133 Rome, Italy; (F.C.); (G.M.); (R.M.); (F.P.); (M.M.); (F.M.); (S.N.); (M.S.); (R.P.)
| | - Gabriele Magna
- Department of Chemical Science and Technologies, University of Rome “Tor Vergata”, 00133 Rome, Italy; (F.C.); (G.M.); (R.M.); (F.P.); (M.M.); (F.M.); (S.N.); (M.S.); (R.P.)
| | - Mario Luigi Naitana
- Department of Science, Roma Tre University, Via della Vasca Navale 84, 00146 Rome, Italy;
| | - Lorena Di Zazzo
- Department of Electronic Engineering, University of Rome “Tor Vergata”, 00133 Rome, Italy; (L.D.Z.); (C.D.N.)
| | - Roberto Martini
- Department of Chemical Science and Technologies, University of Rome “Tor Vergata”, 00133 Rome, Italy; (F.C.); (G.M.); (R.M.); (F.P.); (M.M.); (F.M.); (S.N.); (M.S.); (R.P.)
| | - Francesco Pizzoli
- Department of Chemical Science and Technologies, University of Rome “Tor Vergata”, 00133 Rome, Italy; (F.C.); (G.M.); (R.M.); (F.P.); (M.M.); (F.M.); (S.N.); (M.S.); (R.P.)
| | - Mounika Muduganti
- Department of Chemical Science and Technologies, University of Rome “Tor Vergata”, 00133 Rome, Italy; (F.C.); (G.M.); (R.M.); (F.P.); (M.M.); (F.M.); (S.N.); (M.S.); (R.P.)
| | - Larisa Lvova
- Department of Chemical Science and Technologies, University of Rome “Tor Vergata”, 00133 Rome, Italy; (F.C.); (G.M.); (R.M.); (F.P.); (M.M.); (F.M.); (S.N.); (M.S.); (R.P.)
| | - Federica Mandoj
- Department of Chemical Science and Technologies, University of Rome “Tor Vergata”, 00133 Rome, Italy; (F.C.); (G.M.); (R.M.); (F.P.); (M.M.); (F.M.); (S.N.); (M.S.); (R.P.)
| | - Sara Nardis
- Department of Chemical Science and Technologies, University of Rome “Tor Vergata”, 00133 Rome, Italy; (F.C.); (G.M.); (R.M.); (F.P.); (M.M.); (F.M.); (S.N.); (M.S.); (R.P.)
| | - Manuela Stefanelli
- Department of Chemical Science and Technologies, University of Rome “Tor Vergata”, 00133 Rome, Italy; (F.C.); (G.M.); (R.M.); (F.P.); (M.M.); (F.M.); (S.N.); (M.S.); (R.P.)
| | - Corrado Di Natale
- Department of Electronic Engineering, University of Rome “Tor Vergata”, 00133 Rome, Italy; (L.D.Z.); (C.D.N.)
| | - Roberto Paolesse
- Department of Chemical Science and Technologies, University of Rome “Tor Vergata”, 00133 Rome, Italy; (F.C.); (G.M.); (R.M.); (F.P.); (M.M.); (F.M.); (S.N.); (M.S.); (R.P.)
| |
Collapse
|
16
|
Xu Q, Qin Z, Bei Y, Feng S, Xu XD. A cationic amphiphilic tetraphenylethylene derivative with hydrochromic sensitive property: Applications in anti-counterfeiting ink and rewritable paper. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.01.079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|