1
|
Feng L, Zhang M, Fan Z. Current trends in colorimetric biosensors using nanozymes for detecting biotoxins (bacterial food toxins, mycotoxins, and marine toxins). ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:6771-6792. [PMID: 39319401 DOI: 10.1039/d4ay01184h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Biotoxins, predominantly bacterial food toxins, mycotoxins, and marine toxins, have emerged as major threats in the fields of seafood, other foods, feeds, and medicine. They have potential teratogenic, mutagenic, and carcinogenic effects on humans, occasionally triggering high morbidity and mortality. One of the apparent concerns relates to the increasing consumption of fast food resulting in the demand for processed food without adequate consideration of the toxins they may contain. Therefore, developing improved methods for detecting biotoxins is of paramount significance. Nanozymes, a type of nanomaterials exhibiting enzyme-like activity, are increasingly being recognized as viable alternatives to natural enzymes owing to their benefits, such as customizable design, controlled catalytic performance, excellent biocompatibility, and superior stability. The remarkable catalytic activity of nanozymes has led to their broad utilization in the development of colorimetric biosensors. This has emerged as a potent and efficient approach for rapid detection, enabling the creation of innovative colorimetric sensing methodologies through the integration of nanozymes with colorimetric sensors. In this review, recent development in nanozyme research and their application in colorimetric biosensing of biotoxins are examined with an emphasis on their characteristics and performance. The study particularly focuses on the peroxidase (POD) activity, oxidase (OXD) activity, superoxide dismutase (SOD), and catalase (CAT) activity of nanozymes in colorimetric biosensors. Ultimately, the challenges and future prospects of these assays are explored.
Collapse
Affiliation(s)
- Li Feng
- Jiyang College, Zhejiang A&F University, Zhuji, Zhejiang 311800, China.
| | - Mingcheng Zhang
- Jiyang College, Zhejiang A&F University, Zhuji, Zhejiang 311800, China.
| | - Zhiyi Fan
- Jiyang College, Zhejiang A&F University, Zhuji, Zhejiang 311800, China.
| |
Collapse
|
2
|
Yang XQ, Yu LQ, Li LF, Lv YK. Enhancing the water-resistance of MOF-199 film through incorporation of microporous organic networks for solid-phase microextraction of BTEX in aqueous environments with improved efficiency. Anal Chim Acta 2024; 1294:342293. [PMID: 38336414 DOI: 10.1016/j.aca.2024.342293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/03/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND The practical application of moisture sensitive metal organic frameworks (MOFs) in extraction technology faces challenges related to competitive adsorption and water stability. The target analytes cannot be effectively extracted under humid conditions due to the competitive moisture adsorption and/or framework structure collapse of MOFs. In this study, the microporous organic networks (MONs) were synthesized through Sonogashira coupling reaction to use for hydrophobic modification on the surface of MOF-199. RESULTS The MOF-199@MON as coating was deposited on stainless steel wires for solid-phase microextraction (SPME) of benzene series (BTEX) in aqueous environments. Under the optimal extraction conditions, the MOF-199@MON coated fiber for SPME coupled with GC-MS for the determination of BTEX gave the linear range of 0.5-500 μg L-1, the limit of detections (LODs, S/N = 3) of 0.01-0.04 μg L-1, the limit of quantifications (LOQs, S/N = 10) of 0.04-0.12 μg L-1, the enhancement factors of 3567-4878, and the intra-day, inter-day and fiber-to-fiber precisions (relative standard deviations, RSDs) of 1.0-9.8, 1.9-7.9 and 4.5-9.5 %, respectively. The developed method was successfully applied to the analysis of BTEX in water samples with the recoveries of 71.0 %-113 %. SIGNIFICANCE This work reveals the home-made SPME fibers have a long service life (the extraction efficiency of fiber decreased by only 7.26 %-13.14 % after 100 cycles). The potential of MON functionalized MOFs as effective adsorbents for the SPME of pollutants in the water environment.
Collapse
Affiliation(s)
- Xiao-Qin Yang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding, 071002, China
| | - Li-Qing Yu
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding, 071002, China.
| | - Lan-Fen Li
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding, 071002, China
| | - Yun-Kai Lv
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding, 071002, China
| |
Collapse
|
3
|
Liu Z, Yan L, Jiang Q, Huang Y, Yang C, Wang C, Lu X, Ma L, Zhang Q. Catalytic Conversion of Levulinic Acid to Pyrrolidone under Mild Conditions with Disordered Mesoporous Silica-Supported Pt Catalyst. CHEMSUSCHEM 2023; 16:e202301046. [PMID: 37643991 DOI: 10.1002/cssc.202301046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/19/2023] [Accepted: 08/28/2023] [Indexed: 08/31/2023]
Abstract
Catalytic conversion of biomass-derived levulinic acid (LA) into high-valued 5-methylpyrrolidones has become an attractive case in studies of biomass utilization. Herein, we developed a disordered mesoporous Pt/MNS catalyst for this reductive amination process under room temperature and atmospheric pressure of hydrogen. The disordered mesoporous structures in support of Pt/MNS catalyst led the formation of highly dispersed Pt species via confinement effect, providing high specific area for enhancing the catalytic sites. With the synergistic effect between highly dispersed Pt species and mesoporous structures, 5-methylpyrrolidones were successfully synthesized from biomass-derived LA and primary amines with high selectivity. Mechanism studies indicated that introducing protonic acid would promote the reductive-amination process, and enamine intermediates could be detected during the in-situ DRIFT tests. Density functional theory (DFT) calculation confirmed that the hydrogenation of enamine intermediate was more accessible than that of imide intermediates, leading the excellent performance of the Pt/MNS catalyst. This work provided a green method to produce 5-methylpyrrolidone and revealed the impact of catalyst structural characteristics on the reaction process.
Collapse
Affiliation(s)
- Ziyue Liu
- Department of Thermal Science and Energy Engineering, University of Science and Technology of China, 230026, Hefei, P. R. China
| | - Long Yan
- CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, 510640, Guangzhou, P. R. China
| | - Qian Jiang
- CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, 510640, Guangzhou, P. R. China
| | - Yuhui Huang
- Department of Thermal Science and Energy Engineering, University of Science and Technology of China, 230026, Hefei, P. R. China
| | - Chengmei Yang
- CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, 510640, Guangzhou, P. R. China
| | - Chenguang Wang
- CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, 510640, Guangzhou, P. R. China
| | - Xi Lu
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, 230026, Hefei, P. R. China
| | - Longlong Ma
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, 210096, Nanjing, P. R. China
| | - Qi Zhang
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, 210096, Nanjing, P. R. China
| |
Collapse
|
4
|
Srivastava V, Lappalainen K, Rusanen A, Morales G, Lassi U. Current Status and Challenges for Metal-Organic-Framework-Assisted Conversion of Biomass into Value-Added Chemicals. Chempluschem 2023; 88:e202300309. [PMID: 37779099 DOI: 10.1002/cplu.202300309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/03/2023]
Abstract
Owing to the abundance of availability, low cost, and environmental-friendliness, biomass waste could serve as a prospective renewable source for value-added chemicals. Nevertheless, biomass conversion into chemicals is quite challenging due to the heterogeneous nature of biomass waste. Biomass-derived chemicals are appealing sustainable solutions that can reduce the dependency on existing petroleum-based production. Metal-organic frameworks (MOFs)-based catalysts and their composite materials have attracted considerable amounts of interest in biomass conversion applications recently because of their interesting physical and chemical characteristics. Due to their tunability, the catalytic activity and selectivity of MOF-based catalyst/composite materials can be tailored by functionalizing them with a variety of functional groups to enhance biomass conversion efficiency. This review focuses on the catalytic transformation of lignocellulosic biomass into value-added chemicals by employing MOF-based catalyst/composite materials. The main focus is given to the production of the platform chemicals HMF and Furfural from the corresponding (hemi)cellulosic biomass, due to their versatility as intermediates for the production of various biobased chemicals and fuels. The effects of different experimental parameters on the conversion of biomass by MOF-based catalysts are also included. Finally, current challenges and perspectives of biomass conversion into chemicals by MOF-based catalysts are highlighted.
Collapse
Affiliation(s)
- Varsha Srivastava
- Research Unit of Sustainable Chemistry, University of Oulu, P.O. Box 4300, 90014, Oulu, Finland
| | - Katja Lappalainen
- Research Unit of Sustainable Chemistry, University of Oulu, P.O. Box 4300, 90014, Oulu, Finland
| | - Annu Rusanen
- Research Unit of Sustainable Chemistry, University of Oulu, P.O. Box 4300, 90014, Oulu, Finland
| | - Gabriel Morales
- Chemical and Environmental Engineering Group, Universidad Rey Juan Carlos, Tulipán s-n, 28933, Móstoles, Madrid, Spain
| | - Ulla Lassi
- Research Unit of Sustainable Chemistry, University of Oulu, P.O. Box 4300, 90014, Oulu, Finland
| |
Collapse
|
5
|
Ren Z, Bergmann U, Uwayezu JN, Carabante I, Kumpiene J, Lejon T, Leiviskä T. Combination of adsorption/desorption and photocatalytic reduction processes for PFOA removal from water by using an aminated biosorbent and a UV/sulfite system. ENVIRONMENTAL RESEARCH 2023; 228:115930. [PMID: 37076033 DOI: 10.1016/j.envres.2023.115930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/04/2023] [Accepted: 04/15/2023] [Indexed: 05/03/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are stable organic chemicals, which have been used globally since the 1940s and have caused PFAS contamination around the world. This study explores perfluorooctanoic acid (PFOA) enrichment and destruction by a combined method of sorption/desorption and photocatalytic reduction. A novel biosorbent (PG-PB) was developed from raw pine bark by grafting amine groups and quaternary ammonium groups onto the surface of bark particles. The results of PFOA adsorption at low concentration suggest that PG-PB has excellent removal efficiency (94.8%-99.1%, PG-PB dosage: 0.4 g/L) to PFOA in the concentration range of 10 μg/L to 2 mg/L. The PG-PB exhibited high adsorption efficiency regarding PFOA, being 456.0 mg/g at pH 3.3 and 258.0 mg/g at pH 7 with an initial concentration of 200 mg/L. The groundwater treatment reduced the total concentration of 28 PFAS from 18 000 ng/L to 9900 ng/L with 0.8 g/L of PG-PB. Desorption experiments examined 18 types of desorption solutions, and the results showed that 0.05% NaOH and a mixture of 0.05% NaOH + 20% methanol were efficient for PFOA desorption from the spent PG-PB. More than 70% (>70 mg/L in 50 mL) and 85% (>85 mg/L in 50 mL) of PFOA were recovered from the first and second desorption processes, respectively. Since high pH promotes PFOA degradation, the desorption eluents with NaOH were directly treated with a UV/sulfite system without further adjustment. The final PFOA degradation and defluorination efficiency in the desorption eluents with 0.05% NaOH + 20% methanol reached 100% and 83.1% after 24 h reaction. This study proved that the combination of adsorption/desorption and a UV/sulfite system for PFAS removal is a feasible solution for environmental remediation.
Collapse
Affiliation(s)
- Zhongfei Ren
- Chemical Process Engineering, University of Oulu, P.O. Box 4300, FIN-90014, Oulu, Finland.
| | - Ulrich Bergmann
- Department of Biochemistry and Biocenter, University of Oulu, Oulu, FIN-99020, Finland
| | - Jean Noel Uwayezu
- Waste Science and Technology, Luleå University of Technology, Luleå, Sweden
| | - Ivan Carabante
- Waste Science and Technology, Luleå University of Technology, Luleå, Sweden
| | - Jurate Kumpiene
- Waste Science and Technology, Luleå University of Technology, Luleå, Sweden
| | - Tore Lejon
- Waste Science and Technology, Luleå University of Technology, Luleå, Sweden; Department of Chemistry, UiT-The Arctic University of Norway, Norway
| | - Tiina Leiviskä
- Chemical Process Engineering, University of Oulu, P.O. Box 4300, FIN-90014, Oulu, Finland
| |
Collapse
|
6
|
Shang Y, Kan Y, Xu X. Stability and regeneration of metal catalytic sites with different sizes in Fenton-like system. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
7
|
Li Y, Huang M, Oh WD, Wu X, Zhou T. Efficient activation of sulfite for reductive-oxidative degradation of chloramphenicol by carbon-supported cobalt ferrite catalysts. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
8
|
Zeng Y, Almatrafi E, Xia W, Song B, Xiong W, Cheng M, Wang Z, Liang Y, Zeng G, Zhou C. Nitrogen-doped carbon-based single-atom Fe catalysts: Synthesis, properties, and applications in advanced oxidation processes. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
9
|
Qian Z, Wang L, Dzakpasu M, Tian Y, Ding D, Chen R, Wang G, Yang S. Spontaneous Fe III/Fe II redox cycling in single-atom catalysts: Conjugation effect and electron delocalization. iScience 2022; 26:105902. [PMID: 36691626 PMCID: PMC9860487 DOI: 10.1016/j.isci.2022.105902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/21/2022] [Accepted: 12/21/2022] [Indexed: 12/30/2022] Open
Abstract
The mechanism of spontaneous FeIII/FeII redox cycling in iron-centered single-atom catalysts (I-SACs) is often overlooked. Consequently, pathways for continuous SO4 ·-/HO⋅ generation during peroxymonosulfate (PMS) activation by I-SACs remain unclear. Herein, the evolution of the iron center and ligand in I-SACs was comprehensively investigated. I-SACs could be considered as a coordination complex created by iron and a heteroatom N-doped carbonaceous ligand. The ligand-field theory could well explain the electronic behavior of the complex, whereby electrons delocalized by the conjugation effect of the ligand were confirmed to be responsible for the FeIII/FeII redox cycle. The possible pyridinic ligand in I-SACs was demonstrably weaker than the pyrrolic ligand in FeIII reduction due to its shielding effect on delocalized π orbitals by local lone-pair electrons. The results of this study significantly advance our understanding of the mechanism of spontaneous FeIII/FeII redox cycling and radical generation pathways in the I-SACs/PMS process.
Collapse
Affiliation(s)
- Zheng Qian
- School of Environmental and Municipal Engineering, Xi’an University of Architecture and Technology, No. 13, Yanta Road, Xi’an, Shaanxi 710055, China
| | - Lingzhen Wang
- School of Environmental and Municipal Engineering, Xi’an University of Architecture and Technology, No. 13, Yanta Road, Xi’an, Shaanxi 710055, China
| | - Mawuli Dzakpasu
- School of Environmental and Municipal Engineering, Xi’an University of Architecture and Technology, No. 13, Yanta Road, Xi’an, Shaanxi 710055, China
| | - Yujia Tian
- School of Environmental and Municipal Engineering, Xi’an University of Architecture and Technology, No. 13, Yanta Road, Xi’an, Shaanxi 710055, China
| | - Dahu Ding
- College of Resources and Environmental Sciences, Nanjing Agricultural University, No. 1, Weigang, Nanjing, Jiangsu 210095, China
| | - Rongzhi Chen
- College of Resources and Environment, University of Chinese Academic of Science, 19A Yuquan Road, Beijing, 100049, China,Corresponding author
| | - Gen Wang
- School of Environmental and Municipal Engineering, Xi’an University of Architecture and Technology, No. 13, Yanta Road, Xi’an, Shaanxi 710055, China
| | - Shengjiong Yang
- School of Environmental and Municipal Engineering, Xi’an University of Architecture and Technology, No. 13, Yanta Road, Xi’an, Shaanxi 710055, China,Corresponding author
| |
Collapse
|