1
|
Hu Y, Li M, Wang Y, Xue Q, Luo X, Khan A, Zhao T, Liu Y, Wang Z, Wang Y, Cheng G. Protective effect of hot-water and ethanol-aqueous extracts from Anneslea fragrans against acetaminophen-induced acute liver injury in mice. Food Chem Toxicol 2023; 179:113973. [PMID: 37506865 DOI: 10.1016/j.fct.2023.113973] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/19/2023] [Accepted: 07/25/2023] [Indexed: 07/30/2023]
Abstract
Anneslea fragrans Wall. (AF) is an important medicinal and edible plant in China. The principal objectives of this study are to explore the hepatoprotective effect of ethanol-aqueous (AFE) and hot-water (AFW) extracts in vitro and in vivo. UPLC-ESI-MS/MS analysis showed that AFW and AFE are rich in dihydrochalcones. Both AFW and AFE significantly up-regulated the expressions of SOD, CAT and GSH, reduced the MDA content in acetaminophen (APAP)-induced HepG2 cells, and suppressed the expressions of NO, TNF-α, IL-1β, and IL-6 in LPS-induced RAW246.7 cells. In APAP-induced mice, AFW and AFE administration significantly decreased the plasma levels of AST and ALT, and improved liver tissue damage, the collagen deposition and fibrosis formation. Moreover, AFW and AFE decreased the MDA and ROS accumulations via activating Nrf2 pathway to increase the hepatic GSH contents and activities of SOD, CAT, HO-1, and NQO-1, reduced the levels of NO, TNF-α, IL-1β, and IL-6 by suppressing the JNK/p38/ERK/NF-κB pathways, and alleviated apoptosis via regulating Bcl-2, Bax, caspase-3/9 protein expressions. This study provides a new sight that AFW and AFE may have a potential natural resource for the treatment of liver injury.
Collapse
Affiliation(s)
- Yiwen Hu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Mengcheng Li
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Yongpeng Wang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Qingwang Xue
- Department of Chemistry, Liaocheng University, Liaocheng, 252059, China
| | - Xiaodong Luo
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, China
| | - Afsar Khan
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan
| | - Tianrui Zhao
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Yaping Liu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Zhengxuan Wang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China.
| | - Yudan Wang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China; Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, China.
| | - Guiguang Cheng
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China.
| |
Collapse
|
2
|
New insights into the effect of molecular crowding environment induced by dimethyl sulfoxide on the conformation and stability of G-quadruplex. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.07.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
3
|
Wang H, Bai X, Huang Y, Chen Y, Dong G, Ou T, Wu S, Xu D, Sheng C. Discovery of novel triple targeting G‑quadruplex and topoisomerase 1/2 ligands from natural products evodiamine and rutaecarpine. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
4
|
Wang M, Zhang F, Luo Y, Shuo L, Wang MQ. DPA-Substituted Carbazole Derivative as a Fluorescent Ligand for G4 DNA. Chem Biodivers 2022; 19:e202200061. [PMID: 35762741 DOI: 10.1002/cbdv.202200061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 06/17/2022] [Indexed: 11/07/2022]
Abstract
Herein a conjugated dipicolylamine/carbazole (Car-DPA) molecule was designed and synthesized to enhance the performance for the application as a G4 fluorescent ligand. This ligand has been found to display distinct and specific fluorescence enhancements in the presence of various G4 DNA structures, but limited with ssDNA or dsDNAs. The detail binding characteristics of the ligand with c-MYC G4 DNA were investigated by fluorescence, UV/VIS absorption, CD spectroscopy, and molecular docking. The present study demonstrated that Car-DPA bound to c-MYC G4s with a two-step complex formation, in which the binding mode appeared to be end-stacking. Confocal fluorescence images indicated that ligand Car-DPA could locate in nucleus, which is quite prominent from the cellular internalization studies.
Collapse
Affiliation(s)
- Ming Wang
- College of Mechanical Engineering and Automation, Shandong Institute of Petrochemical Technology, Dongying, 257001, P. R. China
| | - Feng Zhang
- College of Mechanic and Electronic Engineering, China University of Petroleum (East China), Qingdao, 266580, P. R. China.,Shengli Oil Field Petroleum Engineering Technology Research Institute Sinopec, Dongying, 257000, P. R. China
| | - Yang Luo
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Li Shuo
- School of Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, P. R. China
| | - Ming-Qi Wang
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, P. R. China
| |
Collapse
|
5
|
Jia S, Wang W, Qin S, Xie S, Zhan L, Wei Q, Lu Z, Zhou X, Chen C, Chen K, Yan S, Tan C, Mao Z, Zhou X. The development of an iridium(III) complex functionalized G-quadruplex probe for the stability of G-quadruplex and lifetime image in cytoplasm. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.05.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
6
|
Wang MQ, Li HY, Cao HW, Lang XX, Chen YS. Selective c-MYC G4 DNA recognition based on a fluorescent light-up probe with disaggregation-induced emission characteristics. J Mater Chem B 2022; 10:7772-7779. [DOI: 10.1039/d2tb01316a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
c-MYC promoter is well-known as an important oncogene, whose overexpression leads to ∼80% of all solid tumors. The four-stranded G4 present in the c-MYC promoter has been shown to play...
Collapse
|