1
|
Lu Y, Lian X, Cao Y, Yang B, Qin T, Jing X, Huang D. An enhanced tri-layer bionic periosteum with gradient structure loaded by mineralized collagen for guided bone regeneration and in-situ repair. Int J Biol Macromol 2024; 277:134148. [PMID: 39059521 DOI: 10.1016/j.ijbiomac.2024.134148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/29/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
Severe fracture non-union often accompanied by damaged or even absent periosteum remains a significant challenge. This paper presents a novel tri-layer bionic periosteum with gradient structure and mineralized collagen (MC) mimics natural periosteum for in-situ repair and bone regeneration. The construct with ultrasonic polylactic acid as the loose outer fibrous layer (UPLA), poly(ε-caprolactone) as the intermediate barrier layer (PCL-M), and poly(ε-caprolactone)/MC as the inner osteoblastic layer (PM) was prepared. The physicochemical properties of layers were investigated. UPLA/PCL-M/PM exhibited a tensile strength (3.55 ± 0.23 MPa) close to that of natural periosteum and excellent adhesion between the layers. In vitro experiments demonstrated that all layers had no toxicity to cells. UPLA promoted inward growth of mouse fibroblasts. PCL-M with a uniform pore size (2.82 ± 0.05 μm) could achieve a barrier effect against fibroblasts according to the live/dead assay. Meanwhile, PM could effectively promote cell migration with high alkaline phosphatase expression and significant mineralization of the extracellular matrix. Besides, in vivo experiments showed that UPLA/PCL-M/PM significantly promoted the regeneration of bone and early angiogenesis. Therefore, this construct with gradient structure developed in this paper would have great application potential in the efficient and high-quality treatment of severe fractures with periosteal defects.
Collapse
Affiliation(s)
- Yi Lu
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Xiaojie Lian
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China.
| | - Yu Cao
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Bo Yang
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Tingwei Qin
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Xuan Jing
- School and Hospital of Stomatology, Shanxi Medical University, Taiyuan 030600, PR China
| | - Di Huang
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030032, PR China
| |
Collapse
|
2
|
Wu Y, Sun B, Tang Y, Shen A, Lin Y, Zhao X, Li J, Monteiro MJ, Gu W. Bone targeted nano-drug and nano-delivery. Bone Res 2024; 12:51. [PMID: 39231955 PMCID: PMC11375042 DOI: 10.1038/s41413-024-00356-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/04/2024] [Accepted: 07/16/2024] [Indexed: 09/06/2024] Open
Abstract
There are currently no targeted delivery systems to satisfactorily treat bone-related disorders. Many clinical drugs consisting of small organic molecules have a short circulation half-life and do not effectively reach the diseased tissue site. This coupled with repeatedly high dose usage that leads to severe side effects. With the advance in nanotechnology, drugs contained within a nano-delivery device or drugs aggregated into nanoparticles (nano-drugs) have shown promises in targeted drug delivery. The ability to design nanoparticles to target bone has attracted many researchers to develop new systems for treating bone related diseases and even repurposing current drug therapies. In this review, we shall summarise the latest progress in this area and present a perspective for future development in the field. We will focus on calcium-based nanoparticle systems that modulate calcium metabolism and consequently, the bone microenvironment to inhibit disease progression (including cancer). We shall also review the bone affinity drug family, bisphosphonates, as both a nano-drug and nano-delivery system for bone targeted therapy. The ability to target and release the drug in a controlled manner at the disease site represents a promising safe therapy to treat bone diseases in the future.
Collapse
Affiliation(s)
- Yilun Wu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Bing Sun
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, QLD, Australia
| | - Ying Tang
- Science and Technology Innovation Centre, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Aining Shen
- Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| | - Yanlin Lin
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, QLD, Australia
| | - Xiaohui Zhao
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
| | - Jingui Li
- School of Veterinary Medicine, Jiangsu Co-innovation Centre for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Michael J Monteiro
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, QLD, Australia
| | - Wenyi Gu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, QLD, Australia.
| |
Collapse
|
3
|
Li P, Dai J, Li Y, Alexander D, Čapek J, Geis-Gerstorfer J, Wan G, Han J, Yu Z, Li A. Zinc based biodegradable metals for bone repair and regeneration: Bioactivity and molecular mechanisms. Mater Today Bio 2024; 25:100932. [PMID: 38298560 PMCID: PMC10826336 DOI: 10.1016/j.mtbio.2023.100932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/12/2023] [Accepted: 12/25/2023] [Indexed: 02/02/2024] Open
Abstract
Bone fractures and critical-size bone defects are significant public health issues, and clinical treatment outcomes are closely related to the intrinsic properties of the utilized implant materials. Zinc (Zn)-based biodegradable metals (BMs) have emerged as promising bioactive materials because of their exceptional biocompatibility, appropriate mechanical properties, and controllable biodegradation. This review summarizes the state of the art in terms of Zn-based metals for bone repair and regeneration, focusing on bridging the gap between biological mechanism and required bioactivity. The molecular mechanism underlying the release of Zn ions from Zn-based BMs in the improvement of bone repair and regeneration is elucidated. By integrating clinical considerations and the specific bioactivity required for implant materials, this review summarizes the current research status of Zn-based internal fixation materials for promoting fracture healing, Zn-based scaffolds for regenerating critical-size bone defects, and Zn-based barrier membranes for reconstituting alveolar bone defects. Considering the significant progress made in the research on Zn-based BMs for potential clinical applications, the challenges and promising research directions are proposed and discussed.
Collapse
Affiliation(s)
- Ping Li
- Center of Oral Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, South Jiangnan Road No. 366, Guangzhou 510280, China
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
- Department of Prosthodontics, School and Hospital of Stomatology, Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Jingtao Dai
- Department of Orthodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, South Jiangnan Road No. 366, Guangzhou 510280, China
| | - Yageng Li
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Dorothea Alexander
- Department of Oral and Maxillofacial Surgery, University Hospital Tübingen, Osianderstrasse 2-8, Tübingen 72076, Germany
| | - Jaroslav Čapek
- FZU – the Institute of Physics, Czech Academy of Sciences, Na Slovance 1999/2, Prague 8, 18200, Czech Republic
| | - Jürgen Geis-Gerstorfer
- Section Medical Materials Science and Technology, University Hospital Tübingen, Osianderstrasse 2-8, Tübingen 72076, Germany
| | - Guojiang Wan
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Jianmin Han
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Department of Dental Materials, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Zhentao Yu
- Institute of Advanced Wear & Corrosion Resistant and Functional Materials, Jinan University, Guangzhou 510632, China
| | - An Li
- Department of Periodontology, Stomatological Hospital, School of Stomatology, Southern Medical University, South Jiangnan Road 366, Guangzhou 510280, China
| |
Collapse
|
4
|
Zhang X, Wang H, Sun X, Zhao L, Li T, Qi X, Wang T, Zhou Q, Shi W. Development of Thermoplastic Polyurethane Films for the Replacement of Corneal Endothelial Function of Transparency Maintenance. ACS APPLIED BIO MATERIALS 2023; 6:5458-5469. [PMID: 37967451 DOI: 10.1021/acsabm.3c00681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Endothelial keratoplasty is the main surgical procedure for treating corneal endothelial dysfunction (CED), which is limited by the global shortage of donor corneas. Herein, we developed and evaluated the modified thermoplastic polyurethane (M-TPU) films with gelatin-glycidyl methacrylate to replace the corneal endothelial function and maintain corneal transparency. The films displayed comparable light transmission characteristics with normal corneas and clinically favorable mechanical properties for surgical manipulation. After surface modification, the hydrophilicity and biocompatibility of M-TPU films were significantly improved. In the rabbit CED model, the M-TPU implants exhibited firm adhesion to the exposed stromal surface. The rabbit corneal transparency and thickness could be restored completely within 1 week of M-TPU film implantation. There was no significant inflammatory reaction and immune rejection during the follow-up of 1 month. Proteomic analysis suggested that the complement inhibition, the increase of mineral absorption, and the decrease of P53 apoptosis signaling pathway and lysine degradation might be beneficial in maintaining the corneal transparency. Overall, our study demonstrated the potential of M-TPU films as artificial implants for the replacement of corneal endothelial function to restore corneal thickness and transparency.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao 266000, China
- Eye Hospital of Shandong First Medical University (Shandong Eye Hospital), Jinan 250000, China
- School of Ophthalmology, Shandong First Medical University, Jinan 250000, China
| | - Hongwei Wang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao 266000, China
| | - Xiuli Sun
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao 266000, China
| | - Long Zhao
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao 266000, China
| | - Tan Li
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao 266000, China
| | - Xia Qi
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao 266000, China
| | - Ting Wang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao 266000, China
- Eye Hospital of Shandong First Medical University (Shandong Eye Hospital), Jinan 250000, China
- School of Ophthalmology, Shandong First Medical University, Jinan 250000, China
| | - Qingjun Zhou
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao 266000, China
| | - Weiyun Shi
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao 266000, China
- Eye Hospital of Shandong First Medical University (Shandong Eye Hospital), Jinan 250000, China
- School of Ophthalmology, Shandong First Medical University, Jinan 250000, China
| |
Collapse
|
5
|
Nie R, Zhang QY, Tan J, Feng ZY, Huang K, Sheng N, Jiang YL, Song YT, Zou CY, Zhao LM, Li HX, Wang R, Zhou XL, Hu JJ, Wu CY, Li-Ling J, Xie HQ. EGCG modified small intestine submucosa promotes wound healing through immunomodulation. COMPOSITES PART B: ENGINEERING 2023; 267:111005. [DOI: 10.1016/j.compositesb.2023.111005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2024]
|
6
|
Li W, Wu Y, Zhang X, Wu T, Huang K, Wang B, Liao J. Self-healing hydrogels for bone defect repair. RSC Adv 2023; 13:16773-16788. [PMID: 37283866 PMCID: PMC10240173 DOI: 10.1039/d3ra01700a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/24/2023] [Indexed: 06/08/2023] Open
Abstract
Severe bone defects can be caused by various factors, such as tumor resection, severe trauma, and infection. However, bone regeneration capacity is limited up to a critical-size defect, and further intervention is required. Currently, the most common clinical method to repair bone defects is bone grafting, where autografts are the "gold standard." However, the disadvantages of autografts, including inflammation, secondary trauma and chronic disease, limit their application. Bone tissue engineering (BTE) is an attractive strategy for repairing bone defects and has been widely researched. In particular, hydrogels with a three-dimensional network can be used as scaffolds for BTE owing to their hydrophilicity, biocompatibility, and large porosity. Self-healing hydrogels respond rapidly, autonomously, and repeatedly to induced damage and can maintain their original properties (i.e., mechanical properties, fluidity, and biocompatibility) following self-healing. This review focuses on self-healing hydrogels and their applications in bone defect repair. Moreover, we discussed the recent progress in this research field. Despite the significant existing research achievements, there are still challenges that need to be addressed to promote clinical research of self-healing hydrogels in bone defect repair and increase the market penetration.
Collapse
Affiliation(s)
- Weiwei Li
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu 610041 China
| | - Yanting Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu 610041 China
| | - Xu Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu 610041 China
| | - Tingkui Wu
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University Chengdu 610041 China
| | - Kangkang Huang
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University Chengdu 610041 China
| | - Beiyu Wang
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University Chengdu 610041 China
| | - Jinfeng Liao
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu 610041 China
| |
Collapse
|
7
|
Fu T, Zhu Q, Lou F, Cai S, Peng S, Xiao J. Advanced glycation end products inhibit the osteogenic differentiation potential of adipose-derived stem cells in mice through autophagy. Cell Signal 2023; 108:110694. [PMID: 37141927 DOI: 10.1016/j.cellsig.2023.110694] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/06/2023]
Abstract
BACKGROUND Diabetes mellitus (DM) microenvironment will accelerate the accumulation of Advanced glycation end products (AGEs), adipose-derived stem cells (ASCs) have poor osteogenesis in the DM microenvironment. Studies suggest autophagy plays a vital role in osteogenesis, but the mechanism of the altered osteogenic potential of ASCs has not been elucidated. Bone tissue engineering by ASCs is widely used in the treatment of bone defects with diabetic osteoporosis (DOP). Therefore, it is meaningful to explore the effect of AGEs on the osteogenic differentiation potential of ASCs and its potential mechanism for the repair of bone defects in DOP. MATERIALS AND METHODS ASCs in C57BL/6 mice were isolated, cultured, then treated with AGEs, subsequently, cell viability and proliferation were detected through Cell Counting Kit 8 assay. 3-Methyladenine (3-MA), an autophagic inhibitor used to inhibit autophagic levels. Rapamycin (Rapa), an autophagy activator that further activated autophagy levels by inhibiting mTOR.The osteogenesis and autophagy changes of ASCs were analyzed by flow cytometry, qPCR, western blot, immunofluorescence, alkaline phosphatase (ALP) and alizarin red staining. RESULTS AGEs reduced the autophagy level and osteogenic potential of ASCs. After 3-MA reduced autophagy, the osteogenic potential of ASCs also decreased. AGEs co-treatment with 3-MA, the levels of osteogenesis and autophagy reduced more significantly. When autophagy was activated by Rapa, it was found that it could rescue the reduced osteogenic potential of AGEs. CONCLUSIONS AGEs reduce the osteogenic differentiation potential of ASCs through autophagy, and may provide a reference for the treatment of bone defects with diabetes osteoporosis.
Collapse
Affiliation(s)
- Ting Fu
- Department of Oral Implantology, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China; Orofacial Reconstruction and Regeneration Laboratory, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China
| | - Qiang Zhu
- Department of Oral Implantology, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China; Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China
| | - Fangzhi Lou
- Department of Oral Implantology, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China; Orofacial Reconstruction and Regeneration Laboratory, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China
| | - Shuyu Cai
- Department of Oral Implantology, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China; Orofacial Reconstruction and Regeneration Laboratory, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China
| | - Shuanglin Peng
- Department of Oral Implantology, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China; Orofacial Reconstruction and Regeneration Laboratory, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China
| | - Jingang Xiao
- Department of Oral Implantology, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China; Orofacial Reconstruction and Regeneration Laboratory, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China; Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China.
| |
Collapse
|
8
|
Zhang QY, Tan J, Nie R, Song YT, Zhou XL, Feng ZY, Huang K, Zou CY, Yuan QJ, Zhao LM, Zhang XZ, Jiang YL, Liu LM, Li-Ling J, Xie HQ. Acceleration of wound healing by composite small intestinal submucosa hydrogels through immunomodulation. COMPOSITES PART B: ENGINEERING 2023; 254:110550. [DOI: 10.1016/j.compositesb.2023.110550] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2024]
|