1
|
Twitty A, Barnes H, Levy N, Mizrahi Y, Geva Y, Phillip Y, Dayan FE. The natural herbicide rhein targets photosystem I. Sci Rep 2024; 14:32109. [PMID: 39738507 DOI: 10.1038/s41598-024-83891-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 12/18/2024] [Indexed: 01/02/2025] Open
Abstract
The natural anthraquinone rhein has been identified as a novel herbicide with a potentially new mode of action using a generative AI system for functional molecules discovery. Its herbicidal activity was light-dependent and resulted in rapid burndown symptoms on leaves of treated plants. Rhein interferes with photosynthesis by acting as an electron diverter at the level of photosystem I (PSI). The redox potential of rhein suggests that it accepts electrons between P700 and NADP+ of PSI. This is consistent with the redox potential of rhein that enables it to accept electrons from flavoproteins. Ferredoxin-NAPD+ reductase is a flavoprotein with a redox potential near that of rhein. Thus, it is currently hypothesized that rhein acts as an electron acceptor at or near the PSI Ferredoxin-NAPD+ reductase to form a radical and generate reactive oxygen species that drive the light-dependent herbicidal effect which is observed in treated plants from greenhouse trials.
Collapse
Affiliation(s)
- Alyssa Twitty
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, USA
| | - Hamlin Barnes
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, USA
| | - Noa Levy
- Agrematch Ltd., 10 Prof. Menahem Plaut St., Rehovot Science Park, Rehovot, Israel
| | - Yaniv Mizrahi
- Agrematch Ltd., 10 Prof. Menahem Plaut St., Rehovot Science Park, Rehovot, Israel
| | - Yosef Geva
- Agrematch Ltd., 10 Prof. Menahem Plaut St., Rehovot Science Park, Rehovot, Israel
| | - Yael Phillip
- Agrematch Ltd., 10 Prof. Menahem Plaut St., Rehovot Science Park, Rehovot, Israel
| | - Franck E Dayan
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
2
|
Jia Y, Yang D, Wang W, Hu K, Yan M, Zhang L, Gao L, Lu Y. Recent advances in pharmaceutical cocrystals of theophylline. NATURAL PRODUCTS AND BIOPROSPECTING 2024; 14:53. [PMID: 39276287 PMCID: PMC11401818 DOI: 10.1007/s13659-024-00470-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/04/2024] [Indexed: 09/16/2024]
Abstract
Currently, cocrystallization is a promising strategy for tailoring the physicochemical properties of active pharmaceutical ingredients. Theophylline, an alkaloid and the most primary metabolite of caffeine, is a readily available compound found in tea and coffee. It functions primarily as a bronchodilator and respiratory stimulant, making it a mainstay treatment for lung diseases like asthma. Theophylline's additional potential benefits, including anti-inflammatory and anticancer properties, and its possible role in neurological disorders, have garnered significant research interest. Cocrystal formation presents a viable approach to improve the physicochemical properties of theophylline and potentially mitigate its toxic effects. This review comprehensively explores several successful studies that utilized cocrystallization to favorably alter the physicochemical properties of theophylline or its CCF. Notably, cocrystals can not only enhance the solubility and bioavailability of theophylline but also exhibit synergistic effects with other APIs. The review further delves into the hydrogen bonding sites within the theophylline structure and the hydrogen bonding networks observed in cocrystal structures.
Collapse
Affiliation(s)
- Yanxiao Jia
- Beijing City Key Laboratory of Polymorphic Drugs, Center of Pharmaceutical Polymorphs, Institute of Materia Medica, Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Dezhi Yang
- Beijing City Key Laboratory of Polymorphic Drugs, Center of Pharmaceutical Polymorphs, Institute of Materia Medica, Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Wenwen Wang
- Beijing City Key Laboratory of Polymorphic Drugs, Center of Pharmaceutical Polymorphs, Institute of Materia Medica, Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Kun Hu
- Beijing City Key Laboratory of Polymorphic Drugs, Center of Pharmaceutical Polymorphs, Institute of Materia Medica, Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Min Yan
- Prescription Laboratory of Xinjiang Traditional Uyghur Medicine, Xinjiang Institute of Traditional Uyghur Medicine, Urumqi, 830000, People's Republic of China
| | - Li Zhang
- Beijing City Key Laboratory of Polymorphic Drugs, Center of Pharmaceutical Polymorphs, Institute of Materia Medica, Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing, 100050, People's Republic of China.
- Prescription Laboratory of Xinjiang Traditional Uyghur Medicine, Xinjiang Institute of Traditional Uyghur Medicine, Urumqi, 830000, People's Republic of China.
| | - Li Gao
- Prescription Laboratory of Xinjiang Traditional Uyghur Medicine, Xinjiang Institute of Traditional Uyghur Medicine, Urumqi, 830000, People's Republic of China.
| | - Yang Lu
- Beijing City Key Laboratory of Polymorphic Drugs, Center of Pharmaceutical Polymorphs, Institute of Materia Medica, Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing, 100050, People's Republic of China.
| |
Collapse
|
3
|
Wang Z, Li S, Li Q, Wang W, Liu M, Yang S, Zhang L, Yang D, Du G, Lu Y. A Novel Cocrystal of Daidzein with Piperazine to Optimize the Solubility, Permeability and Bioavailability of Daidzein. Molecules 2024; 29:1710. [PMID: 38675529 PMCID: PMC11052268 DOI: 10.3390/molecules29081710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
It is well known that daidzein has various significant medicinal values and health benefits, such as anti-oxidant, anti-inflammatory, anti-cancer, anti-diabetic, cholesterol lowering, neuroprotective, cardioprotective and so on. To our disappointment, poor solubility, low permeability and inferior bioavailability seriously limit its clinical application and market development. To optimize the solubility, permeability and bioavailability of daidzein, the cocrystal of daidzein and piperazine was prepared through a scientific and reasonable design, which was thoroughly characterized by single-crystal X-ray diffraction, powder X-ray diffraction, Fourier transform infrared spectroscopy, differential scanning calorimetry and thermogravimetric analysis. Combining single-crystal X-ray diffraction analysis with theoretical calculation, detailed structural information on the cocrystal was clarified and validated. In addition, a series of evaluations on the pharmacogenetic properties of the cocrystal were investigated. The results indicated that the cocrystal of daidzein and piperazine possessed the favorable stability, increased solubility, improved permeability and optimized bioavailability of daidzein. Compared with the parent drug, the formation of cocrystal, respectively, resulted in 3.9-, 3.1-, 4.9- and 60.8-fold enhancement in the solubility in four different media, 4.8-fold elevation in the permeability and 3.2-fold in the bioavailability of daidzein. Targeting the pharmaceutical defects of daidzein, the surprising elevation in the solubility, permeability and bioavailability of daidzein was realized by a clever cocrystal strategy, which not only devoted assistance to the market development and clinical application of daidzein but also paved a new path to address the drug-forming defects of insoluble drugs.
Collapse
Affiliation(s)
- Zhipeng Wang
- Beijing City Key Laboratory of Polymorphic Drugs, Center of Pharmaceutical Polymorphs, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (Z.W.); (S.L.); (Q.L.); (W.W.); (M.L.); (S.Y.)
| | - Shuang Li
- Beijing City Key Laboratory of Polymorphic Drugs, Center of Pharmaceutical Polymorphs, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (Z.W.); (S.L.); (Q.L.); (W.W.); (M.L.); (S.Y.)
| | - Qi Li
- Beijing City Key Laboratory of Polymorphic Drugs, Center of Pharmaceutical Polymorphs, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (Z.W.); (S.L.); (Q.L.); (W.W.); (M.L.); (S.Y.)
| | - Wenwen Wang
- Beijing City Key Laboratory of Polymorphic Drugs, Center of Pharmaceutical Polymorphs, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (Z.W.); (S.L.); (Q.L.); (W.W.); (M.L.); (S.Y.)
| | - Meiru Liu
- Beijing City Key Laboratory of Polymorphic Drugs, Center of Pharmaceutical Polymorphs, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (Z.W.); (S.L.); (Q.L.); (W.W.); (M.L.); (S.Y.)
| | - Shiying Yang
- Beijing City Key Laboratory of Polymorphic Drugs, Center of Pharmaceutical Polymorphs, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (Z.W.); (S.L.); (Q.L.); (W.W.); (M.L.); (S.Y.)
| | - Li Zhang
- Beijing City Key Laboratory of Polymorphic Drugs, Center of Pharmaceutical Polymorphs, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (Z.W.); (S.L.); (Q.L.); (W.W.); (M.L.); (S.Y.)
| | - Dezhi Yang
- Beijing City Key Laboratory of Polymorphic Drugs, Center of Pharmaceutical Polymorphs, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (Z.W.); (S.L.); (Q.L.); (W.W.); (M.L.); (S.Y.)
| | - Guanhua Du
- Beijing City Key Laboratory of Drug Target and Screening Research, National Center for Pharmaceutical Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China;
| | - Yang Lu
- Beijing City Key Laboratory of Polymorphic Drugs, Center of Pharmaceutical Polymorphs, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (Z.W.); (S.L.); (Q.L.); (W.W.); (M.L.); (S.Y.)
| |
Collapse
|
4
|
He Y, Chen S, Li M, Gao Y, Feng H, Umar Q, Yin D, Feng Y. Novel co-crystal of 3-methylcinnamic acid with berberine (1:1): synthesis, characterization, and intestinal absorption property. Drug Dev Ind Pharm 2023; 49:617-627. [PMID: 37725481 DOI: 10.1080/03639045.2023.2259460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 09/05/2023] [Indexed: 09/21/2023]
Abstract
OBJECTIVE To synthesis a novel 'Pharmaceutical Cocrystal' of berberine (BBR) with coformer 3-methylcinnamic acid (3MCA) for increasing its solubility and intestinal absorption property. SIGNIFICANCE BBR-HCl has poor liposolubility, difficulty in penetrating the cell membrane and absorption in the gastrointestinal tract, low bioavailability, and limited clinical application. A new cocrystal is formed by the interaction between 3-MCA and BBR through molecular interaction, which improves the physicochemical properties, intestinal absorption property, and hygroscopicity. METHODS The solvent evaporation method was used to synthesize BCR-3MCA cocrystal. The physicochemical properties of the crystals were confirmed by different spectral techniques, i.e. by X-ray diffraction (PXRD, SXRD), thermogravimetry and differential thermal analysis (DSC, TGA), and scanning electron microscopy (SEM). Hygroscopicity of the cocrystal was evaluated by dynamic water vapor sorption (DVS). The intestinal absorption property was evaluated by the Ussing chamber system. RESULTS BBR and 3MCA can be directly self-assembled into uniform co-crystal by hydrogen bonds and π-π stacking interactions. Compared with BBR-HCl, the solubility of BBR-3MCA cocrystal in polar solvents of water, methanol, ethanol, and isopropanol increased by 13.9, 1.5, 4.7, and 15.8 times, respectively. The apparent absorption and the absorption rate constants were increased by 7.7 and 5.6 times, respectively. Surprisingly, BBR-3MCA co-crystal almost had no hygroscopicity. CONCLUSION The absolute molecular structure of the co-crystal was further confirmed by single crystal X-ray diffraction. The hydrogen bonds drove the formation of X-like one-dimensional unit. Compared to the BBR-HCl, BBR-3MCA cocrystal displayed superior dissolution and solubility performance, improved physical-chemical properties and significantly improved intestinal absorption.
Collapse
Affiliation(s)
- Yong He
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, China
| | - Shiyun Chen
- Analytical & Testing Center, Hefei University, Hefei, China
| | - Mengmeng Li
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Yonghao Gao
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, China
| | - Huiyi Feng
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, China
| | - Qasim Umar
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, China
| | - Dengke Yin
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, China
| | - Yisi Feng
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, China
| |
Collapse
|
5
|
Kravets K, Kravets M, Kędra K, Danylyuk O. P-Sulfonatocalix[8]arene coordinates sodium cations and forms host-guest complex with berberine: insight from crystal structure. Supramol Chem 2023. [DOI: 10.1080/10610278.2022.2161901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Kateryna Kravets
- Institute of Physical Chemistry Polish Academy of Sciences, Warsaw, Poland
| | - Mykola Kravets
- Institute of Physical Chemistry Polish Academy of Sciences, Warsaw, Poland
| | - Karolina Kędra
- Institute of Physical Chemistry Polish Academy of Sciences, Warsaw, Poland
| | - Oksana Danylyuk
- Institute of Physical Chemistry Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
6
|
Yang D, Wang L, Yuan P, An Q, Su B, Yu M, Chen T, Hu K, Zhang L, Lu Y, Du G. Cocrystal virtual screening based on the XGBoost machine learning model. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Insight into the Formation of Cocrystal and Salt of Tenoxicam from the Isomer and Conformation. Pharmaceutics 2022; 14:pharmaceutics14091968. [PMID: 36145717 PMCID: PMC9504695 DOI: 10.3390/pharmaceutics14091968] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/05/2022] [Accepted: 09/15/2022] [Indexed: 11/29/2022] Open
Abstract
Tenoxicam (TNX) is a new non-steroidal anti-inflammatory drug that shows a superior anti-inflammatory effect and has the advantages of a long half-life period, a fast onset of action, a small dose, complete metabolism, and good tolerance. Some compounds often have tautomerism, and different tautomers exist in different crystalline forms. TNX is such a compound and has three tautomers. TNX always exists as the zwitterionic form in cocrystals. When the salt is formed, TNX exists in the enol form, which exhibits two conformations depending on whether a proton is gained or lost. Currently, the crystal structure of the keto form is not in the Cambridge Structural Database (CSD). Based on the analysis of existing crystal structures, we derived a simple rule for what form of TNX exists according to the pKa value of the cocrystal coformer (CCF) and carried out validation tests using three CCFs with different pKa values, including p-aminosalicylic acid (PAS), 3,5-dinitrobenzoic acid (DNB), and 2,6-dihydroxybenzoic acid (DHB). The molecular surface electrostatic potential (MEPS) was combined with the pKa rule to predict the interaction sites. Finally, two new cocrystals (TNX-PAS and TNX-DNB) and one salt (TNX-DHB) of TNX were obtained as expected. The differences between the cocrystals and salt were distinguished by X-ray diffraction, vibration spectra, thermal analysis, and dissolution measurements. To further understand the intermolecular interactions in these cocrystals and salt, the lattice energy and energy decomposition analysis (EDA) were used to explain them from the perspective of energy. The results suggest that the melting point of the CCF determines that of the cocrystal or salt, the solubility of the CCF itself plays an important role, and the improvement of the solubility after salt formation is not necessarily better than that of API or its cocrystals.
Collapse
|
8
|
Modulation of Solid-State Chemical Stability of Gabapentin by Pyridinecarboxylic Acid. Pharm Res 2022; 39:2305-2314. [PMID: 35794398 DOI: 10.1007/s11095-022-03326-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/27/2022] [Indexed: 10/17/2022]
Abstract
PURPOSE Gabapentin (GBP) is an anticonvulsant drug with poor chemical stability that is particularly sensitive to heat and mechanical stress, which can lead to intramolecular lactamization. The purpose of this study was to enhance the chemical stability of GBP by cocrystallization with organic acids. METHOD Two novel multicomponent crystals, GBP-2,6-pyridinedicarboxylic acid salt (GBP-2,6PDA salt) and GBP-2,5-pyridinedicarboxylic acid cocrystal (GBP-2,5PDA cocrystal) were synthesized and characterized by various solid-state analytical techniques. The degradation behavior of GBP, GBP-2,6PDA salt and GBP-2,5PDA cocrystals were evaluated under thermal and mechanical stresses. RESULT Under thermal and mechanical stresses, GBP-2,5PDA cocrystals were found to undergo severer degradation than GBP-2,6PDA salt and neat GBP. GBP-2,6PDA salt exhibited superior chemical stability compared to the others. Furthermore, the crystal structure revealed that the order of atomic distance between the carboxyl group (C7) and amino group (N12) of GBP is as follows: GBP-2,5PDA cocrystal < GBP < GBP-2,6PDA salt, which is consistent with the chemical stability of GBP in different solid forms. Therefore, we believe that the distance between C7 and N12, the reaction active sites leading to dehydrative condensation of GBP, is a key factor determining the chemical stability of GBP in the solid state. CONCLUSIONS These results provide a potential method to improve the chemical stability of GBP during the manufacturing process and storage.
Collapse
|
9
|
Two Novel Co-Crystals of Naproxen: Comparison of Stability, Solubility and Intermolecular Interaction. Pharmaceuticals (Basel) 2022; 15:ph15070807. [PMID: 35890107 PMCID: PMC9317554 DOI: 10.3390/ph15070807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 11/17/2022] Open
Abstract
Two novel co-crystals of naproxen (NPX) were designed and prepared at a stoichiometric ratio of 1:1, namely, naproxen–caprolactam (NPX–CPL) and naproxen–oxymatrine (NPX–OMT). The characteristics of the co-crystals were evaluated in terms of stability and solubility studies. In terms of solubility, in four kinds of solvent systems with different pH, the solubility of NPX–OMT was significantly improved compared with that of NPX, whereas the NPX–CPL showed advantages in acidic solvent systems, indicating that the co-crystals can be applied to concoct preparations depending on therapeutic purposes. Furthermore, the experimental results of the thermal analysis showed that the co-crystal NPX–OMT had better thermal stability than the co-crystal NPX–CPL. Finally, as a complement to the single crystal X-ray diffraction (SC XRD) method, the theoretical calculation based on density functional theory (DFT) was also used to reveal the intermolecular interaction of the co-crystals at the molecular level and visually display the difference between them.
Collapse
|
10
|
Cocrystals of Praziquantel with Phenolic Acids: Discovery, Characterization, and Evaluation. Molecules 2022; 27:molecules27062022. [PMID: 35335384 PMCID: PMC8956121 DOI: 10.3390/molecules27062022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/17/2022] [Accepted: 03/17/2022] [Indexed: 11/17/2022] Open
Abstract
Solvent-assisted grinding (SAG) and solution slow evaporation (SSE) methods are generally used for the preparation of cocrystals. However, even by using the same solvent, active pharmaceutical ingredient (API), and cocrystal coformer (CCF), the cocrystals prepared using the two methods above are sometimes inconsistent. In the present study, in the cocrystal synthesis of praziquantel (PRA) with polyhydroxy phenolic acid, including protocatechuic acid (PA), gallic acid (GA), and ferulic acid (FA), five different cocrystals were prepared using SAG and SSE. Three of the cocrystals prepared using the SAG method have the structural characteristics of carboxylic acid dimer, and two cocrystals prepared using the SSE method formed cocrystal solvates with the structural characteristics of carboxylic acid monomer. For phenolic acids containing only one phenolic hydroxyl group (ferulic acid), when preparing cocrystals with PRA by using SAG and SSE, the same product was obtained. In addition, the weak molecular interactions that were observed in the cocrystal are explained at the molecular level by using theoretical calculation methods. Finally, the in vitro solubility of cocrystals without crystal solvents and in vivo bioavailability of PRA-FA were evaluated to further understand the influence on the physicochemical properties of API for the introduction of CCF.
Collapse
|
11
|
Zhang T, Yang S, Zhang B, Yang D, Lu Y, Du G. Insights Into the Properties of Amygdalin Solvatomorphs: X-ray Structures, Intermolecular Interactions, and Transformations. ACS OMEGA 2022; 7:8906-8918. [PMID: 35309495 PMCID: PMC8928157 DOI: 10.1021/acsomega.1c07314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
Amygdalin is an effective component of the traditional Chinese medicine bitter almond, peach kernel, and plum kernel. It has pharmacological effects, such as relieving cough and asthma. In a study of the crystallization process, we found a series of solvatomorphs of amygdalin (including hydrate). Interestingly, in the structures of these solvatomorphs, the same characteristic structural fragment is present, that is, amygdalin dihydrate. Multiple analytical techniques were used to characterize the solvatomorphs, such as X-ray diffraction and thermogravimetry-mass spectrometry. Void calculations of water and solvent were used to analyze the occupied volume in the unit cell of the corresponding solvatomorphs to explain the formation mechanism of the solvatomorphs from the perspective of space. To elucidate the formation mechanism of the solvatomorphs with this kind of characteristic structure from the perspective of energy, theoretical calculations based on density functional theory were applied, such as energy decomposition and molecular electrostatic potential surfaces. In addition, the transformation phenomenon between these solvatomorphs and amygdalin was identified, and the transformation pathways are described in detail.
Collapse
Affiliation(s)
- Tingting Zhang
- Beijing
City Key Laboratory of Polymorphic Drugs, Center of Pharmaceutical
Polymorphs, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Shiying Yang
- Beijing
City Key Laboratory of Polymorphic Drugs, Center of Pharmaceutical
Polymorphs, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Baoxi Zhang
- Beijing
City Key Laboratory of Polymorphic Drugs, Center of Pharmaceutical
Polymorphs, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Dezhi Yang
- Beijing
City Key Laboratory of Polymorphic Drugs, Center of Pharmaceutical
Polymorphs, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yang Lu
- Beijing
City Key Laboratory of Polymorphic Drugs, Center of Pharmaceutical
Polymorphs, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Guanhua Du
- Beijing
City Key Laboratory of Drug Target Identification and Drug Screening,
Institute of Materia Medica, Chinese Academy
of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
12
|
Li J, Li J, Liu H, Zhang L, Lu Y, Zhou Z. Structural landscape investigations on bendable plastic crystals of isonicotinamide polymorphs. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.03.090] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|