1
|
Xiong JB, Wang SH, Zhou YJ, Xiong ZQ, Yu YJ, Zhang ZK, Yang YM, Zhang SS, Chen SR, Wang Z. Bidirectional enhancement of output performance of nanogenerators by M-COFs materials. Sci Rep 2024; 14:25448. [PMID: 39455808 PMCID: PMC11511989 DOI: 10.1038/s41598-024-77287-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 10/21/2024] [Indexed: 10/28/2024] Open
Abstract
The emergence of nanogenerators, which have the ability to capture mechanical energy from the environment and to collect and transmit tiny energy, is rapidly becoming a hot research topic. The performance of electrode materials is the key to the efficiency of nanogenerators. Covalent organic skeletons (COFs), a class of crystalline organic porous materials with the advantages of large specific surface area, high porosity, tunable structure, and flexible tailorability, have very significant advantages in being used as nanogenerator materials. In this paper, we synthesised two COF materials to investigate the effect of the introduction of active metals on the friction power generation performance of COFs without changing their topology, COF-2 containing zinc ions is capable of generating a short-circuit current of 107.5 µA during friction. The porous structure increases the effective contact area to form a larger charge density, and the introduction of metal ions can accelerate the charge separation and transport. The two bidirectional synergistic effects of the materials significantly improve the output performance of the nanogenerator, and a simple and efficient method is explored for the enhancement of the output performance of COF-based triboelectric nanogenerators.
Collapse
Affiliation(s)
- Jia-Bin Xiong
- School of Material and Chemical Engineering, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou, 450007, China.
| | - Shi-Hui Wang
- School of Material and Chemical Engineering, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou, 450007, China
| | - Yong-Juan Zhou
- School of Material and Chemical Engineering, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou, 450007, China
| | - Zhang-Qi Xiong
- School of Material and Chemical Engineering, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou, 450007, China
| | - Ya-Jie Yu
- School of Material and Chemical Engineering, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou, 450007, China
| | - Zi-Kun Zhang
- School of Material and Chemical Engineering, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou, 450007, China
| | - Yi-Ming Yang
- School of Material and Chemical Engineering, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou, 450007, China
| | - Shan-Shan Zhang
- School of Material and Chemical Engineering, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou, 450007, China
| | - Si-Ru Chen
- School of Material and Chemical Engineering, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou, 450007, China.
| | - Zhuo Wang
- School of Material and Chemical Engineering, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou, 450007, China.
| |
Collapse
|
2
|
Zhang Y, Wang G. A hydroxyl-rich covalent organic framework for the precisely selective fluorescence sensing of explosives with high sensitivity. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 318:124483. [PMID: 38788503 DOI: 10.1016/j.saa.2024.124483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/07/2024] [Accepted: 05/18/2024] [Indexed: 05/26/2024]
Abstract
Covalent organic Frameworks (COFs) have become a new platform for functional research and material design. A novel covalent organic skeleton (DHB-TFP COF) was synthesized from 2-hydroxybenzene-1,3,5-tricarbaldehyde and 3,3'-dihydroxybenzidine using Schiff base reaction. DHB-TFP COF is a highly stable porous crystalline material and exhibits exceptional thermal and chemical resistance. DHB-TFP COF exhibited a selective and sensitive "turn-off" fluorescence response to 4-NP in ethanol, and TNP not only significantly quenched the fluorescence of DHB-TFP COF but also caused the obvious red-shift. The fluorescence intensity of DHB-TFP COF exhibited a linear correlation with the concentration of 4-NP with a detection limit of 0.40 μM. Furthermore, the maximum fluorescence peak observed for DHB-TFP COF demonstrated a linear relationship with TNP concentration with a detection limit of 11.15 μM. DHB-TFP COF exhibited satisfactory recovery in the detection of 4-NP and TNP in actual water sample indicating its practical application potential. The O atoms of rich hydroxyl and N atoms of C = N present on the surface of DHB-TFP COF scaffold can establish strong hydrogen bonds with 4-NP and TNP, facilitating their mutual interaction. The spectra studies indicated that the fluorescence quenching mechanism can be attributed to the absorption competitive quenching (ACQ) and fluorescence resonance energy transfer (FRET) mechanism. This study not only proposed the approach for synthesizing novel structured organic frameworks, but also developed a highly selective and sensitive fluorescence chemical sensor for identifying and detecting 4-NP and TNP.
Collapse
Affiliation(s)
- Yu Zhang
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Faculty of Chemistry, Northeast Normal University, Changchun 130024, PR China
| | - Guang Wang
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Faculty of Chemistry, Northeast Normal University, Changchun 130024, PR China.
| |
Collapse
|
3
|
Wang K, Wu Z, Ji N, Wang T, Gu Y, Zhao Z, Guo Y, Wang X, Jia Z, Tan B. Robust Thiazole-Linked Covalent Organic Frameworks for Water Sensing with High Selectivity and Sensitivity. Molecules 2024; 29:1677. [PMID: 38611956 PMCID: PMC11013684 DOI: 10.3390/molecules29071677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/04/2024] [Accepted: 04/07/2024] [Indexed: 04/14/2024] Open
Abstract
The rational design of covalent organic frameworks (COFs) with hydrochromic properties is of significant value because of the facile and rapid detection of water in diverse fields. In this report, we present a thiazole-linked COF (TZ-COF-6) sensor with a large surface area, ultrahigh stability, and excellent crystallinity. The sensor was synthesized through a simple three-component reaction involving amine, aldehyde, and sulfur. The thiazole and methoxy groups confer strong basicity to TZ-COF-6 at the nitrogen sites, making them easily protonated reversibly by water. Therefore, TZ-COF-6 displayed color change visible to the naked eye from yellow to red when protonated, along with a red shift in absorption in the ultraviolet-visible diffuse reflectance spectra (UV-vis DRS) when exposed to water. Importantly, the water-sensing process was not affected by polar organic solvents, demonstrating greater selectivity and sensitivity compared to other COF sensors. Therefore, TZ-COF-6 was used to detect trace amounts of water in organic solvents. In strong polar solvents, such as N,N-dimethyl formamide (DMF) and ethanol (EtOH), the limit of detection (LOD) for water was as low as 0.06% and 0.53%, respectively. Even after 8 months of storage and 15 cycles, TZ-COF-6 retained its original crystallinity and detection efficiency, displaying high stability and excellent cycle performance.
Collapse
Affiliation(s)
- Kewei Wang
- Department of Chemistry and Chemical Engineering, Shanxi Datong University, Datong 037009, China; (Z.W.); (N.J.); (T.W.); (Y.G.); (Z.Z.); (Y.G.)
| | - Zhaoxia Wu
- Department of Chemistry and Chemical Engineering, Shanxi Datong University, Datong 037009, China; (Z.W.); (N.J.); (T.W.); (Y.G.); (Z.Z.); (Y.G.)
| | - Na Ji
- Department of Chemistry and Chemical Engineering, Shanxi Datong University, Datong 037009, China; (Z.W.); (N.J.); (T.W.); (Y.G.); (Z.Z.); (Y.G.)
| | - Tingxia Wang
- Department of Chemistry and Chemical Engineering, Shanxi Datong University, Datong 037009, China; (Z.W.); (N.J.); (T.W.); (Y.G.); (Z.Z.); (Y.G.)
| | - Yongxin Gu
- Department of Chemistry and Chemical Engineering, Shanxi Datong University, Datong 037009, China; (Z.W.); (N.J.); (T.W.); (Y.G.); (Z.Z.); (Y.G.)
| | - Zhixiang Zhao
- Department of Chemistry and Chemical Engineering, Shanxi Datong University, Datong 037009, China; (Z.W.); (N.J.); (T.W.); (Y.G.); (Z.Z.); (Y.G.)
| | - Yong Guo
- Department of Chemistry and Chemical Engineering, Shanxi Datong University, Datong 037009, China; (Z.W.); (N.J.); (T.W.); (Y.G.); (Z.Z.); (Y.G.)
| | - Xiaoyan Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China;
| | - Zhifang Jia
- Department of Chemistry and Chemical Engineering, Shanxi Datong University, Datong 037009, China; (Z.W.); (N.J.); (T.W.); (Y.G.); (Z.Z.); (Y.G.)
| | - Bien Tan
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China;
| |
Collapse
|
4
|
Guo J, Kong S, Lian Y, Zhao M. Recent bio-applications of covalent organic framework-based nanomaterials. Chem Commun (Camb) 2024; 60:918-934. [PMID: 38168699 DOI: 10.1039/d3cc04368a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Appearing as a new class of functional organic materials, covalent organic frameworks (COFs) have aroused a huge wave of interest in versatile fields ever since they were first proposed in 2005. Thanks to but not limited to their ultralight weights, high surface areas, ordered channels, variable functional groups and well-defined crystal structures, the applications of COF-based biomaterials in the fields of drug loading and delivery, photodynamic therapy, photothermal therapy, bioimaging, etc. are comprehensively summarized and introduced. The existing challenges and future prospects for this emerging but hot research direction are also discussed. It is hoped that this review will serve as a guidance for future research on COFs as multifunctional bioplatforms.
Collapse
Affiliation(s)
- Jun Guo
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry, Tiangong University, Tianjin 300387, China.
| | - Shuyue Kong
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry, Tiangong University, Tianjin 300387, China.
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China.
| | - Ye Lian
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry, Tiangong University, Tianjin 300387, China.
| | - Meiting Zhao
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
5
|
Liu Q, Yang Y, Zou Y, Wang L, Li Z, Wang M, Li L, Tian M, Wang D, Gao D. Fluorescent covalent organic frameworks for environmental pollutant detection sensors and enrichment sorbents: a mini-review. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:5919-5946. [PMID: 37916394 DOI: 10.1039/d3ay01166f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Covalent organic frameworks (COFs) are a class of porous crystalline materials based on organic building blocks containing light elements, such as C, H, O, N, and B, interconnected by covalent bonds. Because of their regular crystal structure, high porosity, stable mechanical structure, satisfactory specific surface area, easy functionalization, and high tunability, they have important applications in several fields. Currently, most of the established methods based on COFs can only be used for individual detection or adsorption of the target. Impressively, fluorescent COFs as a special member of the COF family are able to achieve highly selective and sensitive detection of target pollutants by fluorescence enhancement or quenching. The construction of a dual-functional platform for detection and adsorption based on fluorescent COFs can enable the simultaneous realization of visual monitoring and adsorption of target pollutants. Therefore, this paper reviews the research progress of fluorescent COFs as fluorescence sensors and adsorbents. First, the fluorescent COFs were classified according to the different bonding modes between the building blocks, and then the applications of fluorescent COF-based detection and adsorption bifunctional materials for various environmental contaminants were highlighted. Finally, the challenges and future application prospects of fluorescent COFs are discussed.
Collapse
Affiliation(s)
- Qiuyi Liu
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China.
| | - Yulian Yang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China.
| | - Yuemeng Zou
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China.
| | - Luchun Wang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China.
| | - Zhu Li
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China.
| | - Mingyue Wang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China.
| | - Lingling Li
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China.
| | - Meng Tian
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China.
| | - Dandan Wang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China.
| | - Die Gao
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China.
| |
Collapse
|
6
|
Zeng F, Tang LL, Yu H, Xu FP, Wang L. Hydrogen-bonding-driven self-assembly nonporous adaptive crystals for the separation of benzene from BTX and Cyclohexane. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
7
|
Xiao J, Li B, Qiang R, Qiu H, Chen J. Highly selective adsorption of rare earth elements by honeycomb-shaped covalent organic frameworks synthesized in deep eutectic solvents. ENVIRONMENTAL RESEARCH 2022; 214:113977. [PMID: 36027963 DOI: 10.1016/j.envres.2022.113977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
One of the key factors to obtain a highly pure individual rare earth element (REE) is to prepare adsorbents with high selectivity and adsorption capacity. Covalent organic frameworks (COFs), which encompass a variety of properties, including regular/tunable pore size, high specific surface area and easy functionalization, could be effective as adsorbents for separating rare earth elements (REEs). In this paper, TpPa COFs were successfully synthesized using an eco-friendly deep eutectic solvent (DES) as the reaction medium instead of toxic organic solvents at room temperature. TpPa COFs have a good separation effect on the nine REEs investigated in this work. Among them, the separation factors (β) of Eu/Yb, Eu/Tm and Eu/La are 15.34, 14.70 and 10.78, respectively, indicating that the TpPa COFs have good separation performance. Further discoveries showed that the adsorption and separation mechanism of the TpPa COFs for REEs in this experiment may be due to the coordination of REE ions with O to form a stable structure. This study blazed a trial for a green and facile synthesis strategy of TpPa COFs and expanded its implementation as a solid adsorbent in the separation of REEs.
Collapse
Affiliation(s)
- Jing Xiao
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bo Li
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ruibin Qiang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Hongdeng Qiu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China; University of Chinese Academy of Sciences, Beijing, 100049, China; College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China.
| | - Jia Chen
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|