1
|
Zhao L, Yan R, Mao B, Paul R, Duan W, Dai L, Hu C. Advanced Nanocarbons Toward two-Electron Oxygen Electrode Reactions for H 2O 2 Production and Integrated Energy Conversion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403029. [PMID: 38966884 DOI: 10.1002/smll.202403029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/20/2024] [Indexed: 07/06/2024]
Abstract
Hydrogen peroxide (H2O2) plays a pivotal role in advancing sustainable technologies due to its eco-friendly oxidizing capability. The electrochemical two-electron (2e-) oxygen reduction reaction and water oxidation reaction present an environmentally green method for H2O2 production. Over the past three years, significant progress is made in the field of carbon-based metal-free electrochemical catalysts (C-MFECs) for low-cost and efficient production of H2O2 (H2O2EP). This article offers a focused and comprehensive review of designing C-MFECs for H2O2EP, exploring the construction of dual-doping configurations, heteroatom-defect coupling sites, and strategic dopant positioning to enhance H2O2EP efficiency; innovative structural tuning that improves interfacial reactant concentration and promote the timely release of H2O2; modulation of electrolyte and electrode interfaces to support the 2e- pathways; and the application of C-MFECs in reactors and integrated energy systems. Finally, the current challenges and future directions in this burgeoning field are discussed.
Collapse
Affiliation(s)
- Linjie Zhao
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Energy Environmental Catalysis, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Riqing Yan
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Energy Environmental Catalysis, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Baoguang Mao
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Energy Environmental Catalysis, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Rajib Paul
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH, 44242, USA
| | - Wenjie Duan
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Energy Environmental Catalysis, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Liming Dai
- Australian Carbon Materials Centre (A-CMC), School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Chuangang Hu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Energy Environmental Catalysis, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
2
|
Deng M, Wang D, Li Y. General Design Concept of High-Performance Single-Atom-Site Catalysts for H 2O 2 Electrosynthesis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2314340. [PMID: 38439595 DOI: 10.1002/adma.202314340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/25/2024] [Indexed: 03/06/2024]
Abstract
Hydrogen peroxide (H2O2) as a green oxidizing agent is widely used in various fields. Electrosynthesis of H2O2 has gradually become a hotspot due to its convenient and environment-friendly features. Single-atom-site catalysts (SASCs) with uniform active sites are the ideal catalysts for the in-depth study of the reaction mechanism and structure-performance relationship. In this review, the outstanding achievements of SASCs in the electrosynthesis of H2O2 through 2e- oxygen reduction reaction (ORR) and 2e- water oxygen reaction (WOR) in recent years, are summarized. First, the elementary steps of the two pathways and the roles of key intermediates (*OOH and *OH) in the reactions are systematically discussed. Next, the influence of the size effect, electronic structure regulation, the support/interfacial effect, the optimization of coordination microenvironments, and the SASCs-derived catalysts applied in 2e- ORR are systematically analyzed. Besides, the developments of SASCs in 2e- WOR are also overviewed. Finally, the research progress of H2O2 electrosynthesis on SASCs is concluded, and an outlook on the rational design of SASCs is presented in conjunction with the design strategies and characterization techniques.
Collapse
Affiliation(s)
- Mingyang Deng
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yadong Li
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
3
|
Cui H, Zhou C, Zhang Y, Zhou T, Xie C, Li L, Wang J, Li J, Simchi A, Bai J, Zhou B. Highly-efficient natural gas desulfurization and simultaneous H 2O 2 synthesis based on the electrochemical coupling reaction strategy. JOURNAL OF HAZARDOUS MATERIALS 2024; 463:132823. [PMID: 37924701 DOI: 10.1016/j.jhazmat.2023.132823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/07/2023] [Accepted: 10/19/2023] [Indexed: 11/06/2023]
Abstract
Hydrogen sulfide (H2S) generated by natural gas exploitation is a dangerous and harmful gas that needs to be purified. Electrochemical Natural Gas Desulfurization offers a promising way for H2S purification and resource utilization in ambient conditions. However, poor energy efficiency and low resource value limit the prospective application in the industry. Herein, we propose a gas-liquid flow electrocatalysis system that couples H2S oxidation and O2 reduction processes to effectively recover sulfur and H2O2 with low energy consumption. Gas diffusion and mass transfer are accelerated by gas-liquid flow cells, which also significantly decrease the resistance. Besides, I-/I3- redox pairs promote selective H2S oxidation while inhibiting water decomposition, resulting in a 56% reduction in oxidation potential. Moreover, the surface proton concentration is elevated by employing a modified carbon gas diffusion electrode (GDE), which assists to maintains a high H2O2 faradic efficiency. The system is able to operate at a high current density of 102 mA/cm2 at an Ecell voltage of 3.5 V, yielding S and H2O2 at rates of 60 mg cm-2 h-1 and 50 mg cm-2 h-1 respectively. A techno-economic model forecasts the effects of system efficiency and energy prices on operational costs and illustrates potential routes to a plant-gate levelized application in the petrochemical industry.
Collapse
Affiliation(s)
- Hanbo Cui
- School of Environmental Science and Engineering, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Changhui Zhou
- School of Environmental Science and Engineering, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Yan Zhang
- School of Environmental Science and Engineering, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Tingsheng Zhou
- School of Environmental Science and Engineering, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Chaoyue Xie
- School of Environmental Science and Engineering, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Lei Li
- School of Environmental Science and Engineering, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Jiachen Wang
- School of Environmental Science and Engineering, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Jinhua Li
- School of Environmental Science and Engineering, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Abdolreza Simchi
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran.
| | - Jing Bai
- School of Environmental Science and Engineering, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, PR China.
| | - Baoxue Zhou
- School of Environmental Science and Engineering, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| |
Collapse
|
4
|
Zhao Y, Raj J, Xu X, Jiang J, Wu J, Fan M. Carbon Catalysts Empowering Sustainable Chemical Synthesis via Electrochemical CO 2 Conversion and Two-Electron Oxygen Reduction Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2311163. [PMID: 38308114 DOI: 10.1002/smll.202311163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/01/2024] [Indexed: 02/04/2024]
Abstract
Carbon materials hold significant promise in electrocatalysis, particularly in electrochemical CO2 reduction reaction (eCO2 RR) and two-electron oxygen reduction reaction (2e- ORR). The pivotal factor in achieving exceptional overall catalytic performance in carbon catalysts is the strategic design of specific active sites and nanostructures. This work presents a comprehensive overview of recent developments in carbon electrocatalysts for eCO2 RR and 2e- ORR. The creation of active sites through single/dual heteroatom doping, functional group decoration, topological defect, and micro-nano structuring, along with their synergistic effects, is thoroughly examined. Elaboration on the catalytic mechanisms and structure-activity relationships of these active sites is provided. In addition to directly serving as electrocatalysts, this review explores the role of carbon matrix as a support in finely adjusting the reactivity of single-atom molecular catalysts. Finally, the work addresses the challenges and prospects associated with designing and fabricating carbon electrocatalysts, providing valuable insights into the future trajectory of this dynamic field.
Collapse
Affiliation(s)
- Yuying Zhao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
- Key Lab of Biomass Energy and Material, Jiangsu Province, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, Jiangsu, 210042, China
| | - Jithu Raj
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Xiang Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Jianchun Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
- Key Lab of Biomass Energy and Material, Jiangsu Province, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, Jiangsu, 210042, China
| | - Jingjie Wu
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Mengmeng Fan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
- Key Lab of Biomass Energy and Material, Jiangsu Province, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, Jiangsu, 210042, China
| |
Collapse
|
5
|
Liu S, Liu B, Liu M, Xiong J, Gao Y, Wang B, Hu Y. Rapid, in situ synthesis of ultra-small silicon particles for boosted lithium storage capability through ultrafast Joule heating. NANOSCALE 2024; 16:2531-2539. [PMID: 38214097 DOI: 10.1039/d3nr04794f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
High-capacity anodes, especially silicon, suffer from huge volume fluctuations and electrode material pulverization during lithiation/delithiation. An accessible solution to this issue is to construct nano-silicon anodes with optimized particle size and a conductive matrix. In this work, we introduce a novel strategy for the in situ, rapid synthesis of ultra-small silicon nanoparticles uniformly embedded within carbonized nanosheets (us-Si/C) through swift high-temperature thermal radiative heating of sizable silicon nanoparticles (SiNPs). The us-Si/C anode shows ample capability to accommodate volume fluctuations during the lithiation/delithiation processes. The as-prepared anode exhibits a specific capacity of 920 mA h g-1 after 1000 cycles at a current density of 2 A g-1, indicating the advantages of the well-tailored structure. Additionally, the us-Si/C electrode can maintain an areal capacity of approximately 1.55 mA h cm-2 after 200 cycles at a high loading of 3.66 mg cm-2. Moreover, it presents practical applicability when assembled into LFP (lithium iron phosphate)//us-Si/C full cells. This preparation method presents great promise for achieving roll-to-roll manufacturing for practical applications due to its simplicity and efficiency.
Collapse
Affiliation(s)
- Shigang Liu
- Key Laboratory of Bio-Based Material Science and Technology of Ministry of Education, Engineering Research Center of Advanced Wooden Materials of Ministry of Education, College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, China.
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, China.
| | - Bowen Liu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ming Liu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junjie Xiong
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Gao
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingcheng Hu
- Key Laboratory of Bio-Based Material Science and Technology of Ministry of Education, Engineering Research Center of Advanced Wooden Materials of Ministry of Education, College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
6
|
Li J, Han H, Chang Y, Wang B. The material-microorganism interface in microbial hybrid electrocatalysis systems. NANOSCALE 2023; 15:6009-6024. [PMID: 36912348 DOI: 10.1039/d3nr00742a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
This review presents a comprehensive summary of the material-microorganism interface in microbial hybrid electrocatalysis systems. Microbial hybrid electrocatalysis has been developed to combine the advantages of inorganic electrocatalysis and microbial catalysis. However, electron transfer at the interfaces between microorganisms and materials is a very critical issue that affects the efficiency of the system. Therefore, this review focuses on the electron transfer at the material-microorganism interface and the strategies for building efficient microorganism and material interfaces. We begin with a brief introduction of the electron transfer mechanism in both the bioanode and biocathode of bioelectrochemical systems to understand the material-microorganism interface. Next, we summarise the strategies for constructing efficient material-microorganism interfaces including material design and modification and bacterial engineering. We also discuss emerging studies on the bio-inorganic hybrid electrocatalysis system. Understanding the interface between electrode/active materials and the microorganisms, especially the electron transfer processes, could help to drive the evolution of material-microorganism hybrid electrocatalysis systems towards maturity.
Collapse
Affiliation(s)
- Jiyao Li
- Department of Environmental Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China.
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China.
| | - Hexing Han
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China.
| | - Yanhong Chang
- Department of Environmental Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China.
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Bin Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China.
| |
Collapse
|
7
|
Wu F, Nan J, Wang T, Ge Z, Liu B, Chen M, Ye X. Highly selective electrosynthesis of H 2O 2 by N, O co-doped graphite nanosheets for efficient electro-Fenton degradation of p-nitrophenol. JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130733. [PMID: 36630877 DOI: 10.1016/j.jhazmat.2023.130733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/24/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
The activity and selectivity of the cathode towards electrosynthesis of H2O2 are critical for electro-Fenton process. Herein, nickel-foam modified with N, O co-doped graphite nanosheets (NO-GNSs/Ni-F) was developed as a cathode for highly efficient and selective electrosynthesis of H2O2. Expectedly, the accumulation of H2O2 at pH= 3 reached 494.2 mg L-1 h-1, with the selectivity toward H2O2 generation reaching 93.0%. The synergistic effect of different oxygen-containing functional groups and N species on the performance and selectivity of H2O2 electrosynthesis was investigated by density functional theory calculations, and the combination of epoxy and graphitic N (EP + N) was identified as the most favorable configuration with the lowest theoretical overpotential for H2O2 generation. Moreover, NO-GNSs/Ni-F was applied in the electro-Fenton process for p-nitrophenol degradation, resulting in 100% removal within 15 min with the kinetic rate constant of 0.446 min-1 and 97.6% mineralization within 6 h. The efficient removal was mainly attributed to the generation of bulk ·OH. Furthermore, NO-GNSs/Ni-F exhibited excellent stability. This work provides a workable option for the enhancement of H2O2 accumulation and the efficient degradation of pollutants in electro-Fenton system.
Collapse
Affiliation(s)
- Fangmin Wu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Jun Nan
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Tianzuo Wang
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Applied Catalysis, Science and Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Zhencheng Ge
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Bohan Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Meng Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Xuesong Ye
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| |
Collapse
|
8
|
Cui X, Zhong L, Zhao X, Xie J, He D, Yang X, Lin K, Wang H, Niu L. Ultrafine Co nanoparticles confined in nitrogen-doped carbon toward two-electron oxygen reduction reaction for H2O2 electrosynthesis in acidic media. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|