1
|
Tan M, Gao Z, Wang X, Wang X, Lin C, Huang Y, Chen W, Zhang Y, Hou Z. MnO 2@CeO x-GAMP radiosensitizer with oxygen vacancies depended mimicking enzyme-like activities for radiosensitization-mediated STING pathway activation. Biomaterials 2025; 314:122797. [PMID: 39255531 DOI: 10.1016/j.biomaterials.2024.122797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/31/2024] [Accepted: 08/31/2024] [Indexed: 09/12/2024]
Abstract
Activation of the stimulator of interferon genes (STING) pathway by radiotherapy (RT) has a significant effect on eliciting antitumor immune responses. The generation of hydroxyl radical (·OH) storm and the sensitization of STING-relative catalytic reactions could improve radiosensitization-mediated STING activation. Herein, multi-functional radiosensitizer with oxygen vacancies depended mimicking enzyme-like activities was fabricated to produce more dsDNA which benefits intracellular 2', 3'-cyclic GMP-AMP (cGAMP) generation, together with introducing exogenous cGAMP to activate immune response. MnO2@CeOx nanozymes present enhanced superoxide dismutase (SOD)-like and peroxidase (POD)-like activities due to induced oxygen vacancies accelerate the redox cycles from Ce4+ to Ce3+ via intermetallic charge transfer. CeOx shells not only serve as radiosensitizer, but also provide the conjugation site for AMP/GMP to form MnO2@CeOx-GAMP (MCG). Upon X-ray irradiation, MCG with SOD-like activity facilitates the conversion of superoxide anions generated by Ce-sensitization into H2O2 within tumor microenvironment (TME). The downstream POD-like activity catalyzes the elevated H2O2 into a profusion of ·OH for producing more damage DNA fragments. TME-responsive decomposed MCG could supply exogenous cGAMP, meanwhile the releasing Mn2+ improve the sensitivity of cyclic GMP-AMP synthase to dsDNA for producing more cGAMP, resulting in the promotion of STING pathway activation.
Collapse
Affiliation(s)
- Meiling Tan
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, PR China; Guangzhou Institute of Cancer Research, The Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, 510095, PR China
| | - Zhimin Gao
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Xinyi Wang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Xiaozhao Wang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Chen Lin
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Yongxin Huang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Wei Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, PR China; The Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan, 511518, PR China
| | - Yaru Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, PR China; The Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan, 511518, PR China
| | - Zhiyao Hou
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, PR China; Guangzhou Institute of Cancer Research, The Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, 510095, PR China; The Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan, 511518, PR China.
| |
Collapse
|
2
|
Feng K, Wang G, Wang S, Ma J, Wu H, Ma M, Zhang Y. Breaking the pH Limitation of Nanozymes: Mechanisms, Methods, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401619. [PMID: 38615261 DOI: 10.1002/adma.202401619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/09/2024] [Indexed: 04/15/2024]
Abstract
Although nanozymes have drawn great attention over the past decade, the activities of peroxidase-like, oxidase-like, and catalase-like nanozymes are often pH dependent with elusive mechanism, which largely restricts their application. Therefore, a systematical discussion on the pH-related catalytic mechanisms of nanozymes together with the methods to overcome this limitation is in need. In this review, various nanozymes exhibiting pH-dependent catalytic activities are collected and the root causes for their pH dependence are comprehensively analyzed. Subsequently, regulatory concepts including catalytic environment reconstruction and direct catalytic activity improvement to break this pH restriction are summarized. Moreover, applications of pH-independent nanozymes in sensing, disease therapy, and pollutant degradation are overviewed. Finally, current challenges and future opportunities on the development of pH-independent nanozymes are suggested. It is anticipated that this review will promote the further design of pH-independent nanozymes and broaden their application range with higher efficiency.
Collapse
Affiliation(s)
- Kaizheng Feng
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda hospital, Southeast University, Nanjing, 211102, P. R. China
| | - Guancheng Wang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda hospital, Southeast University, Nanjing, 211102, P. R. China
| | - Shi Wang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda hospital, Southeast University, Nanjing, 211102, P. R. China
| | - Jingyuan Ma
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda hospital, Southeast University, Nanjing, 211102, P. R. China
| | - Haoan Wu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda hospital, Southeast University, Nanjing, 211102, P. R. China
| | - Ming Ma
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda hospital, Southeast University, Nanjing, 211102, P. R. China
| | - Yu Zhang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda hospital, Southeast University, Nanjing, 211102, P. R. China
| |
Collapse
|
3
|
Forenzo C, Larsen J. Bridging clinical radiotherapy and space radiation therapeutics through reactive oxygen species (ROS)-triggered delivery. Free Radic Biol Med 2024; 219:88-103. [PMID: 38631648 DOI: 10.1016/j.freeradbiomed.2024.04.219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/15/2024] [Accepted: 04/09/2024] [Indexed: 04/19/2024]
Abstract
This review explores the convergence of clinical radiotherapy and space radiation therapeutics, focusing on ionizing radiation (IR)-generated reactive oxygen species (ROS). IR, with high-energy particles, induces precise cellular damage, particularly in cancer treatments. The paper discusses parallels between clinical and space IR, highlighting unique characteristics of high-charge and energy particles in space and potential health risks for astronauts. Emphasizing the parallel occurrence of ROS generation in both clinical and space contexts, the review identifies ROS as a crucial factor with dual roles in cellular responses and potential disease initiation. The analysis covers ROS generation mechanisms, variations, and similarities in terrestrial and extraterrestrial environments leading to innovative ROS-responsive delivery systems adaptable for both clinical and space applications. The paper concludes by discussing applications of personalized ROS-triggered therapeutic approaches and discussing the challenges and prospects of implementing these strategies in clinical radiotherapy and extraterrestrial missions. Overall, it underscores the potential of ROS-targeted delivery for advancing therapeutic strategies in terrestrial clinical settings and space exploration, contributing to human health improvement on Earth and beyond.
Collapse
Affiliation(s)
- Chloe Forenzo
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC, 29631, USA
| | - Jessica Larsen
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC, 29631, USA; Department of Bioengineering, Clemson University, Clemson, SC, 29631, USA.
| |
Collapse
|
4
|
Zheng C, Niu M, Kong Y, Liu X, Li J, Gong X, Ren X, Hong C, Yin M, Wang L. Oral administration of probiotic spore ghosts for efficient attenuation of radiation-induced intestinal injury. J Nanobiotechnology 2024; 22:303. [PMID: 38822376 PMCID: PMC11140926 DOI: 10.1186/s12951-024-02572-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/20/2024] [Indexed: 06/03/2024] Open
Abstract
Radiation-induced intestinal injury is the most common side effect during radiotherapy of abdominal or pelvic solid tumors, significantly impacting patients' quality of life and even resulting in poor prognosis. Until now, oral application of conventional formulations for intestinal radioprotection remains challenging with no preferred method available to mitigate radiation toxicity in small intestine. Our previous study revealed that nanomaterials derived from spore coat of probiotics exhibit superior anti-inflammatory effect and even prevent the progression of cancer. The aim of this work is to determine the radioprotective effect of spore coat (denoted as spore ghosts, SGs) from three clinically approved probiotics (B.coagulans, B.subtilis and B.licheniformis). All the three SGs exhibit outstanding reactive oxygen species (ROS) scavenging ability and excellent anti-inflammatory effect. Moreover, these SGs can reverse the balance of intestinal flora by inhibiting harmful bacteria and increasing the abundance of Lactobacillus. Consequently, administration of SGs significantly reduce radiation-induced intestinal injury by alleviating diarrhea, preventing X-ray induced apoptosis of small intestinal epithelial cells and promoting restoration of barrier integrity in a prophylactic study. Notably, SGs markedly improve weight gain and survival of mice received total abdominal X-ray radiation. This work may provide promising radioprotectants for efficiently attenuating radiation-induced gastrointestinal syndrome and promote the development of new intestinal predilection.
Collapse
Affiliation(s)
- Cuixia Zheng
- Translational medicine Center, Huaihe Hospital of Henan University, Kaifeng, 475000, China
| | - Mengya Niu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yueyue Kong
- Xinjiang Aksu First People's Hospital, Akesu, 843000, China
| | - Xinxin Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, 471009, China
| | - Junxiu Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Xunwei Gong
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Xinyuan Ren
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Chen Hong
- Translational medicine Center, Huaihe Hospital of Henan University, Kaifeng, 475000, China
| | - Menghao Yin
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Lei Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- Pingyuan Lab, Henan Normal University, Xinxiang, 453007, China.
- Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, 471009, China.
| |
Collapse
|
5
|
Tang H, Chen J, Qi LH, Lyu M, Quan H, Tan ZJ. Multifunctional AuPt Nanoparticles for Synergistic Photothermal and Radiation Therapy. Int J Nanomedicine 2023; 18:6869-6882. [PMID: 38026515 PMCID: PMC10674778 DOI: 10.2147/ijn.s422348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
Background Photothermal therapy (PTT) has gained considerable interest as an emerging modality for cancer treatment in recent years. Radiation therapy (RT) has been widely used in the clinic as a traditional treatment method. However, RT and PTT treatments are limited by side effects and penetration depth, respectively. In addition, hypoxia within the tumor can lead to increased resistance to treatment. Methods We synthesized multiple sizes of AuPt by modulating the reaction conditions. The smallest size of AuPt was selected and modified with folic acid (FA) for PTT and RT synergy therapy. Various methods including transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FITR) are used to determine the structure and composition of AuPt-FA (AF). In addition, we researched the photothermal properties of AF with IR cameras and infrared lasers. Flow cytometry, colony formation assays, CCK8, and fluorescent staining for probing the treatment effect in vitro. Also, we explored the targeting of AF by TEM and In Vivo Imaging Systems (IVIS). In vivo experiments, we record changes in tumor volume and weight as well as staining of tumor sections (ROS, Ki67, and hematoxylin and eosin). Results The AuPt with particle size of 16 nm endows it with remarkably high photothermal conversion efficiency (46.84%) and catalase activity compared to other sizes of AuPt (30 nm and 100 nm). AF alleviates hypoxia in the tumor microenvironment, leading to the production of more reactive oxygen species (ROS) during the treatment. In addition, the therapeutic effect was significantly enhanced by combining RT and PTT, with an apoptosis rate of 81.1% in vitro and an in vivo tumor volume reduction rate of 94.0% in vivo. Conclusion These results demonstrate that AF potentiates the synergistic effect of PTT and RT and has the potential for clinical translation.
Collapse
Affiliation(s)
- Han Tang
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, People’s Republic of China
| | - Ji Chen
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
| | - Lu He Qi
- School of Resource and Environmental Sciences, Wuhan University, Wuhan, People’s Republic of China
| | - Meng Lyu
- Department of Gastrointestinal Surgery, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, People’s Republic of China
| | - Hong Quan
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, People’s Republic of China
| | - Zhi Jie Tan
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, People’s Republic of China
| |
Collapse
|
6
|
Min S, Yu Q, Ye J, Hao P, Ning J, Hu Z, Chong Y. Nanomaterials with Glucose Oxidase-Mimicking Activity for Biomedical Applications. Molecules 2023; 28:4615. [PMID: 37375170 DOI: 10.3390/molecules28124615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Glucose oxidase (GOD) is an oxidoreductase that catalyzes the aerobic oxidation of glucose into hydrogen peroxide (H2O2) and gluconic acid, which has been widely used in industrial raw materials production, biosensors and cancer treatment. However, natural GOD bears intrinsic disadvantages, such as poor stability and a complex purification process, which undoubtedly restricts its biomedical applications. Fortunately, several artificial nanomaterials have been recently discovered with a GOD-like activity and their catalytic efficiency toward glucose oxidation can be finely optimized for diverse biomedical applications in biosensing and disease treatments. In view of the notable progress of GOD-mimicking nanozymes, this review systematically summarizes the representative GOD-mimicking nanomaterials for the first time and depicts their proposed catalytic mechanisms. We then introduce the efficient modulation strategy to improve the catalytic activity of existing GOD-mimicking nanomaterials. Finally, the potential biomedical applications in glucose detection, DNA bioanalysis and cancer treatment are highlighted. We believe that the development of nanomaterials with a GOD-like activity will expand the application range of GOD-based systems and lead to new opportunities of GOD-mimicking nanomaterials for various biomedical applications.
Collapse
Affiliation(s)
- Shengyi Min
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Qiao Yu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Jiaquan Ye
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Pengfei Hao
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Jiayu Ning
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Zhiqiang Hu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Yu Chong
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| |
Collapse
|
7
|
Peng D, Yang Y, Que M, Ding Y, Wu M, Deng X, He Q, Ma X, Li X, Qiu H. Partially oxidized MoS 2 nanosheets with high water-solubility to enhance the peroxidase-mimic activity for sensitive detection of glutathione. Anal Chim Acta 2023; 1250:340968. [PMID: 36898817 DOI: 10.1016/j.aca.2023.340968] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023]
Abstract
Surface oxidation engineering is an effective strategy to construct nanomaterials with enhanced biocatalytic activity. In this study, a facile one-pot oxidation strategy was proposed to synthesize partially oxidized molybdenum disulfide nanosheets (ox-MoS2 NSs), which exhibit good water solubility and can be used as an excellent peroxidase substitute. Under the oxidation process, Mo-S bonds are partially broke and S atoms are replaced by excess oxygen atoms, and the released abundant heat and gases efficiently expended the interlayer distance and weaken the van der Waals forces between adjacent layers. Porous ox-MoS2 NSs can be easily exfoliated by further sonication, and the nanosheets exhibits excellent water dispersibility and no obvious sediment appear even after store for months. Benefiting from the desirable affinity property with enzyme substrates, optimized electronic structure and prominent electron transfer efficiency, the ox-MoS2 NSs exhibit enhanced peroxidase-mimic activity. Furthermore, the ox-MoS2 NSs catalyzed 3,3',5,5'-tetramethylbenzidine (TMB) oxidation reaction could be inhibited by the redox reaction that take place between glutathione (GSH) as well as the direct interaction between GSH and ox-MoS2 NSs. Thus, a colorimetric sensing platform was constructed for GSH detection with good sensitivity and stability. This work provides a facile strategy for engineering structure of nanomaterials and improving enzyme-mimic performance.
Collapse
Affiliation(s)
- Dong Peng
- School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, China
| | - Yuhong Yang
- School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, China
| | - Mingming Que
- School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, China
| | - Ying Ding
- School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, China
| | - Mingzhu Wu
- School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, China
| | - Xiulong Deng
- School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, China
| | - Qifang He
- School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, China
| | - Xiaoming Ma
- School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, China
| | - Xun Li
- School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, China.
| | - Hongdeng Qiu
- School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, China; CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.
| |
Collapse
|
8
|
Guo J, Zhao Z, Shang Z, Tang Z, Zhu H, Zhang K. Nanodrugs with intrinsic radioprotective exertion: Turning the double-edged sword into a single-edged knife. EXPLORATION (BEIJING, CHINA) 2023; 3:20220119. [PMID: 37324033 PMCID: PMC10190950 DOI: 10.1002/exp.20220119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 02/10/2023] [Indexed: 06/17/2023]
Abstract
Ionizing radiation (IR) poses a growing threat to human health, and thus ideal radioprotectors with high efficacy and low toxicity still receive widespread attention in radiation medicine. Despite significant progress made in conventional radioprotectants, high toxicity, and low bioavailability still discourage their application. Fortunately, the rapidly evolving nanomaterial technology furnishes reliable tools to address these bottlenecks, opening up the cutting-edge nano-radioprotective medicine, among which the intrinsic nano-radioprotectants characterized by high efficacy, low toxicity, and prolonged blood retention duration, represent the most extensively studied class in this area. Herein, we made the systematic review on this topic, and discussed more specific types of radioprotective nanomaterials and more general clusters of the extensive nano-radioprotectants. In this review, we mainly focused on the development, design innovations, applications, challenges, and prospects of the intrinsic antiradiation nanomedicines, and presented a comprehensive overview, in-depth analysis as well as an updated understanding of the latest advances in this topic. We hope that this review will promote the interdisciplinarity across radiation medicine and nanotechnology and stimulate further valuable studies in this promising field.
Collapse
Affiliation(s)
- Jiaming Guo
- Department of Radiation Medicine, College of Naval MedicineNaval Medical UniversityShanghaiChina
| | - Zhemeng Zhao
- Department of Radiation Medicine, College of Naval MedicineNaval Medical UniversityShanghaiChina
- National Engineering Research Center for Marine Aquaculture, Marine Science and Technology CollegeZhejiang Ocean UniversityZhoushanChina
| | - Zeng‐Fu Shang
- Department of Radiation OncologySimmons Comprehensive Cancer Center at UT Southwestern Medical CenterDallasTexasUSA
| | - Zhongmin Tang
- Department of RadiologyUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Huanhuan Zhu
- Central Laboratory, Shanghai Tenth People's HospitalTongji University School of MedicineShanghaiP. R. China
| | - Kun Zhang
- Central Laboratory, Shanghai Tenth People's HospitalTongji University School of MedicineShanghaiP. R. China
- National Center for International Research of Bio‐targeting TheranosticsGuangxi Medical UniversityNanningGuangxiP. R. China
- Department of Oncology, Sichuan Provincial People's Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduSichuanP. R. China
| |
Collapse
|
9
|
Li B, Xu Q, Shen X, Pan T, Shang J, Ge Y, Qi Z. Atom-economic macrocyclic amphiphile based on guanidinium-functionalized selenacrown ether acting as redox-responsive nanozyme. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.108015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
10
|
Cai F, Ye K, Chen M, Tian Y, Chen P, Lin H, Chen T, Ma L. High-dimensional zinc porphyrin nanoframeworks as efficient radiosensitizers for cervical cancer. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
11
|
Li C, Cheng Y, Li D, An Q, Zhang W, Zhang Y, Fu Y. Antitumor Applications of Photothermal Agents and Photothermal Synergistic Therapies. Int J Mol Sci 2022; 23:ijms23147909. [PMID: 35887255 PMCID: PMC9324234 DOI: 10.3390/ijms23147909] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/08/2022] [Accepted: 07/12/2022] [Indexed: 11/16/2022] Open
Abstract
As a new tumor treatment strategy, photothermal therapy (PTT) has the advantages of accuracy, ease of administration, a high efficiency and low side effects. Photothermal transduction agents (PTAs) are the key factor which play an important role in PTT. The mechanism of PTT is discussed in detail. The photothermal conversion efficiency (PCE) can be improved by increasing the light absorption and reducing the light scattering of photothermal conversion agents. Additionally, non-radiative relaxation path attenuation can also promote energy conversion to obtain a higher value in terms of PCE. The structure and photothermal characteristics of various kinds of PTAs (metal materials, carbon-based nanomaterials, two-dimensional nanomaterials, and organic materials) were compared and analyzed. This paper reviews the antitumor applications of photothermal synergistic therapies, including PTT combined with immunotherapy, chemotherapy, and photodynamic therapy. This review proposes that these PTAs promote the development of photothermal synergistic therapies and have a great potential in the application of tumor treatment.
Collapse
Affiliation(s)
- Chaowei Li
- School of Textile and Clothing, Nantong University, Nantong 226019, China; (C.L.); (Y.C.); (Q.A.); (W.Z.); (Y.Z.)
| | - Yue Cheng
- School of Textile and Clothing, Nantong University, Nantong 226019, China; (C.L.); (Y.C.); (Q.A.); (W.Z.); (Y.Z.)
- National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Health, Nantong University, Nantong 226019, China
| | - Dawei Li
- School of Textile and Clothing, Nantong University, Nantong 226019, China; (C.L.); (Y.C.); (Q.A.); (W.Z.); (Y.Z.)
- National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Health, Nantong University, Nantong 226019, China
- Correspondence: (D.L.); (Y.F.)
| | - Qi An
- School of Textile and Clothing, Nantong University, Nantong 226019, China; (C.L.); (Y.C.); (Q.A.); (W.Z.); (Y.Z.)
- National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Health, Nantong University, Nantong 226019, China
| | - Wei Zhang
- School of Textile and Clothing, Nantong University, Nantong 226019, China; (C.L.); (Y.C.); (Q.A.); (W.Z.); (Y.Z.)
- National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Health, Nantong University, Nantong 226019, China
| | - Yu Zhang
- School of Textile and Clothing, Nantong University, Nantong 226019, China; (C.L.); (Y.C.); (Q.A.); (W.Z.); (Y.Z.)
- National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Health, Nantong University, Nantong 226019, China
| | - Yijun Fu
- School of Textile and Clothing, Nantong University, Nantong 226019, China; (C.L.); (Y.C.); (Q.A.); (W.Z.); (Y.Z.)
- National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Health, Nantong University, Nantong 226019, China
- Correspondence: (D.L.); (Y.F.)
| |
Collapse
|