1
|
Karaiskos I, Gkoufa A, Polyzou E, Schinas G, Athanassa Z, Akinosoglou K. High-Dose Nebulized Colistin Methanesulfonate and the Role in Hospital-Acquired Pneumonia Caused by Gram-Negative Bacteria with Difficult-to-Treat Resistance: A Review. Microorganisms 2023; 11:1459. [PMID: 37374959 DOI: 10.3390/microorganisms11061459] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/27/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Hospital-acquired pneumonia, including ventilator-associated pneumonia (VAP) due to difficult-to-treat-resistant (DTR) Gram-negative bacteria, contributes significantly to morbidity and mortality in ICUs. In the era of COVID-19, the incidences of secondary nosocomial pneumonia and the demand for invasive mechanical ventilation have increased dramatically with extremely high attributable mortality. Treatment options for DTR pathogens are limited. Therefore, an increased interest in high-dose nebulized colistin methanesulfonate (CMS), defined as a nebulized dose above 6 million IU (MIU), has come into sight. Herein, the authors present the available modern knowledge regarding high-dose nebulized CMS and current information on pharmacokinetics, clinical studies, and toxicity issues. A brief report on types of nebulizers is also analyzed. High-dose nebulized CMS was administrated as an adjunctive and substitutive strategy. High-dose nebulized CMS up to 15 MIU was attributed with a clinical outcome of 63%. High-dose nebulized CMS administration offers advantages in terms of efficacy against DTR Gram-negative bacteria, a favorable safety profile, and improved pharmacokinetics in the treatment of VAP. However, due to the heterogeneity of studies and small sample population, the apparent benefit in clinical outcomes must be proven in large-scale trials to lead to the optimal use of high-dose nebulized CMS.
Collapse
Affiliation(s)
- Ilias Karaiskos
- First Department of Internal Medicine-Infectious Diseases, Hygeia General Hospital, 4, Erythrou Stavrou Str. & Kifisias, 15123 Athens, Greece
| | - Aikaterini Gkoufa
- Infectious Diseases and COVID-19 Unit, Medical School, Laiko General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Elena Polyzou
- School of Medicine, University of Patras, 26504 Patras, Greece
- Department of Internal Medicine and Infectious Diseases, University General Hospital of Patras, 26504 Patras, Greece
| | | | - Zoe Athanassa
- Intensive Care Unit, Sismanoglio General Hospital, 15126 Athens, Greece
| | - Karolina Akinosoglou
- School of Medicine, University of Patras, 26504 Patras, Greece
- Department of Internal Medicine and Infectious Diseases, University General Hospital of Patras, 26504 Patras, Greece
| |
Collapse
|
2
|
Myrianthefs P, Zakynthinos GE, Tsolaki V, Makris D. Aerosolized Antibiotics to Manage Ventilator-Associated Infections: A Comprehensive Review. Antibiotics (Basel) 2023; 12:antibiotics12050801. [PMID: 37237704 DOI: 10.3390/antibiotics12050801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND Ventilator-associated lower respiratory tract infectious complications in critically ill patients cover a wide spectrum of one disease process (respiratory infection), initiating from tracheal tube and/or tracheobronchial colonization, to ventilator associated tracheobronchitis (VAT) and ventilator-associated pneumonia (VAP). VAP occurence has been associated with increased intensive care unit (ICU) morbidity (ventilator days, as well as length of ICU and hospital stay) and ICU mortality. Therefore, treatments that aim at VAP/VAT incidence reduction are a high priority. AIM The aim of the present review is to discuss the current literature concerning two major aspects: (a) can aerosolized antibiotics (AA) administered in a pre-emptive way prevent the occurrence of ventilator-associated infections? and (b) can VAT treatment with aerosolized avert the potential evolution to VAP? RESULTS There were identified eight studies that provided data on the use of aerosolized antibiotics for the prevention of VAT/VAP. Most of them report favorable data on reducing the colonisation rate and the progression to VAP/VAT. Another four studies dealt with the treatment of VAT/VAP. The results support the decrease in the incidence to VAP transition and/or the improvement in signs and symptoms of VAP. Moreover, there are concise reports on higher cure rates and microbiological eradication in patients treated with aerosolized antibiotics. Yet, differences in the delivery modality adopted and resistance emergence issues preclude the generalisability of the results. CONCLUSION Aerosolized antibiotic therapy can be used to manage ventilator-associated infections, especially those with difficult to treat resistance. The limited clinical data raise the need for large randomized controlled trials to confirm the benefits of AA and to evaluate the impact on antibiotic selection pressure.
Collapse
Affiliation(s)
- Pavlos Myrianthefs
- "Agioi Anargyroi" General Hospital, School of Health Sciences, Department of Nursing, National and Kapodistrian University of Athens, 14564 Athens, Greece
| | - George E Zakynthinos
- Third Cardiology Clinic, University of Athens, Sotiria Hospital, 11526 Athens, Greece
| | - Vasiliki Tsolaki
- Department of Intensive Care Medicine, University Hospital of Larissa, 41110 Larissa, Greece
| | - Demosthenes Makris
- Department of Intensive Care Medicine, University Hospital of Larissa, 41110 Larissa, Greece
- Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece
| |
Collapse
|
3
|
Boyd S, Nseir S, Rodriguez A, Martin-Loeches I. Ventilator-associated pneumonia in critically ill patients with COVID-19 infection, a narrative review. ERJ Open Res 2022; 8:00046-2022. [PMID: 35891621 PMCID: PMC9080287 DOI: 10.1183/23120541.00046-2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/24/2022] [Indexed: 01/08/2023] Open
Abstract
COVID pneumonitis can cause patients to become critically ill. They may require intensive care and mechanical ventilation. Ventilator-associated pneumonia is a concern. This review aims to discuss the topic of ventilator-associated pneumonia in this group. Several reasons have been proposed to explain the elevated rates of VAP in critically ill COVID patients compared to non-COVID patients. Extrinsic factors include understaffing, lack of PPE and use of immunomodulating agents. Intrinsic factors include severe parenchymal damage, immune dysregulation, along with pulmonary vascular endothelial inflammation and thrombosis. The rate of VAP has been reported at 45.4%, with an ICU mortality rate of 42.7%. Multiple challenges to diagnosis exist. Other conditions such as acute respiratory distress syndrome, pulmonary oedema and atelectasis can present with similar features. Frequent growth of gram-negative bacteria has been shown in multiple studies, with particularly high rates of pseudomonas aeruginosa. The rate of invasive pulmonary aspergillosis has been reported at 4–30%. We would recommend the use of invasive techniques when possible. This will enable de-escalation of antibiotics as soon as possible, decreasing overuse. It is also important to keep other possible causes of ventilator-associated pneumonia in mind, such as COVID-19 associated pulmonary aspergillosis, cytomegalovirus, etc. Diagnostic tests such as galactomannan and B-D-glucan should be considered. These patients may face a long treatment course, with risk of re-infection, along with prolonged weaning, which carries its own long-term consequences.
Collapse
|
4
|
Inhaled antibiotics in critical care: state of the art and future perspectives. Infect Dis Now 2022; 52:327-333. [DOI: 10.1016/j.idnow.2022.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/02/2022] [Indexed: 12/15/2022]
|
5
|
Aikaterini G, Tomás S, Ilias K, Christina R, Yu-Wei L, Mina P, Spyros Z, Helen G, Jian L, E FL. Pulmonary and systemic pharmacokinetics of colistin methanesulfonate (CMS) and formed colistin following nebulization of CMS among patients with ventilator-associated pneumonia. Int J Antimicrob Agents 2022; 59:106588. [DOI: 10.1016/j.ijantimicag.2022.106588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 02/05/2022] [Accepted: 04/03/2022] [Indexed: 11/16/2022]
|
6
|
Optimizing Antimicrobial Drug Dosing in Critically Ill Patients. Microorganisms 2021; 9:microorganisms9071401. [PMID: 34203510 PMCID: PMC8305961 DOI: 10.3390/microorganisms9071401] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/25/2021] [Accepted: 06/25/2021] [Indexed: 12/23/2022] Open
Abstract
A fundamental step in the successful management of sepsis and septic shock is early empiric antimicrobial therapy. However, for this to be effective, several decisions must be addressed simultaneously: (1) antimicrobial choices should be adequate, covering the most probable pathogens; (2) they should be administered in the appropriate dose, (3) by the correct route, and (4) using the correct mode of administration to achieve successful concentration at the infection site. In critically ill patients, antimicrobial dosing is a common challenge and a frequent source of errors, since these patients present deranged pharmacokinetics, namely increased volume of distribution and altered drug clearance, which either increased or decreased. Moreover, the clinical condition of these patients changes markedly over time, either improving or deteriorating. The consequent impact on drug pharmacokinetics further complicates the selection of correct drug schedules and dosing during the course of therapy. In recent years, the knowledge of pharmacokinetics and pharmacodynamics, drug dosing, therapeutic drug monitoring, and antimicrobial resistance in the critically ill patients has greatly improved, fostering strategies to optimize therapeutic efficacy and to reduce toxicity and adverse events. Nonetheless, delivering adequate and appropriate antimicrobial therapy is still a challenge, since pathogen resistance continues to rise, and new therapeutic agents remain scarce. We aim to review the available literature to assess the challenges, impact, and tools to optimize individualization of antimicrobial dosing to maximize exposure and effectiveness in critically ill patients.
Collapse
|
7
|
The Clinical Practice and Best Aerosol Delivery Location in Intubated and Mechanically Ventilated Patients: A Randomized Clinical Trial. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6671671. [PMID: 33884269 PMCID: PMC8041534 DOI: 10.1155/2021/6671671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 03/18/2021] [Accepted: 03/27/2021] [Indexed: 11/25/2022]
Abstract
This randomized clinical trial (RCT) is aimed at exploring the best nebulizer position for aerosol delivery within the mechanical ventilation (MV) circuitry. This study enrolled 75 intubated and MV patients with respiratory failure and randomly divided them into three groups. The nebulizer position of patients in group A was between the tracheal tube and Y-piece. For group B, the nebulizer was placed at the inspiratory limb near the ventilator water cup (80 cm away from the Y-piece). For group C, the nebulizer was placed between the ventilator inlet and the heated humidifier. An indirect competitive enzyme-linked immunosorbent assay (ELISA) was used to measure salbutamol drug concentrations in serum and urine. The serum and urine salbutamol concentrations of the three groups were the highest in group B, followed by group C, and the lowest in group A. Serum and urine salbutamol concentrations significantly differed among the three groups (P < 0.05). It was found that the drug was statistically significant between group differences for groups B and A (P = 0.001; P = 0.002, respectively) for both serum and urine salbutamol concentrations. There were no significant differences observed among the other groups. It was found that the drug concentrations were the highest when the nebulizer was placed 80 cm away from the Y-piece, while the location between the tracheal tube and the Y-piece with the higher frequency of nebulizer placement was the location with the lowest drug concentration.
Collapse
|
8
|
Papazian L, Klompas M, Luyt CE. Ventilator-associated pneumonia in adults: a narrative review. Intensive Care Med 2020; 46:888-906. [PMID: 32157357 PMCID: PMC7095206 DOI: 10.1007/s00134-020-05980-0] [Citation(s) in RCA: 373] [Impact Index Per Article: 74.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 02/19/2020] [Indexed: 12/15/2022]
Abstract
Ventilator-associated pneumonia (VAP) is one of the most frequent ICU-acquired infections. Reported incidences vary widely from 5 to 40% depending on the setting and diagnostic criteria. VAP is associated with prolonged duration of mechanical ventilation and ICU stay. The estimated attributable mortality of VAP is around 10%, with higher mortality rates in surgical ICU patients and in patients with mid-range severity scores at admission. Microbiological confirmation of infection is strongly encouraged. Which sampling method to use is still a matter of controversy. Emerging microbiological tools will likely modify our routine approach to diagnosing and treating VAP in the next future. Prevention of VAP is based on minimizing the exposure to mechanical ventilation and encouraging early liberation. Bundles that combine multiple prevention strategies may improve outcomes, but large randomized trials are needed to confirm this. Treatment should be limited to 7 days in the vast majority of the cases. Patients should be reassessed daily to confirm ongoing suspicion of disease, antibiotics should be narrowed as soon as antibiotic susceptibility results are available, and clinicians should consider stopping antibiotics if cultures are negative.
Collapse
Affiliation(s)
- Laurent Papazian
- Médecine Intensive Réanimation, Hôpital Nord, Hôpitaux de Marseille, Chemin des Bourrely, 13015, Marseille, France. .,Centre d'Etudes et de Recherches sur les Services de Santé et qualité de vie EA 3279, Groupe de recherche en Réanimation et Anesthésie de Marseille pluridisciplinaire (GRAM +), Faculté de médecine, Aix-Marseille Université, 13005, Marseille, France.
| | - Michael Klompas
- Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, USA.,Department of Medicine, Brigham and Women's Hospital, Boston, USA
| | - Charles-Edouard Luyt
- Médecine Intensive Réanimation, Institut de Cardiologie, Assistance Publique-Hôpitaux de Paris, Paris, France.,INSERM, UMRS 1166, ICAN Institute of Cardiometabolism and Nutrition, Sorbonne Université, Paris, France
| |
Collapse
|
9
|
Pontes JF, Grenha A. Multifunctional Nanocarriers for Lung Drug Delivery. NANOMATERIALS 2020; 10:nano10020183. [PMID: 31973051 PMCID: PMC7074870 DOI: 10.3390/nano10020183] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/15/2020] [Accepted: 01/17/2020] [Indexed: 12/14/2022]
Abstract
Nanocarriers have been increasingly proposed for lung drug delivery applications. The strategy of combining the intrinsic and more general advantages of the nanostructures with specificities that improve the therapeutic outcomes of particular clinical situations is frequent. These include the surface engineering of the carriers by means of altering the material structure (i.e., chemical modifications), the addition of specific ligands so that predefined targets are reached, or even the tuning of the carrier properties to respond to specific stimuli. The devised strategies are mainly directed at three distinct areas of lung drug delivery, encompassing the delivery of proteins and protein-based materials, either for local or systemic application, the delivery of antibiotics, and the delivery of anticancer drugs-the latter two comprising local delivery approaches. This review addresses the applications of nanocarriers aimed at lung drug delivery of active biological and pharmaceutical ingredients, focusing with particular interest on nanocarriers that exhibit multifunctional properties. A final section addresses the expectations regarding the future use of nanocarriers in the area.
Collapse
Affiliation(s)
- Jorge F. Pontes
- Centre for Marine Sciences (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal;
- Drug Delivery Laboratory, Centre for Biomedical Research (CBMR), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Ana Grenha
- Centre for Marine Sciences (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal;
- Drug Delivery Laboratory, Centre for Biomedical Research (CBMR), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
- Department of Chemistry and Pharmacy, Faculty of Sciences and Technology, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
- Correspondence: ; Tel.: +351-289-244-441; Fax: +351-289-800-066
| |
Collapse
|