1
|
Ziental D, Czarczynska-Goslinska B, Wysocki M, Ptaszek M, Sobotta Ł. Advances and perspectives in use of semisolid formulations for photodynamic methods. Eur J Pharm Biopharm 2024; 204:114485. [PMID: 39255919 DOI: 10.1016/j.ejpb.2024.114485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/19/2024] [Accepted: 09/04/2024] [Indexed: 09/12/2024]
Abstract
Although nearly 30 years have passed since the introduction of the first clinically approved photosensitizer for photodynamic therapy, progress in developing new pharmaceutical formulations remains unsatisfactory. This review highlights that despite years of research, many recurring challenges and issues remain unresolved. The paper includes an analysis of selected essential studies involving aminolevulinic acid and its derivatives, as well as other photosensitizers with potential for development as medical products. Among various possible vehicles, special attention is given to gelatin, alginates, poly(ethylene oxide), polyacrylic acid, and chitosan. The focus is particularly on infectious and cancerous diseases. Key aspects of developing new semi-solid drug forms should prioritize the creation of easily manufacturable and biocompatible preparations for clinical use. At the same time, new formulations should preserve the primary function of photosensitizers, which is the generation of reactive oxygen species capable of destroying pathogenic cells or tumors. Additionally, the use of adjuvant properties of carriers, which can enhance the effectiveness of macrocycles, is emphasized, especially in chitosan-based antibacterial formulations. Current research indicates that many promising dyes and macrocyclic compounds with high potential as photosensitizers in photodynamic therapy remain unexplored in formulation and development work. This review outlines potential new and previously explored pathways for advancing photosensitizers as active pharmaceutical ingredients (APIs).
Collapse
Affiliation(s)
- Daniel Ziental
- Chair and Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland.
| | - Beata Czarczynska-Goslinska
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| | - Marcin Wysocki
- Chair and Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| | - Marcin Ptaszek
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County (UMBC), 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | - Łukasz Sobotta
- Chair and Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| |
Collapse
|
2
|
Nishimura K, Kono N, Oshige A, Takahashi H, Yamana K, Kawasaki R, Ikeda A. Improving the Photodynamic Activity of Water-Soluble Porphyrin-Polysaccharide Complexes by Folic Acid Modification. ChemMedChem 2024; 19:e202400268. [PMID: 38924356 DOI: 10.1002/cmdc.202400268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/12/2024] [Accepted: 06/26/2024] [Indexed: 06/28/2024]
Abstract
Studies have shown that folate receptors are highly expressed in various cancer cells. Here, we synthesized folic acid-conjugated pullulan (FAPL) as a solubilizing agent to improve the photodynamic activity of porphyrin derivative-polysaccharide complexes. The porphyrin derivative-FAPL complex exhibited long-term stability in an aqueous solution, attributed to the folic acid modification. Furthermore, in vitro and in vivo experiments highlighted the enhanced photodynamic activity of the porphyrin derivative-FAPL complex toward 4T1 breast-cancer cells, compared with the activities of the porphyrin derivative-pullulan complex and Photofrin. This enhanced activity is attributed to the improvement of intracellular uptake by the folate receptor.
Collapse
Affiliation(s)
- Kotaro Nishimura
- Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, 739-8527, Hiroshima, Japan
| | - Nanami Kono
- Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, 739-8527, Hiroshima, Japan
| | - Ayano Oshige
- Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, 739-8527, Hiroshima, Japan
| | - Haruko Takahashi
- Program of Basic Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8526, Hiroshima, Japan
| | - Keita Yamana
- Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, 739-8527, Hiroshima, Japan
| | - Riku Kawasaki
- Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, 739-8527, Hiroshima, Japan
| | - Atsushi Ikeda
- Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, 739-8527, Hiroshima, Japan
| |
Collapse
|
3
|
Liu M, Xie DD, Guo YX, Zhao RY, Liu FD, Zhang H, Gao F. TAR RNA selective targeting ruthenium(II) complexes as HIV-1 reverse transcriptase inhibitors: On exploring structure-activity relationships of multiple positions. J Inorg Biochem 2024; 259:112664. [PMID: 39018747 DOI: 10.1016/j.jinorgbio.2024.112664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/07/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024]
Abstract
HIV-1 reverse transcriptase (RT) inhibitors play a crucial role in the treatment of HIV by preventing the activity of the enzyme responsible for the replication of the virus. The HIV-1 Tat protein binds to transactivation response (TAR) RNA and recruits host factors to stimulate HIV-1 transcription. We have created a small library consisting of 4 × 6 polypyridyl Ru(II) complexes that selectively bind to TAR RNA, with targeting groups specific to HIV-1 TAR RNA. The molecule design was conducted by introducing hydroxyl or methoxy groups into an established potent TAR binder. The potential TAR binding ability was analysis from nature charge population and electrostatic potential by quantum chemistry calculations. Key modifications were found to be R1 and R3 groups. The most potent and selective TAR RNA binder was a3 with R1 = OH, R2 = H and R3 = Me. Through molecular recognition of hydrogen bonds and electrostatic attraction, they were able to firmly and selectively bind HIV-1 TAR RNA. Furthermore, they efficiently obstructed the contact between TAR RNA and Tat protein, and inhibited the reverse transcription activity of HIV-1 RT. The polypyridyl Ru(II) complexes were chemical and photo-stable, and sensitive and selective spectroscopic responses to TAR RNA. They exhibited little toxicity towards normal cells. Hence, this study might offer significant drug design approaches for researching AIDS and other illnesses associated with RT, including HCV, EBOV, and SARS-CoV-2. Moreover, it could contribute to fundamental research on the interactions of inorganic transition metal complexes with biomolecules.
Collapse
Affiliation(s)
- Meng Liu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University, Kunming 650050, PR China
| | - Dan-Dan Xie
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University, Kunming 650050, PR China
| | - Yuan-Xiao Guo
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University, Kunming 650050, PR China
| | - Run-Yu Zhao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University, Kunming 650050, PR China
| | - Fu-Dan Liu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University, Kunming 650050, PR China
| | - Hongbin Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University, Kunming 650050, PR China
| | - Feng Gao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University, Kunming 650050, PR China.
| |
Collapse
|
4
|
Bregnhøj M, Thorning F, Ogilby PR. Singlet Oxygen Photophysics: From Liquid Solvents to Mammalian Cells. Chem Rev 2024; 124:9949-10051. [PMID: 39106038 DOI: 10.1021/acs.chemrev.4c00105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Molecular oxygen, O2, has long provided a cornerstone for studies in chemistry, physics, and biology. Although the triplet ground state, O2(X3Σg-), has garnered much attention, the lowest excited electronic state, O2(a1Δg), commonly called singlet oxygen, has attracted appreciable interest, principally because of its unique chemical reactivity in systems ranging from the Earth's atmosphere to biological cells. Because O2(a1Δg) can be produced and deactivated in processes that involve light, the photophysics of O2(a1Δg) are equally important. Moreover, pathways for O2(a1Δg) deactivation that regenerate O2(X3Σg-), which address fundamental principles unto themselves, kinetically compete with the chemical reactions of O2(a1Δg) and, thus, have practical significance. Due to technological advances (e.g., lasers, optical detectors, microscopes), data acquired in the past ∼20 years have increased our understanding of O2(a1Δg) photophysics appreciably and facilitated both spatial and temporal control over the behavior of O2(a1Δg). One goal of this Review is to summarize recent developments that have broad ramifications, focusing on systems in which oxygen forms a contact complex with an organic molecule M (e.g., a liquid solvent). An important concept is the role played by the M+•O2-• charge-transfer state in both the formation and deactivation of O2(a1Δg).
Collapse
Affiliation(s)
- Mikkel Bregnhøj
- Department of Chemistry, Aarhus University, 140 Langelandsgade, Aarhus 8000, Denmark
| | - Frederik Thorning
- Department of Chemistry, Aarhus University, 140 Langelandsgade, Aarhus 8000, Denmark
| | - Peter R Ogilby
- Department of Chemistry, Aarhus University, 140 Langelandsgade, Aarhus 8000, Denmark
| |
Collapse
|
5
|
Horníková L, Henke P, Kubát P, Mosinger J. Specifically Targeting Capture and Photoinactivation of Viruses through Phosphatidylcholine-Ganglioside Vesicles with Photosensitizer. JACS AU 2024; 4:2826-2831. [PMID: 39211626 PMCID: PMC11350727 DOI: 10.1021/jacsau.4c00453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/29/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024]
Abstract
Herein, we performed a simple virus capture and photoinactivation procedure using visible light on phosphatidylcholine vesicles. l-α-Phosphatidylcholine vesicles were enriched by viral receptors, GT1b gangliosides, and the nonpolar photosensitizer 5,10,15,20-tetraphenylporphyrin. These vesicles absorb in the blue region of visible light with a high quantum yield of antiviral singlet oxygen, O2 (1Δg). Through the successful incorporation of gangliosides into the structure of vesicles and the encapsulation of photosensitizers in their photoactive and monomeric state, the photogeneration of O2(1Δg) was achieved with high efficiency on demand; this process was triggered by light, and specifically targeting/inactivating viruses were captured on ganglioside receptors due to the short lifetime (3.3 μs) and diffusion pathway (approximately 100 nm) of O2(1Δg). Time-resolved and steady-state luminescence as well as absorption spectroscopy were used to monitor the photoactivity of the photosensitizer and the photogeneration of O2(1Δg) on the surface of the vesicles. The capture of model mouse polyomavirus and its inactivation were achieved using immunofluorescence methods, and loss of infectivity toward mouse fibroblast 3T6 cells was detected.
Collapse
Affiliation(s)
- Lenka Horníková
- Faculty
of Science, BIOCEV, Charles University, Průmyslová 595, Vestec 252 50, Czech Republic
| | - Petr Henke
- Faculty
of Science, Charles University, Hlavova 2030, Prague 2 128 43, Czech Republic
| | - Pavel Kubát
- J. Heyrovský
Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 3, Prague 8 182 23, Czech Republic
| | - Jiří Mosinger
- Faculty
of Science, Charles University, Hlavova 2030, Prague 2 128 43, Czech Republic
| |
Collapse
|
6
|
Kretzer B, Herényi L, Csík G, Supala E, Orosz Á, Tordai H, Kiss B, Kellermayer M. TMPyP binding evokes a complex, tunable nanomechanical response in DNA. Nucleic Acids Res 2024; 52:8399-8418. [PMID: 38943349 PMCID: PMC11317170 DOI: 10.1093/nar/gkae560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 06/06/2024] [Accepted: 06/17/2024] [Indexed: 07/01/2024] Open
Abstract
TMPyP is a porphyrin capable of DNA binding and used in photodynamic therapy and G-quadruplex stabilization. Despite its broad applications, TMPyP's effect on DNA nanomechanics is unknown. Here we investigated, by manipulating λ-phage DNA with optical tweezers combined with microfluidics in equilibrium and perturbation kinetic experiments, how TMPyP influences DNA nanomechanics across wide ranges of TMPyP concentration (5-5120 nM), mechanical force (0-100 pN), NaCl concentration (0.01-1 M) and pulling rate (0.2-20 μm/s). Complex responses were recorded, for the analysis of which we introduced a simple mathematical model. TMPyP binding, which is a highly dynamic process, leads to dsDNA lengthening and softening. dsDNA stability increased at low (<10 nM) TMPyP concentrations, then decreased progressively upon increasing TMPyP concentration. Overstretch cooperativity decreased, due most likely to mechanical roadblocks of ssDNA-bound TMPyP. TMPyP binding increased ssDNA's contour length. The addition of NaCl at high (1 M) concentration competed with the TMPyP-evoked nanomechanical changes. Because the largest amplitude of the changes is induced by the pharmacologically relevant TMPyP concentration range, this porphyrin derivative may be used to tune DNA's structure and properties, hence control the wide array of biomolecular DNA-dependent processes including replication, transcription, condensation and repair.
Collapse
Affiliation(s)
- Balázs Kretzer
- Department of Biophysics and Radiation Biology, Semmelweis University, Tűzoltó Str. 37-47, H1094 Budapest, Hungary
- HUNREN-SE Biophysical Virology Group, Tűzoltó Str. 37-47, H1094 Budapest, Hungary
| | - Levente Herényi
- Department of Biophysics and Radiation Biology, Semmelweis University, Tűzoltó Str. 37-47, H1094 Budapest, Hungary
| | - Gabriella Csík
- Department of Biophysics and Radiation Biology, Semmelweis University, Tűzoltó Str. 37-47, H1094 Budapest, Hungary
| | - Eszter Supala
- Department of Biophysics and Radiation Biology, Semmelweis University, Tűzoltó Str. 37-47, H1094 Budapest, Hungary
| | - Ádám Orosz
- Department of Biophysics and Radiation Biology, Semmelweis University, Tűzoltó Str. 37-47, H1094 Budapest, Hungary
| | - Hedvig Tordai
- Department of Biophysics and Radiation Biology, Semmelweis University, Tűzoltó Str. 37-47, H1094 Budapest, Hungary
| | - Bálint Kiss
- Department of Biophysics and Radiation Biology, Semmelweis University, Tűzoltó Str. 37-47, H1094 Budapest, Hungary
- HUNREN-SE Biophysical Virology Group, Tűzoltó Str. 37-47, H1094 Budapest, Hungary
| | - Miklós Kellermayer
- Department of Biophysics and Radiation Biology, Semmelweis University, Tűzoltó Str. 37-47, H1094 Budapest, Hungary
- HUNREN-SE Biophysical Virology Group, Tűzoltó Str. 37-47, H1094 Budapest, Hungary
| |
Collapse
|
7
|
Maguire S, Strachan G, Norvaiša K, Donohoe C, Gomes-da-Silva LC, Senge MO. Porphyrin Atropisomerism as a Molecular Engineering Tool in Medicinal Chemistry, Molecular Recognition, Supramolecular Assembly, and Catalysis. Chemistry 2024; 30:e202401559. [PMID: 38787350 DOI: 10.1002/chem.202401559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/18/2024] [Accepted: 05/24/2024] [Indexed: 05/25/2024]
Abstract
Porphyrin atropisomerism, which arises from restricted σ-bond rotation between the macrocycle and a sufficiently bulky substituent, was identified in 1969 by Gottwald and Ullman in 5,10,15,20-tetrakis(o-hydroxyphenyl)porphyrins. Henceforth, an entirely new field has emerged utilizing this transformative tool. This review strives to explain the consequences of atropisomerism in porphyrins, the methods which have been developed for their separation and analysis and present the diverse array of applications. Porphyrins alone possess intriguing properties and a structure which can be easily decorated and molded for a specific function. Therefore, atropisomerism serves as a transformative tool, making it possible to obtain even a specific molecular shape. Atropisomerism has been thoroughly exploited in catalysis and molecular recognition yet presents both challenges and opportunities in medicinal chemistry.
Collapse
Affiliation(s)
- Sophie Maguire
- School of Chemistry, Chair of Organic Chemistry, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse Street, Dublin, D02R590, Ireland
| | - Grant Strachan
- School of Chemistry, Chair of Organic Chemistry, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse Street, Dublin, D02R590, Ireland
| | - Karolis Norvaiša
- School of Chemistry, Chair of Organic Chemistry, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse Street, Dublin, D02R590, Ireland
| | - Claire Donohoe
- School of Chemistry, Chair of Organic Chemistry, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse Street, Dublin, D02R590, Ireland
- CQC, Coimbra Chemistry Centre, University of Coimbra, Coimbra, 3004-535, Portugal
| | | | - Mathias O Senge
- School of Chemistry, Chair of Organic Chemistry, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse Street, Dublin, D02R590, Ireland
- Institute for Advanced Study (TUM-IAS), Focus Group-Molecular and Interfacial Engineering of Organic Nanosystems, Technical University of Munich, Lichtenberg Str. 2a, 85748, Garching, Germany
| |
Collapse
|
8
|
Liška V, Willimetz R, Kubát P, Křtěnová P, Gyepes R, Mosinger J. Synergistic photogeneration of nitric oxide and singlet oxygen by nanofiber membranes via blue and/or red-light irradiation: Strong antibacterial action. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 255:112906. [PMID: 38688040 DOI: 10.1016/j.jphotobiol.2024.112906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/28/2024] [Accepted: 04/05/2024] [Indexed: 05/02/2024]
Abstract
New functionalities were added to biocompatible polycaprolactone nanofiber materials through the co-encapsulation of chlorin e6 trimethyl ester (Ce6) photogenerating singlet oxygen and absorbing light both in the blue and red regions, and using 4-(N-(aminopropyl)-3-(trifluoromethyl)-4-nitrobenzenamine)-7-nitrobenzofurazan, NO-photodonor (NOP), absorbing light in the blue region of visible light. Time-resolved and steady-state luminescence, as well as absorption spectroscopy, were used to monitor both photoactive compounds. The nanofiber material exhibited photogeneration of antibacterial species, specifically nitric oxide and singlet oxygen, upon visible light excitation. This process resulted in the efficient photodynamic inactivation of E. coli not only close to nanofiber material surfaces due to short-lived singlet oxygen, but even at longer distances due to diffusion of longer-lived nitric oxide. Interestingly, nitric oxide was also formed by processes involving photosensitization of Ce6 during irradiation by red light. This is promising for numerous applications, especially in the biomedical field, where strictly local photogeneration of NO and its therapeutic benefits can be applied using excitation in the "human body phototherapeutic window" (600-850 nm). Generally, due to the high permeability of red light, the photogeneration of NO can be achieved in any aqueous environment where direct excitation of NOP to its absorbance in the blue region is limited.
Collapse
Affiliation(s)
- Vojtěch Liška
- Faculty of Science, Charles University, Hlavova 2030, 128 43 Prague 2, Czech Republic
| | - Robert Willimetz
- Faculty of Science, Charles University, Hlavova 2030, 128 43 Prague 2, Czech Republic
| | - Pavel Kubát
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 3, 182 23 Prague 8, Czech Republic
| | - Petra Křtěnová
- Faculty of Science, Charles University, Hlavova 2030, 128 43 Prague 2, Czech Republic
| | - Robert Gyepes
- Department of Chemistry, Faculty of Education of J. Selye University, Bratislavská 3322, 945 01 Komárno, Slovak Republic
| | - Jiří Mosinger
- Faculty of Science, Charles University, Hlavova 2030, 128 43 Prague 2, Czech Republic.
| |
Collapse
|
9
|
Li Y, Qu X, Wang Q, Li S, Zhang Q, Zhang X. Tannic acid and carboxymethyl chitosan-based multi-functional double-layered hydrogel with pH-stimulated response behavior for smart real-time infection monitoring and wound treatment. Int J Biol Macromol 2024; 261:129042. [PMID: 38161021 DOI: 10.1016/j.ijbiomac.2023.129042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/18/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024]
Abstract
The dramatic increase of drug-resistant pathogenic bacteria has seriously effect on human health, appealing the needs of developing theranostic platforms with stimuli-responsive materials to realize the accurate bacterial diagnostics and therapeutics. Herein, a tannic acid and carboxymethyl chitosan-based multifunctional ZIF-90@i-PPOPs-phenol red double-layered hydrogel with stimuli-responsiveness and antibacterial activity was fabricated. The inner layer hydrogel (ZIF-90@i-PPOPs-based TFC hydrogels) was fabricated based on ZIF-90@i-PPOPs, integrate tannic acid and carboxymethyl chitosan linked by formylphenylboronic acid (FPBA), which exhibited outstanding injectable, biodegradability and antibacterial activity. The outer layer hydrogel (PR@PAM hydrogels) were constructed from polyacrylamide (PAM) and pH indicator phenol red, owning porous structure and excellent tissue adhesion. Due to the weakly acidic microenvironment within wound, the inner-layer hydrogel was stimulus-responsively decomposed, resulting in the accurate delivery of the positively charged ZIF-90@i-PPOPs to the lesion site to capture and kill bacteria by enhanced Zn2+ and ROS release. Meantime, the outer-layer hydrogel could real-timely monitor the pH changes to evaluate the wound recovery status. These double-layered hydrogels possessed precisely pH monitoring capacity, excellent antibacterial ability and negligible side effect to normal tissue in vivo, implying the high potential of the suggested hydrogels as theranostic platform for antibacterial treatment.
Collapse
Affiliation(s)
- Yanhong Li
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Xinyan Qu
- School of Pharmaceutical Sciences, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China.
| | - Quanbo Wang
- School of Pharmaceutical Sciences, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Sheng Li
- Weifang Hospital of Traditional Chinese Medicine, Weifang 261000, China
| | - Qiang Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Xiaomei Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China.
| |
Collapse
|
10
|
Song S, Yang M, He F, Zhang X, Gao Y, An B, Ding H, Gai S, Yang P. Multiple therapeutic mechanisms of pyrrolic N-rich g-C 3N 4 nanosheets with enzyme-like function in the tumor microenvironment. J Colloid Interface Sci 2023; 650:1125-1137. [PMID: 37473473 DOI: 10.1016/j.jcis.2023.06.177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/12/2023] [Accepted: 06/25/2023] [Indexed: 07/22/2023]
Abstract
Nanozyme-based synergistic catalytic therapies for tumors have attracted extensive research attention. However, the unsatisfactory efficiency and negative impact of the tumor microenvironment (TME) hinder its clinical applications. In this study, we provide an easy method to prepare transition metals loaded onto pyrrolic nitrogen-rich g-C3N4 (PN-g-C3N4) for forming metal-N4 sites. This N-rich material effectively transfers electrons from g-C3N4 to metal-N4 sites, promotes the oxidation-reduction reaction of metals with different valence states, and improves material reusability. Under TME conditions, copper ions loaded onto PN-g-C3N4 (Cu-PN-g-C3N4, CPC) can produce ·OH through a Fenton-like reaction for tumor inhibition. This Fenton-like reaction and tumor cell inhibition can be improved further by a photodynamic effect caused by light irradiation. We introduced upconversion nanoparticles (UCNPs) into CPC to obtain nano-enzymes (UCNPs@Cu-PN-g-C3N4, UCPC) for effectively penetrating the tissue, which emits light corresponding to the UV absorption region of CPC when excited with 980 nm near-infrared (NIR) light. The nanoplatform can reduce H2O2 concentration upon exposure to NIR light; this induces an increase in dissolved oxygen content and produces a higher supply of reactive oxygen species (ROS) for destroying tumor cells. Owing to the narrow bandgap (1.92 eV) of UCPC under 980 light irradiation, even under the condition of hypoxia, the excited electrons in the conduction band can reduce insoluble O2 through a single electron transfer process, thus effectively generating O2•-. Nanoenzyme materials with catalase properties produce three types of ROS (·OH, O2•- and 1O2) when realizing chemodynamic and photodynamic therapies. An excellent therapeutic effect was established by killing cells in vitro and the tumor-inhibiting effect in vivo, proving that the prepared nanoenzymes have an effective therapeutic effect and that the endogenous synergistic treatment of multiple treatment technologies can be realized.
Collapse
Affiliation(s)
- Shanshan Song
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China
| | - Miao Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China
| | - Fei He
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China.
| | - Xiao Zhang
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR 999077, PR China;.
| | - Yijun Gao
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China
| | - Baichao An
- College of Sciences, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, PR China
| | - He Ding
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China
| | - Shili Gai
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China
| | - Piaoping Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China.
| |
Collapse
|
11
|
Ananyan GV, Dalyan YB, Karapetyan NH, Barkhudaryan VG, Avetisyan AA. Interaction of MnTOEtPyP4 porphyrin with DNA. J Biomol Struct Dyn 2023; 41:7290-7296. [PMID: 36093964 DOI: 10.1080/07391102.2022.2120076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/26/2022] [Indexed: 10/14/2022]
Abstract
The binding of water-soluble meso-tetra-(4N-oxyethylpyridyl) porphyrin (H2TOEtPyP4) and its manganese (III) derivative (MnTOEtPyP4) with calf thymus DNA have been quantitatively studied using UV/Vis spectrophotometry, Circular Dichroism (CD), thermal melting curves and viscometry. The results show, that porphyrins interact with DNA via one binding mode at low relative concentrations (r) and two binding modes at high values of r. The binding constant (Kb) and stoichiometry (n) were determined from binding isotherms for both porphyrin-DNA complexes. The thermal melting analysis indicates that the double-helical structure of DNA molecules is stabilizing in presence of studied porphyrins. At certain concentrations of porphyrin, two-stage melting curves were observed, which indicates the existence of two different binding modes. Obtained results show that MnTOEtPyP4 associates with DNA duplex via outside binding mode.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Gayane V Ananyan
- Department of Molecular Physics, Yerevan State University, Yerevan, Armenia
| | - Yeva B Dalyan
- Department of Molecular Physics, Yerevan State University, Yerevan, Armenia
| | - Nelli H Karapetyan
- Department of Molecular Physics, Yerevan State University, Yerevan, Armenia
| | | | - Ani A Avetisyan
- Department of Molecular Physics, Yerevan State University, Yerevan, Armenia
| |
Collapse
|
12
|
Mallick Ganguly O, Moulik S. Interactions of Mn complexes with DNA: the relevance of therapeutic applications towards cancer treatment. Dalton Trans 2023; 52:10639-10656. [PMID: 37475585 DOI: 10.1039/d3dt00659j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Manganese (Mn) is one of the most significant bio-metals that helps the body to form connective tissue, bones, blood clotting factors, and sex hormones. It is necessary for fat and carbohydrate metabolism, calcium absorption, blood sugar regulation, and normal brain and nerve functions. It accelerates the synthesis of proteins, vitamin C, and vitamin B. It is also involved in the catalysis of hematopoiesis, regulation of the endocrine level, and improvement of immune function. Again, Mn metalloenzymes like arginase, glutamine synthetase, phosphoenolpyruvate decarboxylase, and Mn superoxide dismutase (MnSOD) contribute to the metabolism processes and reduce oxidative stress against free radicals. Recent investigations have revealed that synthetic Mn-complexes act as antibacterial and antifungal agents. As a result, chemists and biologists have been actively involved in developing Mn-based drugs for the treatment of various diseases including cancer. Therefore, any therapeutic drugs based on manganese complexes would be invaluable for the treatment of cancer/infectious diseases and could be a better substitute for cisplatin and other related platinum based chemotherapeutic drugs. From this perspective, attempts have been made to discuss the interactions and nuclease activities of Mn(II/III/IV) complexes with DNA through which one can evaluate their therapeutic applications.
Collapse
Affiliation(s)
- Oishi Mallick Ganguly
- St Xavier's College, 30, Park St, Mullick Bazar, Park Street area, Kolkata, West Bengal 700016, India
| | - Shuvojit Moulik
- Suraksha Diagnostics Pvt Ltd, Newtown 12/1, Premises No. 02-0327, DG Block(Newtown), Action Area 1D, Newtown, Kolkata, West Bengal 700156, India.
| |
Collapse
|
13
|
Rodrigues BM, Victória HFV, Leite G, Krambrock K, Chaves OA, de Oliveira DF, Garcia RDQ, De Boni L, Costa LAS, Iglesias BA. Photophysical, photobiological, and biomolecule-binding properties of new tri-cationic meso-tri(2-thienyl)corroles with Pt(II) and Pd(II) polypyridyl derivatives. J Inorg Biochem 2023; 242:112149. [PMID: 36780772 DOI: 10.1016/j.jinorgbio.2023.112149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 01/19/2023] [Accepted: 01/21/2023] [Indexed: 01/26/2023]
Abstract
We report the synthesis and characterization of new tri-cationic corrole derivatives, containing Pt(II) or Pd(II) complexes attached at the peripheral position of thienyl moieties. Corrole derivatives were characterized through microanalysis, electrochemical, spectrometry and spectroscopy analysis. Singlet and triplet excited-states are investigated by photophysical/theoretical calculation methods and photobiological parameters were also evaluated spectroscopic techniques (UV-Vis and EPR). Also, the binding capacity of each corrole derivative with nucleic acids (DNA) and human serum albumin (HSA) was determined by UV-Vis, steady-state, and time-resolved fluorescence spectroscopy, combined with molecular docking analysis. Moreover, the new corroles containing peripheral complexes improve their interactions with biomacromolecules, generate reactive oxygen species under light source irradiation studied and has potential for application in photodynamic therapeutic processes.
Collapse
Affiliation(s)
- Bruna M Rodrigues
- Bioinorganic and Porphyrinoid Material Laboratory, Department of Chemistry, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Henrique F V Victória
- Department of Physics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Guilherme Leite
- Department of Physics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Klaus Krambrock
- Department of Physics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Otávio A Chaves
- Department of Chemistry, University of Coimbra, Coimbra, Portugal
| | - Diego F de Oliveira
- São Carlos Institute of Physics, University of São Paulo, São Carlos, SP, Brazil
| | - Rafael de Q Garcia
- São Carlos Institute of Physics, University of São Paulo, São Carlos, SP, Brazil
| | - Leonardo De Boni
- São Carlos Institute of Physics, University of São Paulo, São Carlos, SP, Brazil
| | - Luiz A S Costa
- NEQC - Núcleo de Estudos em Química Computacional, Departament of Chemistry, Federal University of Juiz de Fora, Juiz de Fora, MG, Brazil
| | - Bernardo A Iglesias
- Bioinorganic and Porphyrinoid Material Laboratory, Department of Chemistry, Federal University of Santa Maria, Santa Maria, RS, Brazil.
| |
Collapse
|
14
|
Rodrigues BM, Diniz CC, da Rocha VN, Köhler MH, Brandão GP, Machado LA, da Silva Júnior EN, Iglesias BA. First report of trans-A 2B-corrole derived from a lapachone derivative: photophysical, TD-DFT and photobiological assays. RSC Adv 2023; 13:11121-11129. [PMID: 37056965 PMCID: PMC10089255 DOI: 10.1039/d3ra00823a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/01/2023] [Indexed: 04/15/2023] Open
Abstract
In this work, the synthesis, characterization and photophysical assays of a new trans-A2B-corrole derivative from the naturally occurring quinone are described. β-Lapachone is a naturally occurring quinoidal compound that provides highly fluorescent heterocyclic compounds such as lapimidazoles. The new trans-A2B-corrole compound was obtained from the reaction between 2,3,4,5,6-(pentafluorophenyl)dipyrromethane and the lapimidazole bearing an aldehyde group. The dyad was characterized by high-resolution mass spectrometry (HRMS), NMR spectroscopy (1H, COSY 2D, HMBC, 19F), FT-IR, UV-vis, steady-state and time-resolved fluorescence, electrochemical studies (CV), TD-DFT analysis and photobiological experiments, in which includes aggregation, stability in solution, photostability and partition coefficients assays. Finally, ROS generation assays were performed using 1,3-diphenylisobenzofuran (DPBF) method and the presented compound showed significant photostability and singlet oxygen production.
Collapse
Affiliation(s)
- Bruna M Rodrigues
- Bioinorganic and Porphyrinoid Material Laboratory, Department of Chemistry, Federal University of Santa Maria Santa Maria-RS Brazil
| | - Carlos C Diniz
- Bioinorganic and Porphyrinoid Material Laboratory, Department of Chemistry, Federal University of Santa Maria Santa Maria-RS Brazil
| | - Vinicius N da Rocha
- Department of Physics, Federal University of Santa Maria Santa Maria-RS Brazil
| | - Mateus H Köhler
- Department of Physics, Federal University of Santa Maria Santa Maria-RS Brazil
| | - Guilherme P Brandão
- Department of Chemistry, Federal University of Minas Gerais Belo Horizonte MG Brazil
| | - Luana A Machado
- Department of Chemistry, Federal University of Minas Gerais Belo Horizonte MG Brazil
- Julius Maximilians-Universität Würzburg (JMU), Institute for Inorganic Chemistry Am Hubland Würzburg 97074 Germany
| | | | - Bernardo A Iglesias
- Bioinorganic and Porphyrinoid Material Laboratory, Department of Chemistry, Federal University of Santa Maria Santa Maria-RS Brazil
| |
Collapse
|
15
|
Wei X, Cui WB, Qin GY, Zhang XE, Sun FY, Li H, Guo JF, Ren AM. Theoretical Investigation of Ru(II) Complexes with Long Lifetime and a Large Two-Photon Absorption Cross-Section in Photodynamic Therapy. J Med Chem 2023; 66:4167-4178. [PMID: 36884221 DOI: 10.1021/acs.jmedchem.3c00047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Two-photon photodynamic therapy (TP-PDT), as a new method for cancer, has shown unique advantages in tumors. A low two-photon absorption cross-section (δ) in the biologic spectral window and a short triplet state lifetime are the important issues faced by the current photosensitizers (PSs) in TP-PDT. In this paper, the photophysical properties of a series of Ru(II) complexes were studied by density functional theory and time-dependent density functional theory methods. The electronic structure, one- and two-photon absorption properties, type I/II mechanisms, triplet state lifetime, and solvation free energy were calculated. The results showed that the substitution of methoxyls by pyrene groups greatly improved the lifetime of the complex. Furthermore, the addition of acetylenyl groups subtly enhanced δ. Overall, complex 3b possess a large δ(1376 GM), a long lifetime (136 μs), and better solvation free energy. It is hoped that it can provide valuable theoretical guidance for the design and synthesis of efficient two-photon PSs in the experiment.
Collapse
Affiliation(s)
- Xue Wei
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Liutiao Road #2, Changchun 130061, P. R. China
| | - Wei-Bo Cui
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Liutiao Road #2, Changchun 130061, P. R. China
| | - Gui-Ya Qin
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Liutiao Road #2, Changchun 130061, P. R. China
| | - Xiu-E Zhang
- School of Physics, Northeast Normal University, Changchun 130024, P. R. China
| | - Feng-Yi Sun
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Liutiao Road #2, Changchun 130061, P. R. China
| | - Hui Li
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Liutiao Road #2, Changchun 130061, P. R. China
| | - Jing-Fu Guo
- School of Physics, Northeast Normal University, Changchun 130024, P. R. China
| | - Ai-Min Ren
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Liutiao Road #2, Changchun 130061, P. R. China
| |
Collapse
|
16
|
Kubovics M, Careta O, Vallcorba O, Romo-Islas G, Rodríguez L, Ayllón JA, Domingo C, Nogués C, López-Periago AM. Supercritical CO 2 Synthesis of Porous Metalloporphyrin Frameworks: Application in Photodynamic Therapy. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2023; 35:1080-1093. [PMID: 36818591 PMCID: PMC9933429 DOI: 10.1021/acs.chemmater.2c03018] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/17/2023] [Indexed: 06/18/2023]
Abstract
A series of porous metalloporphyrin frameworks prepared from the 5,10,15,20-tetra(4-pyridyl)porphyrin (H2TPyP) linker and four metal complexes, M(hfac)2 M = Cu(II), Zn(II), Co(II), and Ni(II) (hfac: 1,1,1,5,5,5-hexafluoroacetylacetonate), were obtained using supercritical CO2 (scCO2) as a solvent. All the materials, named generically as [M-TPyP] n , formed porous metal-organic frameworks (MOFs), with surface areas of ∼450 m2 g-1. All MOFs were formed through the coordination of the metal to the exocyclic pyridine moieties in the porphyrin linker. For Cu(II), Zn(II), and Co(II), incomplete metal coordination of the inner pyrrole ring throughout the structure was observed, giving place to MOFs with substitutional defects and leading to a certain level of disorder and limited crystallinity. These samples, prepared using scCO2, were precipitated as nano- to micrometric powders. Separately, a layering technique from a mixture of organic solvents was used to crystallize high-quality crystals of the Co(II) based MOF, obtained with the formula [{Co(hfac)2}2H2TPyP] n . The crystal structure of this MOF was elucidated by single-crystal synchrotron X-ray diffraction. The Zn(II)-based MOF was selected as a potential photodynamic therapy drug in the SKBR-3 tumoral cell line showing outstanding performance. This MOF resulted to be nontoxic, but after 15 min of irradiation at 630 nm, using either 1 or 5 μM concentration of the product, almost 70% of tumor cells died after 72 h.
Collapse
Affiliation(s)
- Márta Kubovics
- Institute
of Materials Science of Barcelona (ICMAB-CSIC), Campus UAB s/n, 08193Bellaterra, Spain
| | - Oriol Careta
- Department
de Biologia Cel·lular, Fisiologia i Immunologia. Universtitat Autònoma de Barcelona (UAB), Campus UAB s/n, 08193Bellaterra, Spain
| | - Oriol Vallcorba
- ALBA
Synchrotron Light Source, 08290Cerdanyola del Vallés, Spain
| | - Guillermo Romo-Islas
- Department
of Inorganic and Organic Chemistry, Barcelona
University, Martí
i Franquès 1-11, 08028Barcelona, Spain
- Institute
of Nanoscience and Nanotechnology (IN2UB), Barcelona University, Campus UB s/n, 08028Barcelona, Spain
| | - Laura Rodríguez
- Department
of Inorganic and Organic Chemistry, Barcelona
University, Martí
i Franquès 1-11, 08028Barcelona, Spain
- Institute
of Nanoscience and Nanotechnology (IN2UB), Barcelona University, Campus UB s/n, 08028Barcelona, Spain
| | - Jose A. Ayllón
- Department
de Química, Universtitat Autònoma
de Barcelona (UAB), Campus
UAB s/n, 08193Bellaterra, Spain
| | - Concepción Domingo
- Institute
of Materials Science of Barcelona (ICMAB-CSIC), Campus UAB s/n, 08193Bellaterra, Spain
| | - Carme Nogués
- Department
de Biologia Cel·lular, Fisiologia i Immunologia. Universtitat Autònoma de Barcelona (UAB), Campus UAB s/n, 08193Bellaterra, Spain
| | - Ana M. López-Periago
- Institute
of Materials Science of Barcelona (ICMAB-CSIC), Campus UAB s/n, 08193Bellaterra, Spain
| |
Collapse
|
17
|
Chakraborty G, Chattaraj S, Pal H. pH assisted modulation in the binding affinity for BODIPY-benzimidazole conjugate with anionic cyclodextrin. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2022.114266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
18
|
Pola M, Kolarova H, Bajgar R. Generation of singlet oxygen by porphyrin and phthalocyanine derivatives regarding the oxygen level. JOURNAL OF MEDICAL SCIENCE 2022. [DOI: 10.20883/medical.e752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Background. The principle of photodynamic effect is based on the combined action of photosensitiser, molecular oxygen and light, which produce various reactive oxygen species and are associated with significant cellular damage. Singlet oxygen is one of the most serious representatives, which is characterised by powerful oxidising properties. Moreover, concomitant hyperbaric oxygen treatment can support these effects. Therefore, the subject of our study was to compare the yields of singlet oxygen for four different photosensitizers in dependency on the oxygen concentration.
Material and methods. Four different photosensitizers 5,10,15,20-tetrakis(1-methyl-4-pyridinio)porphyrin tetra(p-toluenesulfonate), tetramethylthionine chloride, 5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrin zinc(II) and zinc phthalocyanine disulfonate were investigated to determine the yield of singlet oxygen in PBS by Singlet Oxygen Sensor Green reagent under different partial pressures of oxygen (0.4 and 36 mg/l).
Results. There were no noticeable shifts in the excitation and emission fluorescence spectra regarding the oxygen concentration. Concerning the same molar concentration of photosensitizers the production of singlet oxygen was highest for 5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrin zinc(II), where the rate of the fluorescence change was more than 3 times higher than that obtained for 5,10,15,20-tetrakis(1-methyl-4-pyridinio)porphyrin tetra(p-toluenesulfonate). On the other hand, zinc phthalocyanine disulfonate showed the lowest yield in singlet oxygen production.
Conclusions. Singlet oxygen production, within the range of oxygen concentrations achievable in tissues under normoxia or hyperoxia, does not depend on these concentrations. However, the singlet oxygen generation is significantly influenced by the type of photosensitizer, with the highest yield belonging to 5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrin zinc(II).
Collapse
|
19
|
Hirakawa K, Katayama A, Yamaoka S, Ikeue T, Okazaki S. Photosensitized protein damage by water-soluble phthalocyanine zinc(II) and gallium(III) complexes through electron transfer and singlet oxygen production. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
20
|
Han D, Liu X, Wu S. Metal organic framework-based antibacterial agents and their underlying mechanisms. Chem Soc Rev 2022; 51:7138-7169. [PMID: 35866702 DOI: 10.1039/d2cs00460g] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bacteria, as the most abundant living organisms, have always been a threat to human life until the development of antibiotics. However, with the wide use of antibiotics over a long time, bacteria have gradually gained tolerance to antibiotics, further aggravating threat to human beings and environmental safety significantly. In recent decades, new bacteria-killing methods based on metal ions, hyperthermia, free radicals, physical pricks, and the coordination of several multi-mechanisms have attracted increasing attention. Consequently, multiple types of new antibacterial agents have been developed. Among them, metal organic frameworks (MOFs) appear to play an increasingly important role. The unique characteristics of MOFs make them suitable multiple-functional platforms. By selecting the appropriate metastable coordination bonds, MOFs can act as reservoirs and release antibacterial metal ions or organic linkers; by constructing a porous structure, MOFs can act as carriers for multiple types of agents and achieve slow and sustained release; and by designing their composition and the pore structure precisely, MOFs can be endowed with properties to produce heat and free radicals under stimulation. Importantly, in combination with other materials, MOFs can act as a platform to kill bacteria effectively through the synergistic effect of multiple types of mechanisms. In this review, we focus on the recent development of MOF-based antibacterial agents, which are classified according to their antibacterial mechanisms.
Collapse
Affiliation(s)
- Donglin Han
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin, 132022, China.
| | - Xiangmei Liu
- School of Life Science and Health Engineering, Hebei University of Technology, Xiping Avenue 5340, Beichen District, Tianjin, 300401, China
| | - Shuilin Wu
- School of Materials Science & Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
21
|
Yang R, Bi XD, Li Y, Liu M, Hu MQ, Zhao LM, Zhang H, Gao F. Scorpion-Shaped Zinc Porphyrins as Tetrafunctional TAR RNA Predators and HIV-1 Reverse Transcriptase Inhibitors. Inorg Chem 2022; 61:10774-10780. [PMID: 35796528 DOI: 10.1021/acs.inorgchem.2c00975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
HIV-1 reverse transcriptase (RT) inhibitors are fundamental to the discovery and development of anti-HIV drugs. Their main target is RT, and only a tiny number of them can bind to viral RNA. In this paper, five new Zn(II) porphyrin compounds were developed with different characters. ZnTPP4 has both the appearance and the functions of a scorpion with a rigid tail and stinger to selectively hunt HIV-1 TAR RNA based on the molecular recognition of hydrogen bonds, a fierce chelicera to bite RNA by metal coordination, mighty pedipalps to grasp the bound RNA by supramolecular inclusion, and a broad body maintaining the configuration of each functional area so that they can cooperate with each other and providing accommodation space for the bound RNA. This tetrafunctional Zn(II) porphyrin is relatively nontoxic to normal cells and can produce sensitive responses for RNA. Moreover, this work offers practical construction methodologies for medication of AIDS and other diseases closely related to RT like EBOV and SARS-CoV-2.
Collapse
Affiliation(s)
- Rong Yang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Xu-Dan Bi
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Yan Li
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Meng Liu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Man-Qi Hu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Li-Min Zhao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Hongbin Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Feng Gao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| |
Collapse
|
22
|
Lamač M, Dunlop D, Lang K, Kubát P. Group 4 metallocene derivatives as a new class of singlet oxygen photosensitizers. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2021.113619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Tisoco I, Donatoni MC, Victória HFV, de Toledo JR, Krambrock K, Chaves OA, de Oliveira KT, Iglesias BA. Photophysical, photooxidation, and biomolecule-interaction of meso-tetra(thienyl)porphyrins containing peripheral Pt(II) and Pd(II) complexes. Insights for photodynamic therapy applications. Dalton Trans 2022; 51:1646-1657. [PMID: 35015799 DOI: 10.1039/d1dt03565g] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
We report the synthesis and characterization of two novel tetra-cationic porphyrins, containing Pt(II) or Pd(II) polypyridyl complexes attached at the peripheral position of N4-macrocycle. Compounds were characterized through elemental analysis, molar conductivity, cyclic voltammetry, and spectroscopy analysis. Photophysical and photobiological parameters were also evaluated. Also, the binding capacity of each porphyrin with human serum albumin (HSA) was determined by UV-Vis, steady-state, and time-resolved fluorescence spectroscopy, combined with molecular docking calculations. The results suggest that the interaction of these compounds is spontaneous, weak to moderate, and probably occurs at site III (subdomain IB) by non-covalent forces, including van der Waals and H-bonding. Moreover, porphyrins containing peripheral complexes improve their interactions with biomolecules, show good photostability, generate reactive oxygen species under white light studied by electron paramagnetic resonance (EPR) analysis, and promote photo-damage of HSA.
Collapse
Affiliation(s)
- Isadora Tisoco
- Department of Chemistry, Federal University of Santa Maria, Av. Roraima, Santa Maria-RS, Brazil.
| | - Maria Carolina Donatoni
- Department of Chemistry, Federal University of São Carlos, Rod. Washington Luiz, São Carlos-SP, Brazil
| | | | - José Roberto de Toledo
- Department of Physics, Federal University of Minas Gerais, Av. Antônio Carlos, Belo Horizonte-MG, Brazil
| | - Klaus Krambrock
- Department of Physics, Federal University of Minas Gerais, Av. Antônio Carlos, Belo Horizonte-MG, Brazil
| | | | - Kleber Thiago de Oliveira
- Department of Chemistry, Federal University of São Carlos, Rod. Washington Luiz, São Carlos-SP, Brazil
| | | |
Collapse
|
24
|
Hou B, Zhang Y, Li C, Sun X, Feng X, Liu J. Synthesis and in vitro biological evaluation of novel water‐soluble porphyrin complexes for cancer photodynamic therapy. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6598] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Bingjie Hou
- Key Laboratory of Eco‐Environment‐Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou People's Republic of China
| | - Yuanwen Zhang
- Key Laboratory of Eco‐Environment‐Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou People's Republic of China
| | - Cuili Li
- Key Laboratory of Eco‐Environment‐Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou People's Republic of China
| | - Xueqin Sun
- Key Laboratory of Eco‐Environment‐Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou People's Republic of China
| | - Xiaoxia Feng
- Key Laboratory of Eco‐Environment‐Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou People's Republic of China
| | - Jiacheng Liu
- Key Laboratory of Eco‐Environment‐Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou People's Republic of China
| |
Collapse
|
25
|
Joshi S, Singh A, Kukreti S. Porphyrin induced structural destabilization of a parallel DNA G-quadruplex in human MRP1 gene promoter. J Mol Recognit 2022; 35:e2950. [PMID: 34990028 DOI: 10.1002/jmr.2950] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 01/01/2023]
Abstract
Porphyrins are among the first ligands that have been tested for their quadruplex binding and stabilization potential. We report the differential interaction of the positional cationic porphyrin isomers TMPyP3 and TMPyP4 with a parallel G-quadruplex (GQ) formed by 33-mer (TP) regulatory sequence present in the promoter region of the human multidrug resistance protein 1 (MRP1) transporter gene. This GQ element encompasses the three evolutionary conserved SP1 transcription factor binding sites. Taking into account that SP1 binds to a non-canonical GQ motif with higher affinity than to a canonical duplex DNA consensus motif, it is suggestive that GQ distortion by cationic porphyrin will have important implications in the regulation of MRP1 expression. Herein, we employed biophysical analysis using circular dichroism, visible absorption, UV-thermal melting and steady-state fluorescence spectroscopy, reporting destabilization of MRP1 GQ by cationic porphyrins. Results suggest that TMPyP4 and TMPyP3 interact with GQ with a binding affinity of 106 to 107 M-1 . Thermodynamic analysis indicated a significant decrease in melting temperature of GQ (ΔTm of 15.5°C-23.5°C), in the presence of 2 times excess of porphyrins. This study provides the biophysical evidence indicating the destabilisation of a parallel DNA G-quadruplex by cationic porphyrins.
Collapse
Affiliation(s)
- Savita Joshi
- Nucleic Acids Research Laboratory, Department of Chemistry, University of Delhi (North Campus), Delhi, India
| | - Anju Singh
- Department of Chemistry, Ramjas College, University of Delhi, Delhi, India
| | - Shrikant Kukreti
- Nucleic Acids Research Laboratory, Department of Chemistry, University of Delhi (North Campus), Delhi, India
| |
Collapse
|
26
|
Guo H, Lei Z, Ma X, Liu S, Qiu Y, Zhao J. Boosting Sulfides Photooxidation by Fusing Naphthalimide and Flavin together. Phys Chem Chem Phys 2022; 24:15255-15264. [DOI: 10.1039/d2cp01368a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Efficient and selective photocatalytic conversion of chemicals with visible light and naturally abundant resources has long been desired, but this requires finely designed sensitizers that are capable to convert light...
Collapse
|
27
|
Tojo T, Niiuchi A, Kondo T, Yuasa M. Evaluation of the Correlation between Porphyrin Accumulation in Cancer Cells and Functional Porphyrin Positions of the Phenyl Group. ChemMedChem 2021; 17:e202100636. [PMID: 34859953 DOI: 10.1002/cmdc.202100636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/01/2021] [Indexed: 01/26/2023]
Abstract
Porphyrin selectively shows tumour accumulation and has attracted attention as a carrier molecule for drug delivery systems (DDS). Porphyrin has two functional sites termed the meso- and β-positions. In previous work, meso-porphyrin derivatives with an alkyl group were found to exhibit greater accumulation in human breast cancer cells (MCF-7). To identify the correlation between porphyrin accumulation and functional porphyrin positions of other functional groups, the accumulation of porphyrin derivatives with a phenyl group was investigated. The β-porphyrin derivative with a phenyl group showed higher accumulation in MCF-7 cells and greater affinity for albumin than the meso-porphyrin derivative. The results of density functional theory (DFT) calculations suggest that the β-porphyrin derivative with a phenyl group had higher planarity across the total structure than the meso-porphyrin derivative. It was concluded that the greater planarity of the β-porphyrin derivative with a phenyl group might lead to superior MCF-7 cell accumulation.
Collapse
Affiliation(s)
- Toshifumi Tojo
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, Yamazaki, Noda-shi, Chiba, 278-8510, Japan
| | - Ayano Niiuchi
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, Yamazaki, Noda-shi, Chiba, 278-8510, Japan
| | - Takeshi Kondo
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, Yamazaki, Noda-shi, Chiba, 278-8510, Japan.,Research Institute for Science and Technology, Tokyo University of Science, Yamazaki, Noda-shi, Chiba, 278-8510, Japan
| | - Makoto Yuasa
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, Yamazaki, Noda-shi, Chiba, 278-8510, Japan.,Research Institute for Science and Technology, Tokyo University of Science, Yamazaki, Noda-shi, Chiba, 278-8510, Japan
| |
Collapse
|
28
|
Ayoub AM, Amin MU, Ambreen G, Dayyih AA, Abdelsalam AM, Somaida A, Engelhardt K, Wojcik M, Schäfer J, Bakowsky U. Photodynamic and antiangiogenic activities of parietin liposomes in triple negative breast cancer. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 134:112543. [DOI: 10.1016/j.msec.2021.112543] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/25/2021] [Accepted: 11/06/2021] [Indexed: 12/22/2022]
|
29
|
Harmandar K, Tunç G, Küçük T, Gürek AG, Atilla D. Asymmetrically meso-substituted porphyrin derivative containing the triazole group: Synthesis, characterization and photo-physicochemical properties. J PORPHYR PHTHALOCYA 2021. [DOI: 10.1142/s1088424621500875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In this study, a novel asymmetrically meso-substituted AB3 porphyrins derivative including one triazole group to enhance the anticancer activity of the molecule and three bromophenyl groups to improve photochemical properties has been synthesized and characterized. Our objectives were to generate a system with triazole and bromophenyl groups that enhance the singlet oxygen generation and exhibits an anti-cancer effect. Therefore, photophysical and photochemical properties of this asymmetric porphyrin derivative (AB[Formula: see text] and the symmetric derivative (B[Formula: see text] were investigated in THF. The substituent effect on fluorescence quantum yield and singlet oxygen generation was evaluated for efficiency in photodynamic therapy (PDT) as a photosensitizer. The molecules exhibited no aggregation tendency, solubility in common organic solvents and high singlet oxygen quantum yield in THF therefore these favorable properties make them good candidates as a photosensitizer for PDT.
Collapse
Affiliation(s)
- Kevser Harmandar
- Gebze Technical University, Faculty of Science Department of Chemistry, 41400 Gebze, Kocaeli- TURKEY
| | - Gülenay Tunç
- Gebze Technical University, Faculty of Science Department of Chemistry, 41400 Gebze, Kocaeli- TURKEY
| | - Tuğba Küçük
- Gebze Technical University, Faculty of Science Department of Chemistry, 41400 Gebze, Kocaeli- TURKEY
| | - Ayşe Gül Gürek
- Gebze Technical University, Faculty of Science Department of Chemistry, 41400 Gebze, Kocaeli- TURKEY
| | - Devrim Atilla
- Gebze Technical University, Faculty of Science Department of Chemistry, 41400 Gebze, Kocaeli- TURKEY
| |
Collapse
|
30
|
Long ZH, Luo D, Wu K, Chen ZY, Wu MM, Zhou XP, Li D. Superoxide Ion and Singlet Oxygen Photogenerated by Metalloporphyrin-Based Metal-Organic Frameworks for Highly Efficient and Selective Photooxidation of a Sulfur Mustard Simulant. ACS APPLIED MATERIALS & INTERFACES 2021; 13:37102-37110. [PMID: 34333980 DOI: 10.1021/acsami.1c08840] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The exploration of highly efficient materials for the degradation of chemical warfare agents has been a longstanding task for preventing human exposure. Herein, we report a series of metal-organic frameworks (MOFs) M-TCPP-La based on metallo-tetra(4-carboxyphenyl)porphyrin and LaIII, which were applied to selectively oxidize 2-chloroethyl ethyl sulfide (CEES, a sulfur mustard simulant) as heterogeneous photocatalysts. After irradiation from a commercial blue light-emitting diode (LED), both superoxide ion and singlet oxygen were generated by M-TCPP-La and involved in selective oxidization of CEES to 2-chloroethyl ethyl sulfoxide (CEESO). Notably, a very short half lifetime (2.5 min) was achieved using Fe-TCPP-La as the photocatalyst. In comparison to currently utilizing singlet oxygen and hydrogen peroxide as oxidizing agents, this work employing both singlet oxygen and superoxide ion represents a new and effective strategy of detoxification of mustard gas.
Collapse
Affiliation(s)
- Zi-Hao Long
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Dong Luo
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Kun Wu
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Zi-Ye Chen
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Ming-Min Wu
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Xiao-Ping Zhou
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Dan Li
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| |
Collapse
|
31
|
Kumar A, Usman M, Samanta D, Rath SP. Through Bridge Spin Coupling in Homo- and Heterobimetallic Porphyrin Dimers upon Stepwise Oxidations: A Spectroscopic and Theoretical Investigation. Chemistry 2021; 27:11428-11441. [PMID: 34061401 DOI: 10.1002/chem.202101384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Indexed: 12/16/2022]
Abstract
We have described copper(II)-iron(III) and copper(II)-manganese(III) heterobimetallic porphyrin dimers and compared them with the corresponding homobimetallic analogs. UV-visible spectra are very distinct in the heterometallic species while electrochemical studies demonstrate that these species, as compared to the homobimetallic analog, are much easier to oxidize. Combined Mössbauer, EPR, NMR, magnetic and UV-visible spectroscopic studies show that upon 2e-oxidation of the heterobimetallic complexes only ring-centered oxidation occurs. The energy differences between HOMO and LUMO are linearly dependent with the low-energy NIR band obtained for the 2e-oxidized complexes. Also, strong electronic communication between two porphyrin rings through the bridge facilitates coupling between various unpaired spins present while the coupling model depends on the nature of metal ions used. While unpaired spins of Fe(III) and the porphyrin π-cation radical are strongly antiferromagnetically coupled, such coupling is rather weak between Mn(III) and a porphyrin π-cation radical. Moreover, the coupling between two π-cation radicals are much stronger in the 2e-oxidized complexes of dimanganese(III) and copper(II)-manganese(III) porphyrin dimers as compared to their diiron(III) and copper(II)-iron(III) analogs. Furthermore, coupling between the unpaired spins of a π-cation radical and copper(II) is much stronger in the 2e-oxidized complex of copper(II)-iron(III) porphyrin dimer as compared to its copper(II)-manganese(III) analog. The Mulliken spin density distributions in 2e-oxidized homo- and heterobimetallic complexes show symmetric and asymmetric spread between the two macrocycles, respectively. In both the 2e-oxidized heterobimetallic complexes, the Cu(II) porphyrin center acts as a charge donor while Fe(III)/Mn(III) porphyrin center act as a charge acceptor. The experimental observations are also strongly supported by DFT calculations.
Collapse
Affiliation(s)
- Amit Kumar
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Mohammad Usman
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Deepannita Samanta
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Sankar Prasad Rath
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| |
Collapse
|
32
|
Modulation of Temoporfin Distribution in Blood by β-Cyclodextrin Nanoshuttles. Pharmaceutics 2021; 13:pharmaceutics13071054. [PMID: 34371745 PMCID: PMC8308962 DOI: 10.3390/pharmaceutics13071054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/03/2021] [Accepted: 07/06/2021] [Indexed: 11/17/2022] Open
Abstract
Photodynamic therapy represents a more targeted and less invasive alternative cancer treatment to traditional modalities. Temoporfin, as with many photosensitizers, is given by injection into a vein, and its subsequent fate is largely determined by the binding to plasma proteins and interaction with endothelial and blood cells. Thus, it is essential to be able to control and to alter the biodistribution of temoporfin in blood. In the present study, we evaluated the effect of co-administration of temoporfin with randomly methylated β-CD (Me-β-CD) on the distribution of temoporfin in the main subpopulations of blood cells of healthy donors using absorbance spectrophotometry and flow cytometry. We showed that cell-bound temoporfin fraction in blood strongly depends on the concentration of Me-β-CD. In fact, the accumulation of temoporfin in white blood cells was more sensitive than that in red blood cells, due to the higher volume of membranous organelles in white blood cells. Finally, we demonstrated that Me-β-CD significantly increases cellular uptake of temoporfin cancer human Burkitt′s lymphoma Raji cells. The presence of Me-β-CD resulted in a spotted pattern of temoporfin distribution in the plasma membrane compartment. Our results clearly demonstrated that β-CDs derivatives provide new options to modulate temoporfin biodistribution in blood.
Collapse
|
33
|
Ergün AB, Sevim AM, Kılıç A, Gül A. Metallophthalocyanine/polyacrylonitrile nanofibers by solution blow spinning technique for enhanced photocatalytic activity by visible light. J Appl Polym Sci 2021. [DOI: 10.1002/app.50115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Anıl Berk Ergün
- TEMAG Lab Istanbul Technical University Istanbul Turkey
- Department of Chemistry Istanbul Technical University Istanbul Turkey
| | - Altuğ Mert Sevim
- Department of Chemistry Istanbul Technical University Istanbul Turkey
| | - Ali Kılıç
- TEMAG Lab Istanbul Technical University Istanbul Turkey
| | - Ahmet Gül
- Department of Chemistry Istanbul Technical University Istanbul Turkey
| |
Collapse
|
34
|
Ignasiak M, Nowicka-Bauer K, Grzechowiak M, Sikorski M, Shashikadze B, Jaskolski M, Marciniak B. Sensitized photo-oxidation of plant cytokinin-specific binding protein - Does the environment of the thioether group influence the oxidation reaction? From primary intermediates to stable products. Free Radic Biol Med 2021; 165:411-420. [PMID: 33581275 DOI: 10.1016/j.freeradbiomed.2021.02.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/28/2021] [Accepted: 02/01/2021] [Indexed: 11/26/2022]
Abstract
The reactions of protein oxidation play a significant role in many biological processes, especially in diseases development. Therefore, it is important to understand, how the protein molecule behaves in the presence of oxidants. In the present work, photo-oxidation of phytohormone-binding plant protein (VrPhBP) was investigated using light and 3-carboxybenzophenone (3CB) as a sensitizer (one electron oxidant). The protein interacts with the sensitizer in the ground state forming a weak binding complex leading to the presence of bound and free 3CB in solution. The early events and transient species (such as radicals and radical ions) formed during irradiation were characterised by transient spectroscopy showing the formation of the sulphur radical cation Met>S●+ (stabilized by (S∴N)+)and the tyrosyl radical TyrO● on VrPhBP. Thus the 3CB excited triplet state was quenched by the Met and Tyr residues and mostly by Met (based on the deconvoluted transient absorption spectra).The presence of a Tyr side chain in the vicinity of a Met residue results in intramolecular electron transfer from Tyr to the Met>S●+ radical cation, leading to regeneration of the thioether side chain and formation of TyrO●. The presence of other side chains close to Met, such as Arg or Lys can induce the stabilization of Met>S●+ via the formation of two-centered three-electron bonded species (S∴N)+. The transient species were additionally confirmed by stable product analysis. Based on SDS-PAGE, chromatography and mass spectrometry, the formation of methionine sulphoxide and Met-3CB adduct was identified together with di-Tyr cross links. On the basis of the experimental results the overall mechanism of VrPhBP photo-oxidation, from its early events to the formation of stable products, is described. In addition, a good correlation between the mechanisms of photooxidation of model compounds such as Met derivatives and peptides and those for real biological systems is emphasized.
Collapse
Affiliation(s)
- Marta Ignasiak
- Faculty of Chemistry, Adam Mickiewicz University, And Center for Advanced Technology, Poznan, Poland.
| | - Karolina Nowicka-Bauer
- Faculty of Chemistry, Adam Mickiewicz University, And Center for Advanced Technology, Poznan, Poland
| | - Marta Grzechowiak
- Institute of Bioorganic Chemistry, Polish Academy of Science, Poznan, Poland
| | - Michał Sikorski
- Institute of Bioorganic Chemistry, Polish Academy of Science, Poznan, Poland
| | - Bachuki Shashikadze
- Institute of Bioorganic Chemistry, Polish Academy of Science, Poznan, Poland; Gene Center, Ludwig-Maximilians University, Munich, Germany
| | - Mariusz Jaskolski
- Faculty of Chemistry, Adam Mickiewicz University, And Center for Advanced Technology, Poznan, Poland; Institute of Bioorganic Chemistry, Polish Academy of Science, Poznan, Poland
| | - Bronislaw Marciniak
- Faculty of Chemistry, Adam Mickiewicz University, And Center for Advanced Technology, Poznan, Poland
| |
Collapse
|
35
|
Mazzone G, De Simone BC, Marino T, Russo N. Theoretical investigation on bisarylselanylbenzo-2,1,3-selenadiazoles as potential photosensitizers in photodynamic therapy. J Chem Phys 2021; 154:084113. [PMID: 33639755 DOI: 10.1063/5.0038326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Density functional theory and time-dependent (TDDFT) calculations were carried out for recently reported bisarylselanylbenzo-2,1,3-selenadiazoles derivatives capable of producing singlet oxygen (1O2) under UV-Vis irradiation. Conformational behaviors, excitation energies, singlet-triplet energy gaps, and spin-orbit coupling constants were evaluated. The conformational analysis evidences that two different conformers have to be taken into consideration to completely describe the photophysical properties of this class of molecules. TDDFT results show that these compounds, though possessing absorption wavelengths that fall in the violet region, are characterized by singlet-triplet energy gaps greater than the energy required to excite the molecular oxygen, thus being able to produce the cytotoxic species, spin-orbit coupling constants large enough to ensure efficient singlet-triplet intersystem spin crossing, and even the highly reactive superoxide anion O2 •(-) by autoionization and subsequent electron transfer to molecular oxygen in its ground state.
Collapse
Affiliation(s)
- Gloria Mazzone
- Dipartimento di Chimica e Tecnologie Chimiche, Università Della Calabria, Rende, Italy
| | - Bruna Clara De Simone
- Dipartimento di Chimica e Tecnologie Chimiche, Università Della Calabria, Rende, Italy
| | - Tiziana Marino
- Dipartimento di Chimica e Tecnologie Chimiche, Università Della Calabria, Rende, Italy
| | - Nino Russo
- Dipartimento di Chimica e Tecnologie Chimiche, Università Della Calabria, Rende, Italy
| |
Collapse
|
36
|
Evaluation of the correlation between porphyrin accumulation in cancer cells and functional positions for application as a drug carrier. Sci Rep 2021; 11:2046. [PMID: 33479459 PMCID: PMC7820339 DOI: 10.1038/s41598-021-81725-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/11/2021] [Indexed: 01/29/2023] Open
Abstract
Porphyrin derivatives accumulate selectively in cancer cells and are can be used as carriers of drugs. Until now, the substituents that bind to porphyrins (mainly at the meso-position) have been actively investigated, but the effect of the functional porphyrin positions (β-, meso-position) on tumor accumulation has not been investigated. Therefore, we investigated the correlation between the functional position of substituents and the accumulation of porphyrins in cancer cells using cancer cells. We found that the meso-derivative showed higher accumulation in cancer cells than the β-derivative, and porphyrins with less bulky substituent actively accumulate in cancer cells. When evaluating the intracellular distribution of porphyrin, we found that porphyrin was internalized by endocytosis and direct membrane permeation. As factors involved in these two permeation mechanisms, we evaluated the affinity between porphyrin-protein (endocytosis) and the permeability to the phospholipid bilayer membrane (direct membrane permeation). We found that the binding position of porphyrin affects the factors involved in the transmembrane permeation mechanisms and impacts the accumulation in cancer cells.
Collapse
|
37
|
Vorotnikova NA, Bardin VA, Vorotnikov YA, Kirakci K, Adamenko LS, Alekseev AY, Meyer HJ, Kubát P, Mironov YV, Lang K, Shestopalov MA. Heterogeneous photoactive antimicrobial coatings based on a fluoroplastic doped with an octahedral molybdenum cluster compound. Dalton Trans 2021; 50:8467-8475. [PMID: 34047321 DOI: 10.1039/d1dt01102b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Despite the wide variety of strategies developed to combat pathogenic microorganisms, the infectious diseases they cause remain a worldwide health issue. Hence, the search for new disinfectants, which prevent infection spread, constitutes an extremely urgent task. One of the most promising methods is the use of photoactive compounds - photosensitizers, capable of generating reactive oxygen species, in particular, singlet oxygen (O2(1Δg)), which causes rapid and effective death of microorganisms of all types. In this work, we propose the utilization of the powdered cluster complex (Bu4N)2[{Mo6I8}(OTs)6] as a photoactive additive to commercially available fluoroplastic lacquer F-32L to create heterogeneous self-sterilizing coatings. We show that soaking of the prepared films in water for 60 days did not lead to a decrease in their photosensitization properties indicating their excellent stability. Moreover, the use of the cluster complex in the solid state allowed significant expansion of the operating wavelength range, which covers the UV region and a large part of the visible region (250-650 nm). The films displayed high photoantimicrobial activity against five common pathogens (bacteria and fungi) under white-light irradiation. Overall, the properties demonstrated make these materials promising for practical use in everyday outdoor and indoor disinfection since they are active under both sunlight and artificial lighting.
Collapse
Affiliation(s)
- Natalya A Vorotnikova
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Acad. Lavrentieva, 630090 Novosibirsk, Russia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Kirakci K, Nguyen TKN, Grasset F, Uchikoshi T, Zelenka J, Kubát P, Ruml T, Lang K. Electrophoretically Deposited Layers of Octahedral Molybdenum Cluster Complexes: A Promising Coating for Mitigation of Pathogenic Bacterial Biofilms under Blue Light. ACS APPLIED MATERIALS & INTERFACES 2020; 12:52492-52499. [PMID: 33185107 DOI: 10.1021/acsami.0c19036] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The fight against infective microorganisms is becoming a worldwide priority due to serious concerns about the rising numbers of drug-resistant pathogenic bacteria. In this context, the inactivation of pathogens by singlet oxygen, O2(1Δg), produced by photosensitizers upon light irradiation has become an attractive strategy to combat drug-resistant microbes. To achieve this goal, we electrophoretically deposited O2(1Δg)-photosensitizing octahedral molybdenum cluster complexes on indium-tin oxide-coated glass plates. This procedure led to the first example of molecular photosensitizer layers able to photoinactivate bacterial biofilms. We delineated the morphology, composition, luminescence, and singlet oxygen formation of these layers and correlated these features with their antibacterial activity. Clearly, continuous 460 nm light irradiation imparted the layers with strong antibacterial properties, and the activity of these layers inhibited the biofilm formation and eradicated mature biofilms of Gram-positive Staphylococcus aureus and Enterococcus faecalis, as well as, Gram-negative Pseudomonas aeruginosa and Escherichia coli bacterial strains. Overall, the microstructure-related oxygen diffusivity of the layers and the water stability of the complexes were the most critical parameters for the efficient and durable use. These photoactive layers are attractive for the design of antibacterial surfaces activated by visible light and include additional functionalities such as the conversion of harmful UV/blue light to red light or oxygen sensing.
Collapse
Affiliation(s)
- Kaplan Kirakci
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, Řež 1001, 250 68 Husinec-Řež, Czech Republic
| | - Thi Kim Ngan Nguyen
- CNRS - Saint-Gobain - NIMS, UMI 3629, Laboratory for Innovative Key Materials and Structures (LINK), National Institute for Materials Science, 1-1 Namiki, 305-0044 Tsukuba, Japan
- Research Center for Functional Materials, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
| | - Fabien Grasset
- CNRS - Saint-Gobain - NIMS, UMI 3629, Laboratory for Innovative Key Materials and Structures (LINK), National Institute for Materials Science, 1-1 Namiki, 305-0044 Tsukuba, Japan
- Research Center for Functional Materials, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
| | - Tetsuo Uchikoshi
- CNRS - Saint-Gobain - NIMS, UMI 3629, Laboratory for Innovative Key Materials and Structures (LINK), National Institute for Materials Science, 1-1 Namiki, 305-0044 Tsukuba, Japan
- Research Center for Functional Materials, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
| | - Jaroslav Zelenka
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 5, 166 28 Praha 6, Czech Republic
| | - Pavel Kubát
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 3, 182 23 Praha 8, Czech Republic
| | - Tomáš Ruml
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 5, 166 28 Praha 6, Czech Republic
| | - Kamil Lang
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, Řež 1001, 250 68 Husinec-Řež, Czech Republic
| |
Collapse
|
39
|
da Silveira Santos F, da Silveira CH, Souza Nunes F, Ferreira DC, Victória HFV, Krambrock K, Chaves OA, Rodembusch FS, Iglesias BA. Photophysical, photodynamical, redox properties and BSA interactions of novel isomeric tetracationic peripheral palladium(II)-bipyridyl porphyrins. Dalton Trans 2020; 49:16278-16295. [PMID: 32400785 DOI: 10.1039/d0dt01063d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
New isomeric tetra-cationic porphyrins containing peripheral [Pd(bpy)Cl]+ units attached to pyridyl substituents were synthesized and fully characterized. The porphyrins present an intense Soret band located in the blue spectral region and an additional four weaker red-shifted Q bands in the visible spectral region (about 500-700 nm). The obtained Strickler-Berg parameters indicate fully spin and symmetry allowed transitions for all the observed absorption bands. Both porphyrins present two fluorescence emission bands, an intense one located around 650 nm and an additional weak red-shifted emission at ∼710 nm. Fluorescence decay time profiles were obtained showing bi-exponential decay. The interaction of the porphyrins with bovine serum albumin (BSA) was studied in detail by a fluorescence quenching method and molecular docking analysis. In addition, the photodynamical activity of the porphyrins in the photooxidation of BSA was determined and compared with the light-induced formation of reactive oxygen species (ROS) by electron paramagnetic resonance (EPR) allied with the spin trapping method. The results show that the Pd(ii)-bypyridyl tetra-cationic porphyrins are promising candidates for the photooxidation of biological substrates used in photodynamic therapy (PDT).
Collapse
Affiliation(s)
- Fabiano da Silveira Santos
- Grupo de pesquisa em Fotoquímica Orgânica Aplicada, Instituto de Química, Universidade Federal do Rio Grande do Sul, UFRGS, Av. Bento Gonçalves 9500, 91501-970, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Lima NMA, Bezerra TT, Almeida MO, Rodrigues NLDC, Braga CHC, Miranda JIS, Ribeiro VGP, Guimarães GDF, Teixeira MJ, Lomonaco D, Mele G, Mazzetto SE. Photodynamic effect of palladium porphyrin derived from cashew nut shell liquid against promastigote forms of Leishmania braziliensis. Photodiagnosis Photodyn Ther 2020; 33:102083. [PMID: 33160063 DOI: 10.1016/j.pdpdt.2020.102083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/26/2020] [Accepted: 10/23/2020] [Indexed: 12/12/2022]
Abstract
Cutaneous leishmaniasis (CL) is a neglected tropical disease (NTD), endemic mainly in low-income countries that lack adequate basic health care. The emergence of resistant parasites to pentavalent antimonials has led to the search for new treatments for CL. Photodynamic therapy (PDT) is a promising non-invasive and less toxic alternative for the treatment of CL. The present work describes the synthesis, characterization and photodynamic effect against CL of a new metalloporphyrin Pd (II) meso-tetra[4-(2-(3-n-pentadecylphenoxy)ethoxy]phenylporphyrin (PdP) derived from the cashew nut shell liquid (CNSL). The PdP complex presented a singlet oxygen quantum yield of 0.49, favoring a type II photochemical reaction. The results of the photodynamic experiment carried out with PdP on the promastigote forms of Leishmania braziliensis indicated a mortality percentage of 70 % of the cells when compared to the control after exposure to blue light (λ = 420 nm). Besides this, the metalloporphyrin PdP did not show considerable toxicity to macrophages, indicating the cell viability of the compound. Therefore, this metalloporphyrin derived from biomass represents an interesting alternative as a potential therapeutic drug for the treatment of CL through PDT, especially for patients with intolerance to the chemotherapeutic drugs currently available.
Collapse
Affiliation(s)
- Nayane Maria Amorim Lima
- Laboratory of Products and Process Technology (LPT), Federal University of Ceará (UFC), Campus do Pici 60455-900, Fortaleza, Ceara, Brazil
| | - Thayllan Teixeira Bezerra
- Laboratory of Products and Process Technology (LPT), Federal University of Ceará (UFC), Campus do Pici 60455-900, Fortaleza, Ceara, Brazil
| | - Mayara Oliveira Almeida
- Laboratory of Products and Process Technology (LPT), Federal University of Ceará (UFC), Campus do Pici 60455-900, Fortaleza, Ceara, Brazil
| | - Naya Lúcia de Castro Rodrigues
- Department of Pathology and Legal Medicine, Faculty of Medicine, Federal University of Ceará (UFC), Campus do Porangabuçu, 60430-350, Fortaleza, CE, Brazil
| | | | | | - Viviane Gomes Pereira Ribeiro
- Institute of Exact Sciences and Nature (ICEN), University of International Integration of Afro-Brazilian Lusophony (UNILAB), 62790-000 Redencao, Ceara, Brazil
| | | | - Maria Jânia Teixeira
- Department of Pathology and Legal Medicine, Faculty of Medicine, Federal University of Ceará (UFC), Campus do Porangabuçu, 60430-350, Fortaleza, CE, Brazil
| | - Diego Lomonaco
- Laboratory of Products and Process Technology (LPT), Federal University of Ceará (UFC), Campus do Pici 60455-900, Fortaleza, Ceara, Brazil
| | - Giuseppe Mele
- Department of Engineering for Innovation, University of Salento, Via Arnesano, 73100 Lecce, Italy.
| | - Selma Elaine Mazzetto
- Laboratory of Products and Process Technology (LPT), Federal University of Ceará (UFC), Campus do Pici 60455-900, Fortaleza, Ceara, Brazil
| |
Collapse
|
41
|
Hirakawa K, Takai S, Horiuchi H, Okazaki S. Photooxidation Activity Control of Dimethylaminophenyl-tris-( N-methyl-4-pridinio)porphyrin by pH. ACS OMEGA 2020; 5:27702-27708. [PMID: 33134734 PMCID: PMC7594313 DOI: 10.1021/acsomega.0c04303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 09/29/2020] [Indexed: 05/07/2023]
Abstract
To control the activity of photodynamic agents by pH, an electron donor-connecting cationic porphyrin, meso-(N',N'-dimethyl-4-aminophenyl)-tris(N-methyl-p-pyridinio)porphyrin (DMATMPyP), was designed and synthesized. The photoexcited state (singlet excited state) of DMATMPyP was deactivated through intramolecular electron transfer under a neutral condition. The pK a of the protonated DMATMPyP was 4.5, and the fluorescence intensity and singlet oxygen-generating activity increased under an acidic condition. Furthermore, the protonation of DMATMPyP enhanced the biomolecule photooxidative activity through electron extraction. Photodamage of human serum albumin (HSA) was observed under a neutral condition because a hydrophobic HSA environment can reverse the deactivation of photoexcited DMATMPyP. However, an HSA-damaging mechanism of DMATMPyP under a neutral condition was explained by singlet oxygen production. Therefore, it is indicated that the protein photodamaging activity of DMATMPyP goes into an OFF state under a neutral hypoxic condition. Under an acidic condition, the HSA photodamaging quantum yield by DMATMPyP through electron extraction could be preserved in the presence of a singlet oxygen quencher. Photooxidation of nicotinamide adenine dinucleotide by DMATMPyP was also enhanced under an acidic condition. This study demonstrated the concept of using pH to control photosensitizer activity via inhibition of the intramolecular electron transfer deactivation and enhancement of the oxidative activity through the electron extraction mechanism. Specifically, biomolecule oxidation through electron extraction may play an important role in photodynamic therapy to treat tumors under a hypoxic condition.
Collapse
Affiliation(s)
- Kazutaka Hirakawa
- Applied
Chemistry and Biochemical Engineering Course, Department of Engineering,
Graduate School of Integrated Science and Technology, Shizuoka University, Johoku 3-5-1, Naka-ku, Hamamatsu 432-8561, Japan
- Department
of Optoelectronics and Nanostructure Science, Graduate School of Science
and Technology, Shizuoka University, Johoku 3-5-1, Naka-ku, Hamamatsu 432-8561, Japan
| | - Syunsuke Takai
- Applied
Chemistry and Biochemical Engineering Course, Department of Engineering,
Graduate School of Integrated Science and Technology, Shizuoka University, Johoku 3-5-1, Naka-ku, Hamamatsu 432-8561, Japan
| | - Hiroaki Horiuchi
- Division
of Molecular Science, Graduate School of Science and Technology, Gunma University, Tenjin-cho 1-5-1, Kiryu 376-8515, Japan
| | - Shigetoshi Okazaki
- Preeminent
Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, Handayama 1-20-1, Higashi-ku, Hamamatsu 431-3192, Japan
| |
Collapse
|
42
|
Metal center ion effects on photoinactivating rapidly growing mycobacteria using water-soluble tetra-cationic porphyrins. Biometals 2020; 33:269-282. [PMID: 32980947 DOI: 10.1007/s10534-020-00251-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/16/2020] [Indexed: 12/18/2022]
Abstract
Rapidly growing mycobacteria (RGM) are pathogens that belong to the mycobacteriaceae family and responsible for causing mycobacterioses, which are infections of opportunistic nature and with increasing incidence rates in the world population. This work evaluated the use of six water-soluble cationic porphyrins as photosensitizers for the antimicrobial photodynamic therapy (aPDT) of four RGM strains: Mycolicibacterium fortuitum, Mycolicibacterium smeagmatis, Mycobacteroides abscessus subs. Abscessus, and Mycobacteroides abscessus subsp. massiliense. Experiments were conducted with an adequate concentration of photosensitizer under white-light irradiation conditions over 90 min and the results showed that porphyrins 1 and 2 (M = 2H or ZnII ion) were the most effective and significantly reduced the concentration of viable mycobacteria. The present work shows the result is dependent on the metal-center ion coordinated in the cationic porphyrin core. Moreover, we showed by atomic force microscopy (AFM) the possible membrane photodamage caused by reactive oxygen species and analyzed the morphology and adhesive force properties. Tetra-positively charged and water-soluble metalloporphyrins may be promising antimycobacterial aPDT agents with potential applications in medical clinical cases and bioremediation.
Collapse
|
43
|
Sannikova NE, Timofeev IO, Chubarov AS, Lebedeva NS, Semeikin AS, Kirilyuk IA, Tsentalovich YP, Fedin MV, Bagryanskaya EG, Krumkacheva OA. Application of EPR to porphyrin-protein agents for photodynamic therapy. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2020; 211:112008. [PMID: 32932136 DOI: 10.1016/j.jphotobiol.2020.112008] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/17/2020] [Accepted: 08/21/2020] [Indexed: 12/19/2022]
Abstract
Recently, a new type of spin labels based on photoexcited triplet molecules was proposed for nanometer scale distance measurements by pulsed dipolar electron paramagnetic resonance (PD EPR). However, such molecules are also actively used within biological complexes as photosensitizers for photodynamic therapy (PDT) of cancer. Up to date, the idea of using the photoexcited triplets simultaneously as PDT agents and as spin labels for PD EPR has never been employed. In this work, we demonstrate that PD EPR in conjunction with other methods provides valuable information on the structure and function of PDT candidate complexes, exemplified here with porphyrins bound to human serum albumin (HSA). Two distinct porphyrins with different properties were used: amphiphilic meso-tetrakis(4-hydroxyphenyl)porphyrin (mTHPP) and water soluble cationic meso-tetrakis(N-methyl-4-pyridyl)porphyrin (TMPyP4); HSA was singly nitroxide-labeled to provide a second tag for PD EPR measurements. We found that TMPyP4 locates in a cavity at the center of the four-helix bundle of HSA subdomain IB, close to the interface with solvent, thus being readily accessible to oxygen. As a result, the photolysis of the complex leads to photooxidation of HSA by generated singlet oxygen and causes structural perturbation of the protein. Contrary, in case of mTHPP porphyrin, the binding occurs at the proton-rich pocket of HSA subdomain IIIA, where the access of oxygen to a photosensitizer is hindered. Structural data of PD EPR were supported by other EPR techniques, laser flash photolysis and protein photocleavage studies. Therefore, pulsed EPR on complexes of proteins with photoexcited triplets is a promising approach for gaining structural and functional insights into such PDT agents.
Collapse
Affiliation(s)
| | - Ivan O Timofeev
- International Tomography Center SB RAS, 630090 Novosibirsk, Russia
| | - Alexey S Chubarov
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk 630090, Russia; Novosibirsk State University, Pirogova Str. 2, Novosibirsk 630090, Russia
| | | | | | - Igor A Kirilyuk
- N.N. Vorozhtsov Institute of Organic Chemistry SB RAS, 630090 Novosibirsk, Russia
| | | | - Matvey V Fedin
- International Tomography Center SB RAS, 630090 Novosibirsk, Russia; Novosibirsk State University, Pirogova Str. 2, Novosibirsk 630090, Russia.
| | - Elena G Bagryanskaya
- N.N. Vorozhtsov Institute of Organic Chemistry SB RAS, 630090 Novosibirsk, Russia.
| | - Olesya A Krumkacheva
- International Tomography Center SB RAS, 630090 Novosibirsk, Russia; Novosibirsk State University, Pirogova Str. 2, Novosibirsk 630090, Russia.
| |
Collapse
|
44
|
Kollar J, Machacek M, Halaskova M, Lenco J, Kucera R, Demuth J, Rohlickova M, Hasonova K, Miletin M, Novakova V, Zimcik P. Cationic Versus Anionic Phthalocyanines for Photodynamic Therapy: What a Difference the Charge Makes. J Med Chem 2020; 63:7616-7632. [DOI: 10.1021/acs.jmedchem.0c00481] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Jan Kollar
- Department of Pharmaceutical Chemistry and Pharmaceutical Analysis, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, Hradec Kralove 500 05, Czech Republic
| | - Miloslav Machacek
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, Hradec Kralove 500 05, Czech Republic
| | - Marie Halaskova
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, Hradec Kralove 500 05, Czech Republic
| | - Juraj Lenco
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, Hradec Kralove 500 05, Czech Republic
| | - Radim Kucera
- Department of Pharmaceutical Chemistry and Pharmaceutical Analysis, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, Hradec Kralove 500 05, Czech Republic
| | - Jiri Demuth
- Department of Pharmaceutical Chemistry and Pharmaceutical Analysis, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, Hradec Kralove 500 05, Czech Republic
| | - Monika Rohlickova
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, Hradec Kralove 500 05, Czech Republic
| | - Katerina Hasonova
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, Hradec Kralove 500 05, Czech Republic
| | - Miroslav Miletin
- Department of Pharmaceutical Chemistry and Pharmaceutical Analysis, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, Hradec Kralove 500 05, Czech Republic
| | - Veronika Novakova
- Department of Pharmaceutical Chemistry and Pharmaceutical Analysis, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, Hradec Kralove 500 05, Czech Republic
| | - Petr Zimcik
- Department of Pharmaceutical Chemistry and Pharmaceutical Analysis, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, Hradec Kralove 500 05, Czech Republic
| |
Collapse
|
45
|
Ghazal B, Ewies EF, Youssef ASA, Makhseed S. Photo-physicochemical properties of water-soluble non-aggregated indium(III) phthalocyanines. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 234:118244. [PMID: 32199313 DOI: 10.1016/j.saa.2020.118244] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/27/2020] [Accepted: 03/07/2020] [Indexed: 06/10/2023]
Abstract
Phthalocyanines have interesting optoelectronic properties but typically suffer from aggregation in aqueous solution, which can limit their applicability, especially in photodynamic therapy. In this study, indium(III) phthalocyanine peripherally substituted with eight triazolyl-containing phenoxy groups (InOAc) and its water-soluble analogue (Q-InOAc) were synthesised and structurally characterised. Heavy metal effects, exerted by the central indium ion, on the photosensitising and photophysical properties (singlet oxygen quantum yield, singlet state lifetime and quantum yield, and triplet state lifetime) were investigated in both DMF and D2O. Highly efficient generation of the triplet excited state (T1), induced by the incorporation of a large atom, enhanced singlet oxygen formation, as revealed by both chemical and physical methods. Correspondingly, the singlet oxygen quantum yield (ΦΔ) of Q-InOAc was 0.603 in DMF and 0.433 in D2O. These values are higher than those previously reported for the corresponding metal-free, Mg-based, and Zn-based water-soluble phthalocyanines (HH, Mg, and Zn). Consequently, Q-InOAc is expected to be an excellent photosensitiser for photodynamic therapy.
Collapse
Affiliation(s)
- Basma Ghazal
- Department of Chemistry, Kuwait University, P.O. Box 5969, Safat 13060, Kuwait; Organometallic and Organometalloid Chemistry Department, National Research Centre, Giza, Egypt
| | - Ewies F Ewies
- Organometallic and Organometalloid Chemistry Department, National Research Centre, Giza, Egypt
| | - Ahmed S A Youssef
- Department of Chemistry, Faculty of Science, Ain Shams University, Abbassia, P.O. 11566, Cairo, Egypt
| | - Saad Makhseed
- Department of Chemistry, Kuwait University, P.O. Box 5969, Safat 13060, Kuwait.
| |
Collapse
|
46
|
Sannikova N, Timofeev I, Bagryanskaya E, Bowman M, Fedin M, Krumkacheva O. Electron Spin Relaxation of Photoexcited Porphyrin in Water-Glycerol Glass. Molecules 2020; 25:E2677. [PMID: 32527023 PMCID: PMC7321249 DOI: 10.3390/molecules25112677] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/05/2020] [Accepted: 06/06/2020] [Indexed: 02/07/2023] Open
Abstract
Recently, the photoexcited triplet state of porphyrin was proposed as a promising spin-label for pulsed dipolar electron paramagnetic resonance (EPR). Herein, we report the factors that determine the electron spin echo dephasing of the photoexcited porphyrin in a water-glycerol matrix. The electron spin relaxation of a water-soluble porphyrin was measured by Q-band EPR, and the temperature dependence and the effect of solvent deuteration on the relaxation times were studied. The phase memory relaxation rate (1/Tm) is noticeably affected by solvent nuclei and is substantially faster in protonated solvents than in deuterated solvents. The Tm is as large as 13-17 μs in deuterated solvent, potentially expanding the range of distances available for measurement by dipole spectroscopy with photoexcited porphyrin. The 1/Tm depends linearly on the degree of solvent deuteration and can be used to probe the environment of a porphyrin in or near a biopolymer, including the solvent accessibility of porphyrins used in photodynamic therapy. We characterized the noncovalent binding of porphyrin to human serum albumin (HSA) from 1/Tm and electron spin echo envelope modulation (ESEEM) and found that porphyrin is quite exposed to solvent on the surface of HSA. The 1/Tm and ESEEM are equally effective and provide complementary methods to determine the solvent accessibility of a porphyrin bound to protein or to determine the location of the porphyrin.
Collapse
Affiliation(s)
- Natalya Sannikova
- International Tomography Center SB RAS, 630090 Novosibirsk, Russia; (N.S.); (I.T.)
| | - Ivan Timofeev
- International Tomography Center SB RAS, 630090 Novosibirsk, Russia; (N.S.); (I.T.)
| | - Elena Bagryanskaya
- N.N. Vorozhtsov Institute of Organic Chemistry SB RAS, 630090 Novosibirsk, Russia
| | - Michael Bowman
- N.N. Vorozhtsov Institute of Organic Chemistry SB RAS, 630090 Novosibirsk, Russia
- Department of Chemistry & Biochemistry, University of Alabama, Tuscaloosa, AL 35487-0336, USA
| | - Matvey Fedin
- International Tomography Center SB RAS, 630090 Novosibirsk, Russia; (N.S.); (I.T.)
| | - Olesya Krumkacheva
- International Tomography Center SB RAS, 630090 Novosibirsk, Russia; (N.S.); (I.T.)
| |
Collapse
|
47
|
Kumar A, Sanfui S, Sciortino G, Maréchal J, Garribba E, Rath SP. Stepwise Oxidations in a Cofacial Copper(II) Porphyrin Dimer: Through‐Space Spin‐Coupling and Interplay between Metal and Radical Spins. Chemistry 2020; 26:7869-7880. [DOI: 10.1002/chem.202000348] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/06/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Amit Kumar
- Department of ChemistryIndian Institute of Technology Kanpur Kanpur 208016 India
| | - Sarnali Sanfui
- Department of ChemistryIndian Institute of Technology Kanpur Kanpur 208016 India
| | - Giuseppe Sciortino
- Dipartimento di Chimica e FarmaciaUniversità di Sassari Via Vienna 2 07100 Sassari Italy
- Departament de QuímicaUniversitat Autònoma de Barcelona 08193 Cerdanyola del Vallés Barcelona Spain
| | - Jean‐Didier Maréchal
- Departament de QuímicaUniversitat Autònoma de Barcelona 08193 Cerdanyola del Vallés Barcelona Spain
| | - Eugenio Garribba
- Dipartimento di Chimica e FarmaciaUniversità di Sassari Via Vienna 2 07100 Sassari Italy
| | - Sankar Prasad Rath
- Department of ChemistryIndian Institute of Technology Kanpur Kanpur 208016 India
| |
Collapse
|
48
|
Photodynamic performance of amphiphilic chlorin e6 derivatives with appropriate properties: A comparison between different-type liposomes as delivery systems. Photodiagnosis Photodyn Ther 2020; 30:101799. [PMID: 32380255 DOI: 10.1016/j.pdpdt.2020.101799] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 04/11/2020] [Accepted: 04/24/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Many aspects are currently being investigated, with the aim of improving the application of PDT in the clinic by rendering it more effective. One of the current trends focuses on the use of nanocarriers. The aim of this study is to describe novel photosensitizers among polyol amide chlorin e6 derivatives for photodynamic therapy (PDT) using liposomes. METHODS In addition to their intracellular localization and antiproliferative activity against HCT116 cells, appropriate photophysical features have been determined (especially high 1O2 quantum yield production). RESULTS AND CONCLUSIONS Fluorescent microscopy demonstrated that the compounds entered the endoplasmic reticulum (ER), lysosomes, mitochondria and partially the cytoplasm. All of the chlorins showed no dark cytotoxicity; however, high phototoxicity was observed. Using optical and electron microscopy, we investigated the impact of chlorin-based PDT upon cell damage leading to cell death. Chl ara 3 was identified as the most promising compound among polyol amide chlorin e6 derivatives and improved phototoxicity was observed as compared with a clinically approved temoporfin. Our results indicate that newly-synthesized chlorins seem to be promising candidates for PDT application, and two of them (chl ara 3 and chl mme 2) may create promising new drugs, both in the form of a free compound and as a liposomal formulation.
Collapse
|
49
|
Yamana K, Kawasaki R, Sugikawa K, Ikeda A. Solubilization of Tetrahydroxyphenylchlorin in Water and Improved Photodynamic Activity after Complexation with Cyclic Oligo- and Polysaccharides. ACS APPLIED BIO MATERIALS 2020; 3:3217-3225. [DOI: 10.1021/acsabm.0c00211] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Keita Yamana
- Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan
| | - Riku Kawasaki
- Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan
| | - Kouta Sugikawa
- Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan
| | - Atsushi Ikeda
- Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan
| |
Collapse
|
50
|
Felter K, Fravventura MC, Koster E, Abellon RD, Savenije TJ, Grozema FC. Solid-State Infrared Upconversion in Perylene Diimides Followed by Direct Electron Injection. ACS ENERGY LETTERS 2020; 5:124-129. [PMID: 31956696 PMCID: PMC6958839 DOI: 10.1021/acsenergylett.9b02361] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 11/27/2019] [Indexed: 05/31/2023]
Abstract
In this contribution we demonstrate a solid-state approach to triplet-triplet annihilation upconversion for application in a solar cell device in which absorption of near-infrared light is followed by direct electron injection into an inorganic substrate. We use time-resolved microwave photoconductivity experiments to study the injection of electrons into the electron-accepting substrate (TiO2) in a trilayer device consisting of a triplet sensitizer (fluorinated zinc phthalocyanine), triplet acceptor (methyl subsituted perylenediimide), and smooth polycrystalline TiO2. Absorption of light at 700 nm leads to the almost quantitative generation of triplet excited states by intersystem crossing. This is followed by Dexter energy transfer to the triplet acceptor layer where triplet annihilation occurs and concludes by injection of an electron into TiO2 from the upconverted singlet excited state.
Collapse
|