1
|
Sharma P, Ganguly M, Doi A. Synergism between copper and silver nanoclusters induces fascinating structural modifications, properties, and applications. NANOSCALE 2024; 16:18666-18683. [PMID: 39302164 DOI: 10.1039/d4nr03114h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Among the group 11 transition metal elements, Cu and Ag are widely studied due to their cost effectiveness and easy availability. However, the synergism between copper and silver is also very promising, exhibiting intriguing structures, properties, and applications. Nanoclusters, which are missing links between atoms and nanoparticles, are highly fluorescent due to their discrete energy levels. Their fluorescence can be efficiently tuned because of the synergistic behaviour of copper and silver. Furthermore, their fluorescence can be selectively altered in the presence of various analytes and sensing platforms, as reported by various groups. Moreover, copper clusters can be utilized for sensing silver while silver nanoclusters can be utilized for sensing ionic copper due to the strong interaction between copper and silver. Furthermore, DFT studies have been performed to understand the structural modification due to CuAg synergism. A concise summary of the synergism between copper and silver can open a new window of research for young scientists venturing into the field of environmental nanoscience.
Collapse
Affiliation(s)
- Priyanka Sharma
- Solar Energy Conversion and Nanomaterials Laboratory, Department of Chemistry, Manipal University Jaipur, Dehmi Kalan, Jaipur 303007, India.
| | - Mainak Ganguly
- Solar Energy Conversion and Nanomaterials Laboratory, Department of Chemistry, Manipal University Jaipur, Dehmi Kalan, Jaipur 303007, India.
| | - Ankita Doi
- Department of BioSciences, Manipal University Jaipur, Dehmi Kalan, Jaipur 303007, India
| |
Collapse
|
2
|
Liu Y, Chen H, Wang X. Synergistic Homogeneous Asymmetric Cu Catalysis with Pd Nanoparticle Catalysis in Stereoselective Coupling of Alkynes with Aldimine Esters. J Am Chem Soc 2024. [PMID: 39356822 DOI: 10.1021/jacs.4c09983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Understanding the nature of a transition-metal-catalyzed process, including catalyst evolution and the real active species, is rather challenging yet of great importance for the rational design and development of novel catalysts, and this is even more difficult for a bimetallic catalytic system. Pd(0)/carboxylic acid combined system-catalyzed allylic alkylation reaction of alkynes has been used as an atom-economical protocol for the synthesis of allylic products. However, the asymmetric version of this reaction is still rather limited, and the in-depth understanding of the nature of active Pd species is still elusive. Herein we report an enantioselective coupling between readily available aldimine esters and alkynes using a synergistic Cu/Pd catalyst system, affording a diverse set of α-quaternary allyl amino ester derivatives in good yields with excellent enantioselectivities. Mechanistic studies indicated that it is most likely a synergistic asymmetric molecular Cu catalysis with Pd nanoparticle catalysis. The Pd catalyst precursor is transformed to soluble Pd nanoparticles in situ, which are responsible for activating the alkyne to an electrophilic allylic Pd intermediate, while the chiral Cu complex of the aldimine ester enolate provides chiral induction and works in synergy with the Pd nanoparticles.
Collapse
Affiliation(s)
- Yong Liu
- State Key Laboratory of Organometallic Chemistry and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Hongda Chen
- State Key Laboratory of Organometallic Chemistry and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Xiaoming Wang
- State Key Laboratory of Organometallic Chemistry and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024 China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
3
|
Prima DO, Kulikovskaya NS, Novikov RA, Kostyukovich AY, Burykina JV, Chernyshev VM, Ananikov VP. Revealing the Mechanism of Combining Best Properties of Homogeneous and Heterogeneous Catalysis in Hybrid Pd/NHC Systems. Angew Chem Int Ed Engl 2024; 63:e202317468. [PMID: 38572820 DOI: 10.1002/anie.202317468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/17/2024] [Accepted: 04/03/2024] [Indexed: 04/05/2024]
Abstract
The formation of transient hybrid nanoscale metal species from homogeneous molecular precatalysts has been demonstrated by in situ NMR studies of catalytic reactions involving transition metals with N-heterocyclic carbene ligands (M/NHC). These hybrid structures provide benefits of both molecular complexes and nanoparticles, enhancing the activity, selectivity, flexibility, and regulation of active species. However, they are challenging to identify experimentally due to the unsuitability of standard methods used for homogeneous or heterogeneous catalysis. Utilizing a sophisticated solid-state NMR technique, we provide evidence for the formation of NHC-ligated catalytically active Pd nanoparticles (PdNPs) from Pd/NHC complexes during catalysis. The coordination of NHCs via C(NHC)-Pd bonding to the metal surface was first confirmed by observing the Knight shift in the 13C NMR spectrum of the frozen reaction mixture. Computational modeling revealed that as little as few NHC ligands are sufficient for complete ligation of the surface of the formed PdNPs. Catalytic experiments combined with in situ NMR studies confirmed the significant effect of surface covalently bound NHC ligands on the catalytic properties of the PdNPs formed by decomposition of the Pd/NHC complexes. This observation shows the crucial influence of NHC ligands on the activity and stability of nanoparticulate catalytic systems.
Collapse
Affiliation(s)
- Darya O Prima
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospekt 47, Moscow, 119991, Russia
| | - Natalia S Kulikovskaya
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospekt 47, Moscow, 119991, Russia
| | - Roman A Novikov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospekt 47, Moscow, 119991, Russia
| | - Alexander Yu Kostyukovich
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospekt 47, Moscow, 119991, Russia
| | - Julia V Burykina
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospekt 47, Moscow, 119991, Russia
| | - Victor M Chernyshev
- Platov South-Russian State Polytechnic University (NPI), Prosveschenya 132, Novocherkassk, 346428, Russia
| | - Valentine P Ananikov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospekt 47, Moscow, 119991, Russia
| |
Collapse
|
4
|
Ibarra J, Aguirre MJ, del Río R, Henriquez R, Faccio R, Dalchiele EA, Arce R, Ramírez G. α-Fe 2O 3/, Co 3O 4/, and CoFe 2O 4/MWCNTs/Ionic Liquid Nanocomposites as High-Performance Electrocatalysts for the Electrocatalytic Hydrogen Evolution Reaction in a Neutral Medium. Int J Mol Sci 2024; 25:7043. [PMID: 39000155 PMCID: PMC11240971 DOI: 10.3390/ijms25137043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Transition metal oxides are a great alternative to less expensive hydrogen evolution reaction (HER) catalysts. However, the lack of conductivity of these materials requires a conductor material to support them and improve the activity toward HER. On the other hand, carbon paste electrodes result in a versatile and cheap electrode with good activity and conductivity in electrocatalytic hydrogen production, especially when the carbonaceous material is agglomerated with ionic liquids. In the present work, an electrode composed of multi-walled carbon nanotubes (MWCNTs) and cobalt ferrite oxide (CoFe2O4) was prepared. These compounds were included on an electrode agglomerated with the ionic liquid N-octylpyridinium hexafluorophosphate (IL) to obtain the modified CoFe2O4/MWCNTs/IL nanocomposite electrode. To evaluate the behavior of each metal of the bimetallic oxide, this compound was compared to the behavior of MWCNTs/IL where a single monometallic iron or cobalt oxides were included (i.e., α-Fe2O3/MWCNTs/IL and Co3O4/MWCNTs/IL). The synthesis of the oxides has been characterized by X-ray diffraction (XRD), RAMAN spectroscopy, and field emission scanning electronic microscopy (FE-SEM), corroborating the nanometric character and the structure of the compounds. The CoFe2O4/MWCNTs/IL nanocomposite system presents excellent electrocatalytic activity toward HER with an onset potential of -270 mV vs. RHE, evidencing an increase in activity compared to monometallic oxides and exhibiting onset potentials of -530 mV and -540 mV for α-Fe2O3/MWCNTs/IL and Co3O4/MWCNTs/IL, respectively. Finally, the system studied presents excellent stability during the 5 h of electrolysis, producing 132 μmol cm-2 h-1 of hydrogen gas.
Collapse
Affiliation(s)
- José Ibarra
- Departamento de Química Inorgánica, Facultad de Química, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Casilla 306, Correo 22, Santiago 8331150, Chile; (J.I.); (R.d.R.)
| | - María Jesus Aguirre
- Millennium Institute on Green Ammonia as Energy Vector (MIGA), Av. Vicuña Mackenna 4860, Macul, Santiago 7820436, Chile;
- Departamento Química de los Materiales, Facultad de Química y Biologia, Universidad de Santiago de Chile, Av. B O’Higgins 3363, Estación Central, Santiago 9170022, Chile
| | - Rodrigo del Río
- Departamento de Química Inorgánica, Facultad de Química, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Casilla 306, Correo 22, Santiago 8331150, Chile; (J.I.); (R.d.R.)
- Millennium Institute on Green Ammonia as Energy Vector (MIGA), Av. Vicuña Mackenna 4860, Macul, Santiago 7820436, Chile;
| | - Rodrigo Henriquez
- Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2950, Valparaíso 2362807, Chile;
| | - Ricardo Faccio
- Área Física & Centro NanoMat, DETEMA, Facultad de Química, Universidad de la República, Av. Gral. Flores 2124, CC 1157, Montevideo 11800, Uruguay;
| | - Enrique A. Dalchiele
- Instituto de Física, Facultad de Ingeniería, Universidad de la República, Herrera y Reissig 565, C.C. 30, Montevideo 11000, Uruguay;
| | - Roxana Arce
- Millennium Institute on Green Ammonia as Energy Vector (MIGA), Av. Vicuña Mackenna 4860, Macul, Santiago 7820436, Chile;
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andrés Bello, Av. República 275, Santiago 8370146, Chile
| | - Galo Ramírez
- Departamento de Química Inorgánica, Facultad de Química, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Casilla 306, Correo 22, Santiago 8331150, Chile; (J.I.); (R.d.R.)
- Millennium Institute on Green Ammonia as Energy Vector (MIGA), Av. Vicuña Mackenna 4860, Macul, Santiago 7820436, Chile;
| |
Collapse
|
5
|
Kumar P, Nemiwal M. Advanced Functionalized Nanoclusters (Cu, Ag, and Au) as Effective Catalyst for Organic Transformation Reactions. Chem Asian J 2024; 19:e202400062. [PMID: 38386668 DOI: 10.1002/asia.202400062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 02/24/2024]
Abstract
A considerable amount of research has been carried out in recent years on synthesizing metal nanoclusters (NCs), which have wide applications in the field of optical materials with non-linear properties, bio-sensing, and catalysis. Aside from being structurally accurate, the atomically precise NCs possess well-defined compositions due to significant tailoring, both at the surface and the core, for certain functionalities. To illustrate the importance of atomically precise metal NCs for catalytic processes, this review emphasizes 1) the recent work on Cu, Ag, and Au NCs with their synthesis, 2) the parameters affecting the activity and selectivity of NCs catalysis, and 3) the discussion on the catalytic potential of these metal NCs. Additionally, metal NCs will facilitate the design of extremely active and selective catalysts for significant reactions by elucidating catalytic mechanisms at the atomic and molecular levels. Future advancements in the science of catalysis are expected to come from the potential to design NCs catalysts at the atomic level.
Collapse
Affiliation(s)
- Parveen Kumar
- Department of Chemistry, Malaviya National Institute of Technology, Jaipur, 302017, India
| | - Meena Nemiwal
- Department of Chemistry, Malaviya National Institute of Technology, Jaipur, 302017, India
| |
Collapse
|
6
|
Huo Z, Lv Y, Wang N, Zhou C, Su X. Construction of a dual-signal readout platform for effective glutathione S-transferase sensing based on polyethyleneimine-capped silver nanoclusters and cobalt-manganese oxide nanosheets with oxidase-mimicking activity. Mikrochim Acta 2024; 191:282. [PMID: 38652326 DOI: 10.1007/s00604-024-06363-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/12/2024] [Indexed: 04/25/2024]
Abstract
A novel dual-mode fluorometric and colorimetric sensing platform is reported for determining glutathione S-transferase (GST) by utilizing polyethyleneimine-capped silver nanoclusters (PEI-AgNCs) and cobalt-manganese oxide nanosheets (CoMn-ONSs) with oxidase-like activity. Abundant active oxygen species (O2•-) can be produced through the CoMn-ONSs interacting with dissolved oxygen. Afterward, the pink oxDPD was generated through the oxidation of colorless N,N-diethyl-p-phenylenediamine (DPD) by O2•-, and two absorption peaks at 510 and 551 nm could be observed. Simultaneously, oxDPD could quench the fluorescence of PEI-AgNCs at 504 nm via the inner filter effect (IFE). However, in the presence of glutathione (GSH), GSH prevents the oxidation of DPD due to the reducibility of GSH, leading to the absorbance decrease at 510 and 551 nm. Furthermore, the fluorescence at 504 nm was restored due to the quenching effect of oxDPD on decreased PEI-AgNCs. Under the catalysis of GST, GSH and1-chloro-2,4-dinitrobenzo (CDNB) conjugate to generate an adduct, initiating the occurrence of the oxidation of the chromogenic substrate DPD, thereby inducing a distinct colorimetric response again and the significant quenching of PEI-AgNCs. The detection limits for GST determination were 0.04 and 0.21 U/L for fluorometric and colorimetric modes, respectively. The sensing platform illustrated reliable applicability in detecting GST in real samples.
Collapse
Affiliation(s)
- Zejiao Huo
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, People's Republic of China
| | - Yuntai Lv
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, People's Republic of China
| | - Nan Wang
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, People's Republic of China
| | - Chenyu Zhou
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, People's Republic of China
| | - Xingguang Su
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, People's Republic of China.
| |
Collapse
|
7
|
Lu X, Geletii YV, Cheng T, Hill CL. Role of Multiple Vanadium Centers on Redox Buffering and Rates of Polyvanadomolybdate-Cu(II)-Catalyzed Aerobic Oxidations. Inorg Chem 2023; 62:5822-5830. [PMID: 36977374 PMCID: PMC10091476 DOI: 10.1021/acs.inorgchem.3c00469] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
A recent report established that the tetrabutylammonium (TBA) salt of hexavanadopolymolybdate TBA4H5[PMo6V6O40] (PV6Mo6) serves as the redox buffer with Cu(II) as a co-catalyst for aerobic deodorization of thiols in acetonitrile. Here, we document the profound impact of vanadium atom number (x = 0-4 and 6) in TBA salts of PVxMo12-xO40(3+x)- (PVMo) on this multicomponent catalytic system. The PVMo cyclic voltammetric peaks from 0 to -2000 mV vs Fc/Fc+ under catalytic conditions (acetonitrile, ambient T) are assigned and clarify that the redox buffering capability of the PVMo/Cu catalytic system derives from the number of steps, the number of electrons transferred each step, and the potential ranges of each step. All PVMo are reduced by varying numbers of electrons, from 1 to 6, in different reaction conditions. Significantly, PVMo with x ≤ 3 not only has much lower activity than when x > 3 (for example, the turnover frequencies (TOF) of PV3Mo9 and PV4Mo8 are 8.9 and 48 s-1, respectively) but also, unlike the latter, cannot maintain steady reduction states when the Mo atoms in these polyoxometalate (POMs) are also reduced. Stopped-flow kinetics measurements reveal that Mo atoms in Keggin PVMo exhibit much slower electron transfer rates than V atoms. There are two kinetic arguments: (a) In acetonitrile, the first formal potential of PMo12 is more positive than that of PVMo11 (-236 and -405 mV vs Fc/Fc+); however, the initial reduction rates are 1.06 × 10-4 s-1 and 0.036 s-1 for PMo12 and PVMo11, respectively. (b) In aqueous sulfate buffer (pH = 2), a two-step kinetics is observed for PVMo11 and PV2Mo10, where the first and second steps are assigned to reduction of the V and Mo centers, respectively. Since fast and reversible electron transfers are key for the redox buffering behavior, the slower electron transfer kinetics of Mo preclude these centers functioning in redox buffering that maintains the solution potential. We conclude that PVMo with more vanadium atoms allows the POM to undergo more and faster redox changes, which enables the POM to function as a redox buffer dictating far higher catalytic activity.
Collapse
Affiliation(s)
- Xinlin Lu
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Yurii V Geletii
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Ting Cheng
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Craig L Hill
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
8
|
Quinson J, Kunz S, Arenz M. Surfactant-Free Colloidal Syntheses of Precious Metal Nanoparticles for Improved Catalysts. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
9
|
Avello MG, Golling S, Truong-Phuoc L, Vidal L, Romero T, Papaefthimiou V, Gruber N, Chetcuti MJ, Leroux FR, Donnard M, Ritleng V, Pham-Huu C, Michon C. (NHC-olefin)-nickel(0) nanoparticles as catalysts for the ( Z)-selective semi-hydrogenation of alkynes and ynamides. Chem Commun (Camb) 2023; 59:1537-1540. [PMID: 36661282 DOI: 10.1039/d2cc05302k] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Nickel(0) nanoparticles coordinated to NHC ligands bearing N-coordinated cinnamyl moieties were readily prepared by reduction of a [NiCpBr(NHC-cinnamyl)] complex with methyl magnesium bromide. The combination of a strong σ-donor NHC ligand with a π-coordinating appended cinnamyl moiety likely prevents nickel(0) nanoparticle aggregation to larger inactive species, and allows the effective and (Z)-selective semi-hydrogenation of alkynes and ynamides.
Collapse
Affiliation(s)
- Marta G Avello
- Université de Strasbourg, Université de Haute-Alsace, Ecole européenne de Chimie, Polymères et Matériaux, CNRS, LIMA, UMR 7042, 25 rue Becquerel, 67087, Strasbourg, France.
| | - Stéphane Golling
- Université de Strasbourg, Université de Haute-Alsace, Ecole européenne de Chimie, Polymères et Matériaux, CNRS, LIMA, UMR 7042, 25 rue Becquerel, 67087, Strasbourg, France.
| | - Lai Truong-Phuoc
- Université de Strasbourg, Ecole européenne de Chimie, Polymères et Matériaux, CNRS, ICPEES, UMR 7515, 25 rue Becquerel, 67087, Strasbourg, France.
| | - Loïc Vidal
- Université de Haute-Alsace, CNRS, IS2M UMR UMR 7361, 15, rue Jean Starcky - BP 2488, 68057, Mulhouse, France
| | - Thierry Romero
- Université de Strasbourg, Ecole européenne de Chimie, Polymères et Matériaux, CNRS, ICPEES, UMR 7515, 25 rue Becquerel, 67087, Strasbourg, France.
| | - Vasiliki Papaefthimiou
- Université de Strasbourg, Ecole européenne de Chimie, Polymères et Matériaux, CNRS, ICPEES, UMR 7515, 25 rue Becquerel, 67087, Strasbourg, France.
| | - Nathalie Gruber
- Université de Strasbourg, Fédération de chimie Le Bel - FR2010, BP 296R8 1, rue Blaise Pascal, 67008, Strasbourg, France
| | - Michael J Chetcuti
- Université de Strasbourg, Université de Haute-Alsace, Ecole européenne de Chimie, Polymères et Matériaux, CNRS, LIMA, UMR 7042, 25 rue Becquerel, 67087, Strasbourg, France.
| | - Frédéric R Leroux
- Université de Strasbourg, Université de Haute-Alsace, Ecole européenne de Chimie, Polymères et Matériaux, CNRS, LIMA, UMR 7042, 25 rue Becquerel, 67087, Strasbourg, France.
| | - Morgan Donnard
- Université de Strasbourg, Université de Haute-Alsace, Ecole européenne de Chimie, Polymères et Matériaux, CNRS, LIMA, UMR 7042, 25 rue Becquerel, 67087, Strasbourg, France.
| | - Vincent Ritleng
- Université de Strasbourg, Université de Haute-Alsace, Ecole européenne de Chimie, Polymères et Matériaux, CNRS, LIMA, UMR 7042, 25 rue Becquerel, 67087, Strasbourg, France.
| | - Cuong Pham-Huu
- Université de Strasbourg, Ecole européenne de Chimie, Polymères et Matériaux, CNRS, ICPEES, UMR 7515, 25 rue Becquerel, 67087, Strasbourg, France.
| | - Christophe Michon
- Université de Strasbourg, Université de Haute-Alsace, Ecole européenne de Chimie, Polymères et Matériaux, CNRS, LIMA, UMR 7042, 25 rue Becquerel, 67087, Strasbourg, France.
| |
Collapse
|
10
|
Lotsman KA, Rodygin KS, Skvortsova I, Kutskaya AM, Minyaev ME, Ananikov VP. Atom-economical synthesis of 1,2-bis(phosphine oxide)ethanes from calcium carbide with straightforward access to deuterium- and 13C-labeled bidentate phosphorus ligands and metal complexes. Org Chem Front 2023. [DOI: 10.1039/d2qo01652d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Straightforward access to bidentate phosphorus ligands and bis(phosphineoxide)ethanes is described based on atom-economic addition reaction. A practical approach was developed to incorporate 2H and 13C labels using easily available reagents.
Collapse
Affiliation(s)
- Kristina A. Lotsman
- Institute of Chemistry, Saint Petersburg State University, Universitetskiy pr. 26, Stary Petergof 198504, Russia
| | - Konstantin S. Rodygin
- Institute of Chemistry, Saint Petersburg State University, Universitetskiy pr. 26, Stary Petergof 198504, Russia
| | - Irina Skvortsova
- Institute of Chemistry, Saint Petersburg State University, Universitetskiy pr. 26, Stary Petergof 198504, Russia
| | - Anastasia M. Kutskaya
- Institute of Chemistry, Saint Petersburg State University, Universitetskiy pr. 26, Stary Petergof 198504, Russia
| | - Mikhail E. Minyaev
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky pr. 47, Moscow 119991, Russia
| | - Valentine P. Ananikov
- Institute of Chemistry, Saint Petersburg State University, Universitetskiy pr. 26, Stary Petergof 198504, Russia
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky pr. 47, Moscow 119991, Russia
| |
Collapse
|
11
|
Yan H, Xiang H, Liu J, Cheng R, Ye Y, Han Y, Yao C. The Factors Dictating Properties of Atomically Precise Metal Nanocluster Electrocatalysts. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200812. [PMID: 35403353 DOI: 10.1002/smll.202200812] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/13/2022] [Indexed: 06/14/2023]
Abstract
Metal nanoparticles occupy an important position in electrocatalysis. Unfortunately, by using conventional synthetic methodology, it is a great challenge to realize the monodisperse composition/structure of metal nanoparticles at the atomic level, and to establish correlations between the catalytic properties and the structure of individual catalyst particles. For the study of well-defined nanocatalysts, great advances have been made for the successful synthesis of nanoparticles with atomic precision, notably ligand-passivated metal nanoclusters. Such well-defined metal nanoclusters have become a type of model catalyst and have shown great potential in catalysis research. In this review, the authors summarize the advances in the utilization of atomically precise metal nanoclusters for electrocatalysis. In particular, the factors (e.g., size, metal doping/alloying, ligand engineering, support materials as well as charge state of clusters) affecting selectivity and activity of catalysts are highlighted. The authors aim to provide insightful guidelines for the rational design of electrocatalysts with high performance and perspectives on potential challenges and opportunities in this emerging field.
Collapse
Affiliation(s)
- Hao Yan
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
- Ningbo Institute of Northwestern Polytechnical University, 218 Qingyi Road, Ningbo, 315103, China
| | - Huixin Xiang
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
- Ningbo Institute of Northwestern Polytechnical University, 218 Qingyi Road, Ningbo, 315103, China
| | - Jiaohu Liu
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
| | - Ranran Cheng
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
| | - Yongqi Ye
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
| | - Yunhu Han
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
| | - Chuanhao Yao
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
- Ningbo Institute of Northwestern Polytechnical University, 218 Qingyi Road, Ningbo, 315103, China
| |
Collapse
|
12
|
Denisova EA, Kostyukovich AY, Fakhrutdinov AN, Korabelnikova VA, Galushko AS, Ananikov VP. “Hidden” Nanoscale Catalysis in Alkyne Hydrogenation with Well-Defined Molecular Pd/NHC Complexes. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01749] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Ekaterina A. Denisova
- Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, Leninsky Prospekt 47, Moscow 119991, Russia
| | - Alexander Yu. Kostyukovich
- Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, Leninsky Prospekt 47, Moscow 119991, Russia
| | - Artem N. Fakhrutdinov
- Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, Leninsky Prospekt 47, Moscow 119991, Russia
| | - Viktoria A. Korabelnikova
- Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, Leninsky Prospekt 47, Moscow 119991, Russia
| | - Alexey S. Galushko
- Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, Leninsky Prospekt 47, Moscow 119991, Russia
| | - Valentine P. Ananikov
- Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, Leninsky Prospekt 47, Moscow 119991, Russia
| |
Collapse
|
13
|
Parida D, Bakkali-Hassani C, Lebraud E, Schatz C, Grelier S, Taton D, Vignolle J. Tuning the activity and selectivity of polymerised ionic liquid-stabilised ruthenium nanoparticles through anion exchange reactions. NANOSCALE 2022; 14:4635-4643. [PMID: 35262129 DOI: 10.1039/d1nr07628k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The development of highly active and selective heterogeneous-based catalysts with tailorable properties is not only a fundamental challenge, but is also crucial in the context of energy savings and sustainable chemistry. Here, we show that ruthenium nanoparticles (RuNPs) stabilised with simple polymerised ionic liquids (PILs) based on N-vinyl imidazolium led to highly active and robust nano-catalysts in hydrogenation reactions, both in water and organic media. Of particular interest, their activity and selectivity could simply be manipulated through counter-anion exchange reactions. Hence, as a proof of concept, the activity of RuNPs could be reversibly turned on and off in the hydrogenation of toluene, while in the case of styrene, the hydrogenation could be selectively switched from ethylbenzene to ethylcyclohexane upon anion metathesis. According to X-ray photoelectron spectroscopy (XPS) and dynamic light scattering (DLS) analyses, these effects could originate not only from the relative hydrophobicity and solvation of the PIL corona but also from the nature and strength of the PIL-Ru interactions.
Collapse
Affiliation(s)
- Dambarudhar Parida
- Laboratoire de Chimie des Polymères Organiques (LCPO), CNRS, University of Bordeaux, Bordeaux INP, F-33607 Pessac Cedex, France.
- Swiss Federal Laboratories for Materials Science and Technology (Empa), St. Gallen, CH-9014, Switzerland
| | - Camille Bakkali-Hassani
- Laboratoire de Chimie des Polymères Organiques (LCPO), CNRS, University of Bordeaux, Bordeaux INP, F-33607 Pessac Cedex, France.
| | - Eric Lebraud
- University of Bordeaux, ICMCB, UPR 9048, F-33600 Pessac, France
| | - Christophe Schatz
- Laboratoire de Chimie des Polymères Organiques (LCPO), CNRS, University of Bordeaux, Bordeaux INP, F-33607 Pessac Cedex, France.
| | - Stéphane Grelier
- Laboratoire de Chimie des Polymères Organiques (LCPO), CNRS, University of Bordeaux, Bordeaux INP, F-33607 Pessac Cedex, France.
| | - Daniel Taton
- Laboratoire de Chimie des Polymères Organiques (LCPO), CNRS, University of Bordeaux, Bordeaux INP, F-33607 Pessac Cedex, France.
| | - Joan Vignolle
- Laboratoire de Chimie des Polymères Organiques (LCPO), CNRS, University of Bordeaux, Bordeaux INP, F-33607 Pessac Cedex, France.
| |
Collapse
|
14
|
Lin W, Yan J, Pan G, Zhang J, Wen L, Huang Q, Li T, Zhao Q, Lin X, Yi G. Diselenide‐bearing
crosslinked
micelles‐reduced
and stabilized gold nanoparticles
in‐situ. J Appl Polym Sci 2022. [DOI: 10.1002/app.51775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Wenjing Lin
- School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou China
| | - Jingye Yan
- School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou China
| | - Guoyi Pan
- School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou China
| | - Jieheng Zhang
- School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou China
| | - Liyang Wen
- School of Chemistry and Chemical Engineering South China University of Technology Guangzhou China
| | - Quanfeng Huang
- School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou China
| | - Tang Li
- School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou China
| | - Qianyi Zhao
- School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou China
| | - Xiaofeng Lin
- School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou China
| | - Guobin Yi
- School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou China
| |
Collapse
|
15
|
Sergievskaya A, Chauvin A, Konstantinidis S. Sputtering onto liquids: a critical review. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2022; 13:10-53. [PMID: 35059275 PMCID: PMC8744456 DOI: 10.3762/bjnano.13.2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 12/07/2021] [Indexed: 05/03/2023]
Abstract
Sputter deposition of atoms onto liquid substrates aims at producing colloidal dispersions of small monodisperse ultrapure nanoparticles (NPs). Since sputtering onto liquids combines the advantages of the physical vapor deposition technique and classical colloidal synthesis, the review contains chapters explaining the basics of (magnetron) sputter deposition and the formation of NPs in solution. This review article covers more than 132 papers published on this topic from 1996 to September 2021 and aims at providing a critical analysis of most of the reported data; we will address the influence of the sputtering parameters (sputter power, current, voltage, sputter time, working gas pressure, and the type of sputtering plasma) and host liquid properties (composition, temperature, viscosity, and surface tension) on the NP formation as well as a detailed overview of the properties and applications of the produced NPs.
Collapse
Affiliation(s)
- Anastasiya Sergievskaya
- Plasma-Surface Interaction Chemistry (ChIPS), University of Mons, 23 Place du Parc, B-7000 Mons, Belgium
| | - Adrien Chauvin
- Plasma-Surface Interaction Chemistry (ChIPS), University of Mons, 23 Place du Parc, B-7000 Mons, Belgium
- Department of Condensed Matter Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 121 16 Praha 2, Czech Republic
| | - Stephanos Konstantinidis
- Plasma-Surface Interaction Chemistry (ChIPS), University of Mons, 23 Place du Parc, B-7000 Mons, Belgium
| |
Collapse
|
16
|
YOSHII K. Electrodeposition of Metals and Preparation of Metal Nanoparticles in Nonaqueous Electrolytes and Their Application to Energy Devices. ELECTROCHEMISTRY 2021. [DOI: 10.5796/electrochemistry.21-00078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Kazuki YOSHII
- Research Institute of Electrochemical Energy (RIECEN), Department of Energy and Environment, National Institute of Advanced Industrial Science and Technology (AIST)
| |
Collapse
|
17
|
|
18
|
Chernyshev VM, Khazipov OV, Eremin DB, Denisova EA, Ananikov VP. Formation and stabilization of nanosized Pd particles in catalytic systems: Ionic nitrogen compounds as catalytic promoters and stabilizers of nanoparticles. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213860] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
19
|
Jang H, Lee JR, Kim SJ, Jeong H, Jung S, Lee JH, Park JC, Kim TW. Concerns and breakthroughs of combining ionic liquids with microwave irradiation for the synthesis of Ru nanoparticles via decarbonylation. J Colloid Interface Sci 2021; 599:828-836. [PMID: 33989935 DOI: 10.1016/j.jcis.2021.04.046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/06/2021] [Accepted: 04/10/2021] [Indexed: 11/27/2022]
Abstract
HYPOTHESIS Combination of microwave irradiation (MWI) and ionic liquids (IL) is widely used for the synthesis of nanoparticles (NP) via decarbonylation of zero-valent metal carbonyl precursors. However, we carefully raise a question as to whether this combination is always beneficial. Upon MWI, highly-absorbing materials such as ILs would be subject to local intense heating, likely resulting in the occurrence of localized chemical decomposition. The decomposition is expected to influence the growth mechanism of NPs due to changes in the electrostatic and steric effects. If the assumption is valid, it should be possible to decompose IL and destabilize the NPs by modifying the amplitude of the incident microwaves. In other words, it should also be possible to control the particle aggregation by circumventing the decomposition of the IL. EXPERIMENTS A series of comparative studies were conducted using a model system (i.e. [BMIm][BF4] and Ru3(CO)12). Variables were systematically controlled. After MWI, the decrease in colloidal stability of NPs was identified. FINDINGS In the formation of Ru NPs via decarbonylation, the association between incident microwave intensity, chemical decomposition of IL, and initiation of particle aggregation has been demonstrated. Conditions that can accelerate or alleviate the decomposition and the aggregation are also corroborated.
Collapse
Affiliation(s)
- Hansaem Jang
- Smart Energy and Nano Photonics R&D Group, Korea Institute of Industrial Technology (KITECH), Gwangju 61012, South Korea
| | - Jeon Ryang Lee
- Smart Energy and Nano Photonics R&D Group, Korea Institute of Industrial Technology (KITECH), Gwangju 61012, South Korea; Interdisciplinary Program for Photonic Engineering, Chonnam National University (CNU), Gwangju 61186, South Korea
| | - Su Jin Kim
- Smart Energy and Nano Photonics R&D Group, Korea Institute of Industrial Technology (KITECH), Gwangju 61012, South Korea
| | - Hyejeong Jeong
- Smart Energy and Nano Photonics R&D Group, Korea Institute of Industrial Technology (KITECH), Gwangju 61012, South Korea
| | - Sungkwan Jung
- Smart Energy and Nano Photonics R&D Group, Korea Institute of Industrial Technology (KITECH), Gwangju 61012, South Korea
| | - Jeong-Hyeon Lee
- Smart Energy and Nano Photonics R&D Group, Korea Institute of Industrial Technology (KITECH), Gwangju 61012, South Korea; School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, South Korea
| | - Jae-Cheol Park
- Smart Energy and Nano Photonics R&D Group, Korea Institute of Industrial Technology (KITECH), Gwangju 61012, South Korea
| | - Tae-Won Kim
- Smart Energy and Nano Photonics R&D Group, Korea Institute of Industrial Technology (KITECH), Gwangju 61012, South Korea.
| |
Collapse
|
20
|
Skripov NI, Belykh LB, Sterenchuk TP, Levchenko AS, Schmidt FK. Reasons for the Inverse Dependence of the Turnover Frequency of Hydrogenation of Unsaturated Compounds on Palladium Catalyst Concentration. KINETICS AND CATALYSIS 2021. [DOI: 10.1134/s0023158421020099] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
21
|
The synthesis of new PEPPSI-type N-heterocyclic carbene (NHC)-Pd(II) complexes bearing long alkyl chain as precursors for the synthesis of NHC-stabilized Pd(0) nanoparticles and their catalytic applications. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2020.121633] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
22
|
Prima DO, Madiyeva M, Burykina JV, Minyaev ME, Boiko DA, Ananikov VP. Evidence for “cocktail”-type catalysis in Buchwald–Hartwig reaction. A mechanistic study. Catal Sci Technol 2021. [DOI: 10.1039/d1cy01601f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The mechanism of the C–N cross-coupling reaction, catalyzed by Pd/NHC, was evaluated at the molecular and nanoscale levels. The first evidence for the involvement of a “cocktail”-type system in the Buchwald–Hartwig reaction is provided.
Collapse
Affiliation(s)
- Darya O. Prima
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospekt 47, Moscow, 119991, Russia
| | - Malena Madiyeva
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospekt 47, Moscow, 119991, Russia
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Julia V. Burykina
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospekt 47, Moscow, 119991, Russia
| | - Mikhail E. Minyaev
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospekt 47, Moscow, 119991, Russia
| | - Daniil A. Boiko
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospekt 47, Moscow, 119991, Russia
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Valentine P. Ananikov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospekt 47, Moscow, 119991, Russia
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
23
|
Shepelenko KE, Soliev SB, Galushko AS, Chernyshev VM, Ananikov VP. Different effects of metal-NHC bond cleavage on the Pd/NHC and Ni/NHC catalyzed α-arylation of ketones with aryl halides. Inorg Chem Front 2021. [DOI: 10.1039/d0qi01411g] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Fundamental differences in the behavior of Pd/NHC and Ni/NHC catalytic systems in ketones α-arylation were elucidated and exploited.
Collapse
Affiliation(s)
| | | | - Alexey S. Galushko
- Zelinsky Institute of Organic Chemistry
- Russian Academy of Sciences
- Moscow
- Russia
| | | | - Valentine P. Ananikov
- Platov South-Russian State Polytechnic University (NPI)
- Russia
- Zelinsky Institute of Organic Chemistry
- Russian Academy of Sciences
- Moscow
| |
Collapse
|
24
|
Polyvinylpyrrolidone-Stabilized Iridium Nanoparticles Catalyzed the Transfer Hydrogenation of Nitrobenzene Using Formic Acid as the Source of Hydrogen. CHEMISTRY 2020. [DOI: 10.3390/chemistry2040061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Catalytic nitrobenzene reduction is crucial for the synthesis of 4,4-methylene diphenyl diisocyanate, which is used to produce polyurethane foams, thermoplastic elastomers, and adhesives. The stability and activity of nanoparticle catalysts are affected by surface ligands and stabilizers. We established the complete composition of 7.0 ± 1.1 nm iridium oxide nanoparticles that were stabilized by polyvinylpyrrolidone (PVP[Ir]). PVP[Ir] and its surface stabilizers were characterized using elemental analysis (EA), high-resolution X-ray photoelectron spectroscopy (XPS), powder X-ray diffraction (PXRD), FT-IR, and UV-vis spectroscopy. Notably, PVP[Ir] contained 33.8 ± 0.4% Ir. XPS binding energy analyses suggest that 7% of the Ir is Ir(0) and 93% is IrO2. Using formic acid as the source of hydrogen, PVP[Ir] catalyzed the selective hydrogenation of nitrobenzene to give aniline as the only product in 66% yield in 1 h at 160 °C in a high-pressure metal reactor. Less than 1% of the side products (azobenzene and azoxybenzene) were detected. In contrast, using alcohol as the hydrogen source led to a low yield and a poor selectivity for aniline.
Collapse
|
25
|
Rodrigues DM, dos Santos LM, Bernard FL, Pinto IS, Zampiva R, Kaufmann G, Einloft S. Imidazolium-based ionic liquid silica xerogel as catalyst to transform CO2 into cyclic carbonate. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-03712-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
26
|
Quinson J, Jensen KM. From platinum atoms in molecules to colloidal nanoparticles: A review on reduction, nucleation and growth mechanisms. Adv Colloid Interface Sci 2020; 286:102300. [PMID: 33166723 DOI: 10.1016/j.cis.2020.102300] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/25/2020] [Accepted: 10/26/2020] [Indexed: 12/24/2022]
Abstract
Platinum (Pt) is one of the most studied materials in catalysis today and considered for a wide range of applications: chemical synthesis, energy conversion, air treatment, water purification, sensing, medicine etc. As a limited and non-renewable resource, optimized used of Pt is key. Nanomaterial design offers multiple opportunities to make the most of Pt resources down to the atomic scale. In particular, colloidal syntheses of Pt nanoparticles are well documented and simple to implement, which accounts for the large interest in research and development. For further breakthroughs in the design of Pt nanomaterials, a deeper understanding of the intricate synthesis-structures-properties relations of Pt nanoparticles must be obtained. Understanding how Pt nanoparticles form from molecular precursors is both a challenging and rewarding area of investigation. It is directly relevant to develop improved Pt nanomaterials but is also a source of inspiration to design other precious metal nanostructures. Here, we review the current understanding of Pt nanoparticle formation. This review is aimed at readers with interest in Pt nanoparticles in general and their colloidal syntheses in particular. Readers with a strongest interest on the study of nanomaterial formation will find here the case study of Pt. The preferred model systems and characterization techniques used to perform the study of Pt nanoparticle syntheses are discussed. In light of recent achievements, further direction and areas of research are proposed.
Collapse
|
27
|
Patra D, Nalluri SR, Tan HR, Saifullah MSM, Ganesan R, Gopalan B. New gold standard: weakly capped infant Au nanoclusters with record high catalytic activity for 4-nitrophenol reduction and hydrogen generation from an ammonia borane-sodium borohydride mixture. NANOSCALE ADVANCES 2020; 2:5384-5395. [PMID: 36132016 PMCID: PMC9417437 DOI: 10.1039/d0na00639d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 09/28/2020] [Indexed: 06/15/2023]
Abstract
Increasing the surface area-to-volume ratio of materials through size reduction is a desired approach to access maximum possible surface sites in applications such as catalysis. However, increase in the surface energy with the decrease in dimension warrants strong ligands to stabilize nanosystems, which mask the accessibility of the active surface sites. Owing to this, the realization of the true potential of a catalyst's surface remains challenging. Here, we employed a rationally designed strategy to synthesize infant Au nanoclusters-that alleviates the requirement of any separate ligand removal step-to unleash their actual potential to register a record high maximum turn-over frequency (TOFmax) of 72 900 h-1 and 65 500 h-1 in the benchmark catalytic reduction of 4-nitrophenol and catalytic H2 generation from an ammonia borane-sodium borohydride mixture, respectively. Such a phenomenal catalytic activity has been realized via the synthesis and stabilization of Au nanoclusters using solid citric acid and a super-concentrated aqueous AuCl3 solution, a pathway entirely different from the conventional modifications of the Turkevich and Brust methods. The crux of the synthetic strategy lies in precise control of the water content and thereby ensuring that the final Au nanoclusters remain in the solid state. During the synthesis, citric acid not only acts as a reducing agent to yield 'infant' Au nanoclusters but also provides a barrier matrix to arrest their growth. In solution, its weak capping ability and rapid dissolution allows the reactants to easily access the active sites of Au nanoclusters, thus leading to faster catalysis. Our study reveals that the true potential of metal nanoclusters as catalysts is actually far higher than what has been reported in the literature.
Collapse
Affiliation(s)
- Dinabandhu Patra
- Department of Chemistry, Birla Institute of Technology and Science (BITS) Pilani Hyderabad Campus, Jawahar Nagar, Kapra Mandal Hyderabad-500078 India
| | - Srinivasa Rao Nalluri
- Department of Chemistry, Birla Institute of Technology and Science (BITS) Pilani Hyderabad Campus, Jawahar Nagar, Kapra Mandal Hyderabad-500078 India
| | - Hui Ru Tan
- Institute of Materials Research and Engineering, ASTAR (Agency for Science, Technology, and Research) 2 Fusionopolis Way, #08-03 Innovis Singapore 138634 Singapore
| | - Mohammad S M Saifullah
- Institute of Materials Research and Engineering, ASTAR (Agency for Science, Technology, and Research) 2 Fusionopolis Way, #08-03 Innovis Singapore 138634 Singapore
| | - Ramakrishnan Ganesan
- Department of Chemistry, Birla Institute of Technology and Science (BITS) Pilani Hyderabad Campus, Jawahar Nagar, Kapra Mandal Hyderabad-500078 India
| | - Balaji Gopalan
- Department of Chemistry, Birla Institute of Technology and Science (BITS) Pilani Hyderabad Campus, Jawahar Nagar, Kapra Mandal Hyderabad-500078 India
| |
Collapse
|
28
|
Babucci M, Guntida A, Gates BC. Atomically Dispersed Metals on Well-Defined Supports including Zeolites and Metal–Organic Frameworks: Structure, Bonding, Reactivity, and Catalysis. Chem Rev 2020; 120:11956-11985. [DOI: 10.1021/acs.chemrev.0c00864] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Melike Babucci
- Department of Chemical Engineering, University of California, Davis, California, 95616, United States
| | - Adisak Guntida
- Department of Chemical Engineering, University of California, Davis, California, 95616, United States
- Center of Excellence on Catalysis and Catalytic Reaction Engineering, Department of Chemical Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Bruce C. Gates
- Department of Chemical Engineering, University of California, Davis, California, 95616, United States
| |
Collapse
|
29
|
Rhodium Nanoparticles Stabilized by PEG-Tagged Imidazolium Salts as Recyclable Catalysts for the Hydrosilylation of Internal Alkynes and the Reduction of Nitroarenes. Catalysts 2020. [DOI: 10.3390/catal10101195] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
PEGylated imidazolium (bromide and tetrafluoroborate) and tris-imidazolium (bromide) salts containing triazole linkers have been used as stabilizers for the preparation of water-soluble rhodium(0) nanoparticles by reduction of rhodium trichloride with sodium borohydride in water at room temperature. The nanomaterials have been characterized (Transmission Electron Microscopy, Electron Diffraction, X-ray Photoelectron Spectroscopy, Inductively Coupled Plasma-Optical Emission Spectroscopy). They proved to be efficient and recyclable catalysts for the stereoselective hydrosilylation of internal alkynes, in the presence or absence of solvent, and in the reduction of nitroarenes to anilines with ammonia-borane as hydrogen donor in aqueous medium (1:4 tetrahydrofuran/water).
Collapse
|
30
|
Riccardi C, Napolitano E, Platella C, Musumeci D, Melone MAB, Montesarchio D. Anti-VEGF DNA-based aptamers in cancer therapeutics and diagnostics. Med Res Rev 2020; 41:464-506. [PMID: 33038031 DOI: 10.1002/med.21737] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 09/12/2020] [Accepted: 09/23/2020] [Indexed: 12/13/2022]
Abstract
The vascular endothelial growth factor (VEGF) family and its receptors play fundamental roles not only in physiological but also in pathological angiogenesis, characteristic of cancer progression. Aiming at finding putative treatments for several malignancies, various small molecules, antibodies, or protein-based drugs have been evaluated in vitro and in vivo as VEGF inhibitors, providing efficient agents approved for clinical use. Due to the high clinical importance of VEGF, also a great number of anti-VEGF nucleic acid-based aptamers-that is, oligonucleotides able to bind with high affinity and specificity a selected biological target-have been developed as promising agents in anticancer strategies. Notable research efforts have been made in optimization processes of the identified aptamers, searching for increased target affinity and/or bioactivity by exploring structural analogues of the lead compounds. This review is focused on recent studies devoted to the development of DNA-based aptamers designed to target VEGF. Their therapeutic potential as well as their significance in the construction of highly selective biosensors is here discussed.
Collapse
Affiliation(s)
- Claudia Riccardi
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy.,Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, Center for Rare Diseases and Inter-University Center for Research in Neurosciences, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Ettore Napolitano
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | - Chiara Platella
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | - Domenica Musumeci
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy.,Institute of Biostructures and Bioimages, Naples, Italy
| | - Mariarosa A B Melone
- Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, Center for Rare Diseases and Inter-University Center for Research in Neurosciences, University of Campania Luigi Vanvitelli, Naples, Italy.,Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Daniela Montesarchio
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| |
Collapse
|
31
|
Skripov NI, Belykh LB, Sterenchuk TP, Gvozdovskaya KL, Zherdev VV, Dashabylova TM, Schmidt FK. Palladium-Phosphorus Nanoparticles as Effective Catalysts of the Chemoselective Hydrogenation of Alkynols. KINETICS AND CATALYSIS 2020. [DOI: 10.1134/s0023158420030209] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
Ataee‐Kachouei T, Nasr‐Esfahani M, Mohammadpoor‐Baltork I, Mirkhani V, Moghadam M, Tangestaninejad S, Notash B. Ce(IV) immobilized on halloysite nanotube–functionalized dendrimer (Ce(IV)–G2): A novel and efficient dendritic catalyst for the synthesis of pyrido[3,2‐
c
]coumarin derivatives. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5948] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Tahereh Ataee‐Kachouei
- Department of Chemistry, Catalysis Division University of Isfahan Isfahan 81746‐73441 Iran
| | | | | | - Valiollah Mirkhani
- Department of Chemistry, Catalysis Division University of Isfahan Isfahan 81746‐73441 Iran
| | - Majid Moghadam
- Department of Chemistry, Catalysis Division University of Isfahan Isfahan 81746‐73441 Iran
| | | | - Behrouz Notash
- Department of Inorganic Chemistry and Catalysis Shahid Beheshti University General Campus, Evin Tehran 1983963113 Iran
| |
Collapse
|
33
|
Zhu J, Lu X, Li Y, Li T, Yang L, Yang K, Ji L, Lu M, Li M. A Rotavirus Virus-Like Particle Confined Palladium Nanoreactor and Its Immobilization on Graphene Oxide for Catalysis. Catal Letters 2020; 150:3542-3552. [PMID: 32421047 PMCID: PMC7223084 DOI: 10.1007/s10562-020-03252-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 05/03/2020] [Indexed: 12/18/2022]
Abstract
Abstract In this work, a new viral protein cage based nanoreactor was successfully constructed via encapsulating Tween 80 stabilized palladium nanoparticles (NPs) into rotavirus capsid VP2 virus-like particles (i.e. Pd@VP2). The effects of stabilizers including CTAB, SDS, Tween 80 and PVP on controlling the particle size of Pd NPs were investigated. They were further immobilized on graphene oxide (i.e. Pd@VP2/GO) by a simple mixing method. Some characterizations including FT-IR and XPS were conducted to study adsorption mode of Pd@VP2 on GO sheets. Their catalytic performance was estimated in the reduction of 4-nitrophenol (4-NP). Results showed that Tween 80 stabilized Pd NPs with the molar ratio of Pd to Tween 80 at 1:0.1 possessed the smallest size and the best stability as well. They were encapsulated into viral protein cages (mean size 49 ± 0.26 nm) to assemble confined nanoreactors, most of which contained 1-2 Pd NPs (mean size 8.15 ± 0.26 nm). As-prepared Pd@VP2 indicated an enhanced activity (apparent reaction rate constant k app = (3.74 ± 0.10) × 10-3 s-1) for the reduction of 4-NP in comparison to non-confined Pd-Tween80 colloid (k app = (2.20 ± 0.06) × 10-3 s-1). It was logically due to confinement effects of Pd@VP2 including high dispersion of Pd NPs and high effective concentration of substrates in confined space. Pd@VP2 were further immobilized on GO surface through C-N bond. Pd@VP2/GO exhibited good reusability after recycling for four runs, confirming the strong anchoring effects of GO on Pd@VP2. Graphic Abstract
Collapse
Affiliation(s)
- Jie Zhu
- 1National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Changzhou University, Changzhou, 213164 China.,2Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, 213164 China
| | - Xiaoxue Lu
- 1National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Changzhou University, Changzhou, 213164 China
| | - Yijian Li
- 3State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, 361102 China
| | - Tingdong Li
- 3State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, 361102 China
| | - Linsong Yang
- 1National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Changzhou University, Changzhou, 213164 China
| | - Kun Yang
- 1National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Changzhou University, Changzhou, 213164 China
| | - Liang Ji
- 1National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Changzhou University, Changzhou, 213164 China
| | - Mohong Lu
- 2Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, 213164 China
| | - Mingshi Li
- 2Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, 213164 China
| |
Collapse
|
34
|
A Simple Method to Determine Critical Coagulation Concentration from Electrophoretic Mobility. COLLOIDS AND INTERFACES 2020. [DOI: 10.3390/colloids4020020] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Critical coagulation concentration (CCC) is a key parameter of particle dispersions, since it provides the threshold limit of electrolyte concentrations, above which the dispersions are destabilized due to rapid particle aggregation. A computational method is proposed to predict CCC values using solely electrophoretic mobility data without the need to measure aggregation rates of the particles. The model relies on the DLVO theory; contributions from repulsive double-layer forces and attractive van der Waals forces are included. Comparison between the calculated and previously reported experimental CCC data for the same particles shows that the method performs well in the presence of mono and multivalent electrolytes provided DLVO interparticle forces are dominant. The method is validated for particles of various compositions, shapes, and sizes.
Collapse
|
35
|
Handwerk DR, Shipman PD, Özkar S, Finke RG. Dust Effects on Ir(0) n Nanoparticle Formation Nucleation and Growth Kinetics and Particle Size-Distributions: Analysis by and Insights from Mechanism-Enabled Population Balance Modeling. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:1496-1506. [PMID: 32011887 DOI: 10.1021/acs.langmuir.9b03193] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The effects of microfiltration removal of filterable dust on nanoparticle formation kinetics and particle-size distribution, in a polyoxometalate polyanion (P2W15Nb3O629-)-stabilized Ir(0)n nanoparticle formation system, are analyzed by the newly developed method of Mechanism-Enabled Population Balance Modeling (ME-PBM). The [(Bu4N)5Na3(1,5-COD)Ir·P2W15Nb3O62] precatalyst system produces on average Ir(0)∼200 nanoparticles of 1.74 ± 0.33 nm and hence a particle-size distribution (PSD) of ±19% dispersion when the precatalyst is reduced under H2 in unfiltered propylene carbonate solvent. But if the precatalyst is reduced in microfiltered solvent and microfiltered reagent solutions (where the filtered solvent is then also used to rinse dust from the glassware), then larger Ir(0)∼300 1.96 ± 0.16 nm nanoparticles are produced with a remarkable, 2.4-fold lowered ±8% dispersion. The results and effects of the microfiltration reduction of dust are analyzed by the newly developed method of ME-PBM. More specifically, the studies reported herein address eight outstanding questions that are listed in the Introduction. Those questions include: how easy or difficult it is to fit PSD data? What is the ability of the recently discovered alternative termolecular nucleation and two size-dependent growth steps mechanism to account for the effects of dust on the PSD? What types and amount of PSD kinetics data are needed to deconvolute the PSD into the parameters of the ME-PBM? What is the reliability of the resulting rate constants? Additional questions addressed include: if the ME-PBM results offer insights into the remarkable 2.4-fold narrowing of the PSD post simple microfiltration lowering of the dust, and if the results are likely to be more general? The Summary and Conclusions section lists nine specific insights that include comments on needed future studies.
Collapse
Affiliation(s)
- Derek R Handwerk
- Department of Mathematics , Colorado State University , Fort Collins , Colorado 80523-1874 , United States
| | | | - Saim Özkar
- Department of Chemistry , Middle East Technical University , 06800 Ankara , Turkey
| | - Richard G Finke
- Department of Chemistry , Colorado State University , Fort Collins , Colorado 80523 , United States
| |
Collapse
|
36
|
Yuan Y, Sun L, Wu G, Yuan Y, Zhan W, Wang X, Han X. Engineering Nickel/Palladium Heterojunctions for Dehydrogenation of Ammonia Borane: Improving the Catalytic Performance with 3D Mesoporous Structures and External Nitrogen-Doped Carbon Layers. Inorg Chem 2020; 59:2104-2110. [PMID: 31942798 DOI: 10.1021/acs.inorgchem.9b03607] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Yusheng Yuan
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Department of Chemistry, School of Chemistry and Chemical Engineering, Jiangsu Normal University, Xuzhou, 221116, P. R. China
| | - Liming Sun
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Department of Chemistry, School of Chemistry and Chemical Engineering, Jiangsu Normal University, Xuzhou, 221116, P. R. China
| | - Guanzheng Wu
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Department of Chemistry, School of Chemistry and Chemical Engineering, Jiangsu Normal University, Xuzhou, 221116, P. R. China
| | - Yaya Yuan
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Department of Chemistry, School of Chemistry and Chemical Engineering, Jiangsu Normal University, Xuzhou, 221116, P. R. China
| | - Wenwen Zhan
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Department of Chemistry, School of Chemistry and Chemical Engineering, Jiangsu Normal University, Xuzhou, 221116, P. R. China
| | - Xiaojun Wang
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Department of Chemistry, School of Chemistry and Chemical Engineering, Jiangsu Normal University, Xuzhou, 221116, P. R. China
| | - Xiguang Han
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Department of Chemistry, School of Chemistry and Chemical Engineering, Jiangsu Normal University, Xuzhou, 221116, P. R. China
| |
Collapse
|
37
|
Fiorio JL, Barbosa ECM, Kikuchi DK, Camargo PHC, Rudolph M, Hashmi ASK, Rossi LM. Piperazine-promoted gold-catalyzed hydrogenation: the influence of capping ligands. Catal Sci Technol 2020. [DOI: 10.1039/c9cy02016k] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The presence of capping ligands can block the adsorption of the amine ligand on gold NPs, preventing the formation of a ligand–metal interface able to activate H2 for selective hydrogenation reactions.
Collapse
Affiliation(s)
- Jhonatan L. Fiorio
- Departamento de Química Fundamental
- Instituto de Química
- Universidade de São Paulo
- São Paulo
- Brazil
| | - Eduardo C. M. Barbosa
- Departamento de Química Fundamental
- Instituto de Química
- Universidade de São Paulo
- São Paulo
- Brazil
| | - Danielle K. Kikuchi
- Departamento de Química Fundamental
- Instituto de Química
- Universidade de São Paulo
- São Paulo
- Brazil
| | - Pedro H. C. Camargo
- Departamento de Química Fundamental
- Instituto de Química
- Universidade de São Paulo
- São Paulo
- Brazil
| | - Matthias Rudolph
- Organisch-Chemisches Institut
- Ruprecht-Karls-Universität Heidelberg University
- 69120 Heidelberg
- Germany
| | - A. Stephen K. Hashmi
- Organisch-Chemisches Institut
- Ruprecht-Karls-Universität Heidelberg University
- 69120 Heidelberg
- Germany
| | - Liane M. Rossi
- Departamento de Química Fundamental
- Instituto de Química
- Universidade de São Paulo
- São Paulo
- Brazil
| |
Collapse
|
38
|
Van Vaerenbergh B, Lauwaert J, Vermeir P, Thybaut JW, De Clercq J. Towards high-performance heterogeneous palladium nanoparticle catalysts for sustainable liquid-phase reactions. REACT CHEM ENG 2020. [DOI: 10.1039/d0re00197j] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A walk-through of nanoparticle–reactant/product, nanoparticle–support and support–reactant/product interaction effects on the catalytic performance of heterogeneous palladium catalysts in liquid-phase reactions.
Collapse
Affiliation(s)
- Beau Van Vaerenbergh
- Ghent University
- Faculty of Engineering and Architecture
- Department of Materials
- Textiles and Chemical Engineering
- Industrial Catalysis and Adsorption Technology (INCAT)
| | - Jeroen Lauwaert
- Ghent University
- Faculty of Engineering and Architecture
- Department of Materials
- Textiles and Chemical Engineering
- Industrial Catalysis and Adsorption Technology (INCAT)
| | - Pieter Vermeir
- Ghent University
- Faculty of Bioscience Engineering
- Department of Green Chemistry and Technology
- Laboratory for Chemical Analyses (LCA)
- Ghent
| | - Joris W. Thybaut
- Ghent University
- Faculty of Engineering and Architecture
- Department of Materials
- Textiles and Chemical Engineering
- Laboratory for Chemical Technology (LCT)
| | - Jeriffa De Clercq
- Ghent University
- Faculty of Engineering and Architecture
- Department of Materials
- Textiles and Chemical Engineering
- Industrial Catalysis and Adsorption Technology (INCAT)
| |
Collapse
|
39
|
Irfan M, Ahmad T, Moniruzzaman M, Bhattacharjee S, Abdullah B. Size and stability modulation of ionic liquid functionalized gold nanoparticles synthesized using Elaeis guineensis (oil palm) kernel extract. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2017.02.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
40
|
Gregori BJ, Schwarzhuber F, Pöllath S, Zweck J, Fritsch L, Schoch R, Bauer M, Jacobi von Wangelin A. Stereoselective Alkyne Hydrogenation by using a Simple Iron Catalyst. CHEMSUSCHEM 2019; 12:3864-3870. [PMID: 31265757 DOI: 10.1002/cssc.201900926] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/04/2019] [Indexed: 06/09/2023]
Abstract
The stereoselective hydrogenation of alkynes constitutes one of the key approaches for the construction of stereodefined alkenes. The majority of conventional methods utilize noble and toxic metal catalysts. This study concerns a simple catalyst comprised of the commercial chemicals iron(II) acetylacetonate and diisobutylaluminum hydride, which enables the Z-selective semihydrogenation of alkynes under near ambient conditions (1-3 bar H2 , 30 °C, 5 mol % [Fe]). Neither an elaborate catalyst preparation nor addition of ligands is required. Mechanistic studies (kinetic poisoning, X-ray absorption spectroscopy, TEM) strongly indicate the operation of small iron clusters and particle catalysts.
Collapse
Affiliation(s)
- Bernhard J Gregori
- Dept. of Chemistry, University of Hamburg, Martin Luther King Pl 6, 20146, Hamburg, Germany
| | - Felix Schwarzhuber
- Dept. of Physics, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Simon Pöllath
- Dept. of Physics, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Josef Zweck
- Dept. of Physics, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Lorena Fritsch
- Institute of Inorganic Chemistry and Center for Sustainable Systems Design (CSSD), University of Paderborn, Warburger Straße 100, 33098, Paderborn, Germany
| | - Roland Schoch
- Institute of Inorganic Chemistry and Center for Sustainable Systems Design (CSSD), University of Paderborn, Warburger Straße 100, 33098, Paderborn, Germany
| | - Matthias Bauer
- Institute of Inorganic Chemistry and Center for Sustainable Systems Design (CSSD), University of Paderborn, Warburger Straße 100, 33098, Paderborn, Germany
| | | |
Collapse
|
41
|
Wang X, Huang C, Li X, Xie C, Yu S. PVA-encapsulated Palladium Nanoparticles: Eco-friendly and Highly Selective Catalyst for Hydrogenation of Nitrobenzene in Aqueous Medium. Chem Asian J 2019; 14:2266-2272. [PMID: 31026364 DOI: 10.1002/asia.201900333] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/19/2019] [Indexed: 11/10/2022]
Abstract
In aqueous medium without any other additives, palladium (Pd) nanoparticles with water-soluble polyvinyl alcohol (PVA) as stabilizer were synthesized for the catalytic hydrogenation of nitrobenzene. Under the optimum experimental conditions, the nitrobenzene conversion and the selectivity for aniline were 99.3 % and 100 %, respectively. Comprehensive characterization methods, including TEM, UV/Vis, confocal laser scanning microscopy (CLSM), XRD and XPS allowed a better understanding of the role of PVA aggregates and the properties of Pd nanoparticles. The nitrobenzene conversion exceeded 80 % even after 6 cycles without any treatment of the catalyst. A mechanism about the hydrogenation of nitrobenzene catalyzed by Pd/PVA system was proposed. The Pd/PVA catalyst also exhibited excellent activity and selectivity, particularly to ortho-fluoronitrobenzene and ortho-nitrotoluene. This research can provide a reference for the environmentally friendly catalysis for hydrogenation of nitrobenzene and other substituted nitrobenzene compounds.
Collapse
Affiliation(s)
- Xiaoyan Wang
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Zhengzhou Road 53, Qingdao, Shandong Province, China
| | - Changru Huang
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Zhengzhou Road 53, Qingdao, Shandong Province, China
| | - Xiaohao Li
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Zhengzhou Road 53, Qingdao, Shandong Province, China
| | - Congxia Xie
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Zhengzhou Road 53, Qingdao, Shandong Province, China
| | - Shitao Yu
- College of Chemical Engineering, Qingdao University of Science and Technology, Zhengzhou Road 53, Qingdao, Shandong Province, China
| |
Collapse
|
42
|
Zhou Z, Li M, Liu G, Xu G, Xue J. Ultra‐small sugar‐substituted N‐heterocyclic carbene‐protected palladium nanoparticles and catalytic activity. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.4942] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Zhonggao Zhou
- College of Chemistry and Chemical EngineeringGannan Normal University Ganzhou 341000 China
| | - Mei Li
- College of Chemistry and Chemical EngineeringGannan Normal University Ganzhou 341000 China
| | - Guangsheng Liu
- College of Chemistry and Chemical EngineeringGannan Normal University Ganzhou 341000 China
| | - Guohai Xu
- College of Chemistry and Chemical EngineeringGannan Normal University Ganzhou 341000 China
| | - Jun Xue
- College of Chemistry and Chemical EngineeringGannan Normal University Ganzhou 341000 China
| |
Collapse
|
43
|
Crawford SE, Hartmann MJ, Millstone JE. Surface Chemistry-Mediated Near-Infrared Emission of Small Coinage Metal Nanoparticles. Acc Chem Res 2019; 52:695-703. [PMID: 30742413 DOI: 10.1021/acs.accounts.8b00573] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
From size-dependent luminescence to localized surface plasmon resonances, the optical properties that emerge from common materials with nanoscale dimensions have been revolutionary. As nanomaterials get smaller, they approach molecular electronic structures, and this transition from bulk to molecular electronic properties is a subject of far-reaching impact. One class of nanomaterials that exhibit particularly interesting optoelectronic features at this size transition are coinage metal (i.e., group 11 elements copper, silver, and gold) nanoparticles with core diameters between approximately 1 to 3 nm (∼25-200 atoms). Coinage metal nanoparticles can exhibit red or near-infrared photoluminescence features that are not seen in either their molecular or larger nanoscale counterparts. This emission has been exploited both as a probe of electronic behavior at the nanoscale as well as in critical applications such as biological imaging and chemical sensing. Interestingly, it has been demonstrated that their photoluminescence figures of merit such as emission quantum yield, energy, and lifetime are largely independent of particle diameter. Instead, emission from particles at this size range depends heavily on the particle surface chemistry, which includes both its metallic composition and the capping ligand architecture. The strong influence of surface chemistry on these emergent optoelectronic phenomena has powerful implications for both the study and use of these particles, primarily due to the theoretically limitless possible surface ligand architectures and metallic compositions. In this Account, we highlight recent work that studies and uses surface chemistry-mediated photoluminescence from coinage metal nanoparticles. Specifically, we emphasize the distinct, as well as synergistic, roles of the nanoparticle capping ligand and the nanoparticle core for controlling and/or enhancing their near-infrared photoluminescence. We then discuss the implications of surface chemistry-mediated photoluminescence as it relates to downstream applications such as energy transfer, sensing, and biological imaging. We conclude by discussing current challenges that remain in the field, including opportunities to develop new particle synthetic routes, analytical tools, and physical frameworks with which to understand small nanoparticle emission. Taken together, we anticipate that these materials will be foundational both in understanding the unique transition from molecular to bulk electronic structures and in the development of nanomaterials that leverage this transition.
Collapse
Affiliation(s)
- Scott E. Crawford
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Michael J. Hartmann
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Jill E. Millstone
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
44
|
Gowda RR, Chen EYX. Regioselective Hydrogenation of Itaconic Acid to γ-Isovalerolactone by Transition-Metal Nanoparticle Catalysts. CHEMSUSCHEM 2019; 12:973-977. [PMID: 30637972 DOI: 10.1002/cssc.201802878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/11/2019] [Indexed: 06/09/2023]
Abstract
Current methods for hydrogenation of bio-derived itaconic acid (IA) lead to a mixture of isomeric lactone products. Transition-metal nanoparticles (TM-NPs), in situ-generated through thermolysis of TM(0) (Ru, Fe, W, Cr) carbonyls, in particular Ru-NPs, were found to catalyze regioselective hydrogenation of IA by syngas (2 H2 /CO) into γ-isovalerolactone (GiVL) in approximately 70 % isolated yield. Key sustainability features of this new route include: a one-pot direct transformation of bio-renewable IA into value-added GiVL selectively, use of inexpensive and renewable syngas in aqueous solution, and development of a supported recyclable NP catalyst system, Al2 O3 -Ru-NPs.
Collapse
Affiliation(s)
- Ravikumar R Gowda
- Department of Chemistry, Colorado State University, Fort Collins, Colorado, 80523-1872, United States
| | - Eugene Y-X Chen
- Department of Chemistry, Colorado State University, Fort Collins, Colorado, 80523-1872, United States
| |
Collapse
|
45
|
|
46
|
Synthesis and support interaction effects on the palladium nanoparticle catalyst characteristics. ADVANCES IN CATALYSIS 2019. [DOI: 10.1016/bs.acat.2019.10.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
47
|
Lu J, He P, Niu J, Wang J. Polyoxometalate-supported metal carbonyl derivatives: from synthetic strategies to structural diversity and applications. Inorg Chem Front 2019. [DOI: 10.1039/c9qi00832b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
This review aims to give an overview of the POM-supported metal carbonyl complexes obtained so far, focusing on their structural diversity and potential photochemical and catalytic properties.
Collapse
Affiliation(s)
- Jingkun Lu
- Henan Key Laboratory of Polyoxometalate Chemistry
- Institute of Molecular and Crystal Engineering
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng
| | - Peipei He
- Henan Key Laboratory of Polyoxometalate Chemistry
- Institute of Molecular and Crystal Engineering
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng
| | - Jingyang Niu
- Henan Key Laboratory of Polyoxometalate Chemistry
- Institute of Molecular and Crystal Engineering
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng
| | - Jingping Wang
- Henan Key Laboratory of Polyoxometalate Chemistry
- Institute of Molecular and Crystal Engineering
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng
| |
Collapse
|
48
|
Huang Q, Yu W, Lu F, Lu R, Si X, Gao J, Xu J. Fabrication of highly dispersed Ru nanoparticles stabilized in coated carbon shell via one-pot co-synthesis strategy for aqueous hydrogenation of bio-based itaconic acid. Catal Today 2019. [DOI: 10.1016/j.cattod.2018.03.049] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
49
|
Catalyzed assembly of hollow silver-sulfide cluster through self-releasable anion template. Commun Chem 2018. [DOI: 10.1038/s42004-018-0102-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
50
|
Mollar-Cuni A, Ventura-Espinosa D, Martín S, Mayoral Á, Borja P, Mata JA. Stabilization of Nanoparticles Produced by Hydrogenation of Palladium-N-Heterocyclic Carbene Complexes on the Surface of Graphene and Implications in Catalysis. ACS OMEGA 2018; 3:15217-15228. [PMID: 31458184 PMCID: PMC6643925 DOI: 10.1021/acsomega.8b02193] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 10/25/2018] [Indexed: 06/10/2023]
Abstract
Palladium nanoparticles (NPs) have been obtained by decomposition of well-defined palladium complexes noncovalently anchored onto the surface of reduced graphene oxide. Morphological analysis by microscopy showed the presence of small palladium NPs homogeneously distributed on the support. Characterization by X-ray photoelectron spectroscopy confirmed that palladium NPs contain Pd(2+) and Pd(0) oxidation states and the presence of N-heterocyclic carbene and bromo ligands. The catalytic properties of the NPs with and without the support have been evaluated in the hydrogenation of alkynes. Supported palladium NPs showed increased activity versus the nonsupported ones and could be recycled up to 10 times without the loss of catalytic activity. The composition of the palladium NPs is different for each catalytic cycle indicating a dynamic process and the formation of different catalytic active species. On the contrary, the unsupported palladium NPs showed limited activity caused by decomposition and could not be recycled. The role of the support has been investigated. The results indicate that the support influences the stability of palladium NPs.
Collapse
Affiliation(s)
- Andrés Mollar-Cuni
- Institute
of Advanced Materials (INAM), Universitat
Jaume I, Avda. Sos Baynat s/n, 12006 Castellón, Spain
| | - David Ventura-Espinosa
- Institute
of Advanced Materials (INAM), Universitat
Jaume I, Avda. Sos Baynat s/n, 12006 Castellón, Spain
| | - Santiago Martín
- Departamento
de Química Física, Facultad de Ciencias, Universidad de Zaragoza, C/Pedro Cerbuna 12, 50009 Zaragoza, Spain
- Instituto
de Ciencias de Materiales de Aragón (ICMA), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| | - Álvaro Mayoral
- Instituto
de Nanociencia de Aragón (INA) and Laboratorio de Microscopias
Avanzadas (LMA), edificio i+d Campus Río Ebro, Universidad de Zaragoza, C/Mariano Esquillor, s/n, 50009 Zaragoza, Spain
| | - Pilar Borja
- Institute
of Advanced Materials (INAM), Universitat
Jaume I, Avda. Sos Baynat s/n, 12006 Castellón, Spain
| | - Jose A. Mata
- Institute
of Advanced Materials (INAM), Universitat
Jaume I, Avda. Sos Baynat s/n, 12006 Castellón, Spain
| |
Collapse
|