1
|
Gonzalez WG, Sakhdari S, Alam MS, Dhulipala G, Kavallieratos K, Miksovska J. DMNP as an Effective Cage for Ln 3+: A Spectroscopic and Thermodynamic Study. Inorg Chem 2024; 63:14366-14374. [PMID: 39041599 DOI: 10.1021/acs.inorgchem.4c00815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Dimethoxynitrophenyl-EDTA (DMNP) is a popular calcium cage that is frequently used to investigate the role of Ca2+ in signaling processes in vivo. Lanthanides have been used in Ca2+ biomimetics due to similarities in coordination properties of Ln3+ and Ca2+ that may enable fluorescence and NMR studies of functional and structural properties of Ca2+ binding proteins. In this study, we show that Tb3+, Eu3+, and Nd3+ bind strongly to DMNP in a 1:1 ratio. Isothermal titration calorimetric measurements of Ca2+ displacement by Ln3+ in DMNP provide the equilibrium binding constants for Ln3+DMNP complexation with association constants, K11 = (1.2 ± 0.7) × 1012 M-1 for Eu3+, (2.5 ± 1.7) × 1012 M-1 for Nd3+, and (2.8 ± 0.8) × 1012 M-1 for Tb3+. The kinetics and thermodynamics of Ca2+, Mg2+, and Tb3+ release from DMNP were characterized using photothermal beam deflection (PBD). Ligand release from the DMNP cage was rapid and occurred within 10 μs upon cage photofragmentation and was associated with similar reaction volume and enthalpy changes that can be attributed to the photoreleased ion solvation. In the case of Ca2+DMNP photodissociation at subsaturating Ca2+ concentrations, we observed a slower phase with a lifetime of 300 μs that we attribute to Ca2+ rebinding to unphotolyzed DMNP. These results demonstrate that DMNP can serve as an effective photolabile cage for oxophilic Ln3+ that has similar coordination properties to Ca2+ and Mg2+.
Collapse
Affiliation(s)
- Walter G Gonzalez
- Department of Chemistry and Biochemistry and Biomolecular Sciences Institute, Florida International University, Miami, Florida 33199, United States
| | - Setareh Sakhdari
- Department of Chemistry and Biochemistry and Biomolecular Sciences Institute, Florida International University, Miami, Florida 33199, United States
| | - Md Shofiul Alam
- Department of Chemistry and Biochemistry and Biomolecular Sciences Institute, Florida International University, Miami, Florida 33199, United States
| | - Gangadhar Dhulipala
- Department of Chemistry and Biochemistry and Biomolecular Sciences Institute, Florida International University, Miami, Florida 33199, United States
| | - Konstantinos Kavallieratos
- Department of Chemistry and Biochemistry and Biomolecular Sciences Institute, Florida International University, Miami, Florida 33199, United States
| | - Jaroslava Miksovska
- Department of Chemistry and Biochemistry and Biomolecular Sciences Institute, Florida International University, Miami, Florida 33199, United States
| |
Collapse
|
2
|
Mokdad A, Ang E, Desciak M, Ott C, Vilbert A, Beddow O, Butuc A, Larsen RW, Reynolds MF. Photoacoustic Calorimetry Studies of O 2-Sensing FixL and (R200, I209) Variants from Sinorhizobium meliloti Reveal Conformational Changes Coupled to Ligand Photodissociation from the Heme-PAS Domain. Biochemistry 2024; 63:116-127. [PMID: 38127721 PMCID: PMC10765370 DOI: 10.1021/acs.biochem.3c00438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/29/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023]
Abstract
FixL is an oxygen-sensing heme-PAS protein that regulates nitrogen fixation in the root nodules of plants. In this paper, we present the first photothermal studies of the full-length wild-type FixL protein from Sinorhizobium meliloti and the first thermodynamic profile of a full-length heme-PAS protein. Photoacoustic calorimetry studies reveal a quadriphasic relaxation for SmFixL*WT and the five variant proteins (SmFixL*R200H, SmFixL*R200Q, SmFixL*R200E, SmFixL*R200A, and SmFixL*I209M) with four intermediates from <20 ns to ∼1.5 μs associated with the photodissociation of CO from the heme. The altered thermodynamic profiles of the full-length SmFixL* variant proteins confirm that the conserved heme domain residues R200 and I209 are important for signal transduction. In contrast, the truncated heme domain, SmFixLH128-264, shows only a single, fast monophasic relaxation at <50 ns associated with the fast disruption of a salt bridge and release of CO to the solvent, suggesting that the full-length protein is necessary to observe the conformational changes that propagate the signal from the heme domain to the kinase domain.
Collapse
Affiliation(s)
- Audrey Mokdad
- Department
of Chemistry, University of South Florida, 4202 East Fowler Avenue SCA 400, Tampa, Florida 33620, United States
| | - EuTchen Ang
- Department
of Chemistry and Biochemistry, Saint Joseph’s
University, 5600 City Avenue, Philadelphia, Pennsylvania 19131, United States
| | - Michael Desciak
- Department
of Chemistry and Biochemistry, Saint Joseph’s
University, 5600 City Avenue, Philadelphia, Pennsylvania 19131, United States
| | - Christine Ott
- Department
of Chemistry and Biochemistry, Saint Joseph’s
University, 5600 City Avenue, Philadelphia, Pennsylvania 19131, United States
| | - Avery Vilbert
- Department
of Chemistry and Biochemistry, Saint Joseph’s
University, 5600 City Avenue, Philadelphia, Pennsylvania 19131, United States
| | - Olivia Beddow
- Department
of Chemistry and Biochemistry, Saint Joseph’s
University, 5600 City Avenue, Philadelphia, Pennsylvania 19131, United States
| | - Artiom Butuc
- Department
of Chemistry and Biochemistry, Saint Joseph’s
University, 5600 City Avenue, Philadelphia, Pennsylvania 19131, United States
| | - Randy W. Larsen
- Department
of Chemistry, University of South Florida, 4202 East Fowler Avenue SCA 400, Tampa, Florida 33620, United States
| | - Mark F. Reynolds
- Department
of Chemistry and Biochemistry, Saint Joseph’s
University, 5600 City Avenue, Philadelphia, Pennsylvania 19131, United States
| |
Collapse
|
3
|
Butcher D, Moussaoui M, Baciou L, Miksovska J. Impact of azole drugs on energetics, kinetics, and ligand migration pathways of CO photo-dissociation in bacterial flavohemoglobins. RSC Adv 2020; 10:17930-17941. [PMID: 35515592 PMCID: PMC9053618 DOI: 10.1039/d0ra02529a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 04/21/2020] [Indexed: 01/18/2023] Open
Abstract
Flavohemoglobins (fHbs) are heme proteins found in prokaryotic and eukaryotic microbes. They are involved in NO detoxification through an NO˙ dioxygenase mechanism. The N-terminal heme globin domain allows for binding of gaseous ligands whereas a C-terminal NADH/FADH binding domain facilitates association of redox cofactors necessary for ligand reduction. The NO˙ dioxygenase function is important in facilitating immune resistance by protecting the cell from nitrosative stress brought about by a host organism; as a result, bacterial flavoHbs have recently been considered as targets for the development of new antibiotics. Here, photoacoustic calorimetry and transient absorption spectroscopy have been used to characterize energetics, structural dynamics, and kinetics of CO migration within bacterial flavoHbs from Ralstonia eutropha (FHP) and Staphylococcus aureus (HMPSa) in the presence and absence of antibiotic azole compounds. In FHP, the ligand photo-release is associated with ΔH = 26.2 ± 7.0 kcal mol−1 and ΔV = 25.0 ± 1.5 mL mol−1 while in HMPSa, ΔH = 34.7 ± 8.0 kcal mol−1 and ΔV = 28.6 ± 17 mL mol−1 were observed, suggesting distinct structural changes associated with ligand escape from FHP and HMPSa. In the presence of ketoconazole, the CO escape leads to a more negative enthalpy change and volume change whereas association of miconazole to FHP or HMPSa does not impact the reaction volume. These data are in agreement with the computational results that propose distinct binding sites for ketoconazole and miconazole on CO bound FHP. Miconazole or ketoconazole binding to either protein has only a negligible impact on the CO association rates, indicating that azole drugs do not impact flavoHbs interactions with gaseous ligands but may inhibit the NOD activity through preventing the electron transfer between FAD and heme cofactors. Impact of ketoconalzole and miconazole on structural dynamics of flavohemoglobin.![]()
Collapse
Affiliation(s)
- David Butcher
- Department of Chemistry and Biochemistry
- Florida International University
- Miami
- USA
| | - Myriam Moussaoui
- Laboratoire de Chimie Physique
- UMR8000
- Université Paris Sud
- CNRS
- Université Paris Saclay
| | - Laura Baciou
- Laboratoire de Chimie Physique
- UMR8000
- Université Paris Sud
- CNRS
- Université Paris Saclay
| | - Jaroslava Miksovska
- Department of Chemistry and Biochemistry
- Florida International University
- Miami
- USA
- Biomolecular Sciences Institute
| |
Collapse
|
4
|
Adam SM, Wijeratne GB, Rogler PJ, Diaz DE, Quist DA, Liu JJ, Karlin KD. Synthetic Fe/Cu Complexes: Toward Understanding Heme-Copper Oxidase Structure and Function. Chem Rev 2018; 118:10840-11022. [PMID: 30372042 PMCID: PMC6360144 DOI: 10.1021/acs.chemrev.8b00074] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Heme-copper oxidases (HCOs) are terminal enzymes on the mitochondrial or bacterial respiratory electron transport chain, which utilize a unique heterobinuclear active site to catalyze the 4H+/4e- reduction of dioxygen to water. This process involves a proton-coupled electron transfer (PCET) from a tyrosine (phenolic) residue and additional redox events coupled to transmembrane proton pumping and ATP synthesis. Given that HCOs are large, complex, membrane-bound enzymes, bioinspired synthetic model chemistry is a promising approach to better understand heme-Cu-mediated dioxygen reduction, including the details of proton and electron movements. This review encompasses important aspects of heme-O2 and copper-O2 (bio)chemistries as they relate to the design and interpretation of small molecule model systems and provides perspectives from fundamental coordination chemistry, which can be applied to the understanding of HCO activity. We focus on recent advancements from studies of heme-Cu models, evaluating experimental and computational results, which highlight important fundamental structure-function relationships. Finally, we provide an outlook for future potential contributions from synthetic inorganic chemistry and discuss their implications with relevance to biological O2-reduction.
Collapse
Affiliation(s)
- Suzanne M. Adam
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Gayan B. Wijeratne
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Patrick J. Rogler
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Daniel E. Diaz
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - David A. Quist
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Jeffrey J. Liu
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Kenneth D. Karlin
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
5
|
Jesus CSH, Cruz PF, Arnaut LG, Brito RMM, Serpa C. One Peptide Reveals the Two Faces of α-Helix Unfolding-Folding Dynamics. J Phys Chem B 2018; 122:3790-3800. [PMID: 29558133 DOI: 10.1021/acs.jpcb.8b00229] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The understanding of fast folding dynamics of single α-helices comes mostly from studies on rationally designed peptides displaying sequences with high helical propensity. The folding/unfolding dynamics and energetics of α-helix conformations in naturally occurring peptides remains largely unexplored. Here we report the study of a protein fragment analogue of the C-peptide from bovine pancreatic ribonuclease-A, RN80, a 13-amino acid residue peptide that adopts a highly populated helical conformation in aqueous solution. 1H NMR and CD structural studies of RN80 showed that α-helix formation displays a pH-dependent bell-shaped curve, with a maximum near pH 5, and a large decrease in helical content in alkaline pH. The main forces stabilizing this short α-helix were identified as a salt bridge formed between Glu-2 and Arg-10 and the cation-π interaction involving Tyr-8 and His-12. Thus, deprotonation of Glu-2 or protonation of His-12 are essential for the RN80 α-helix stability. In the present study, RN80 folding and unfolding were triggered by laser-induced pH jumps and detected by time-resolved photoacoustic calorimetry (PAC). The photoacid proton release, amino acid residue protonation, and unfolding/folding events occur at different time scales and were clearly distinguished using time-resolved PAC. The partial unfolding of the RN80 α-helix, due to protonation of Glu-2 and consequent breaking of the stabilizing salt bridge between Glu-2 and Arg-10, is characterized by a concentration-independent volume expansion in the sub-microsecond time range (0.8 mL mol-1, 369 ns). This small volume expansion reports the cost of peptide backbone rehydration upon disruption of a solvent-exposed salt bridge, as well as backbone intrinsic expansion. On the other hand, RN80 α-helix folding triggered by His-12 protonation and subsequent formation of a cation-π interaction leads to a microsecond volume contraction (-6.0 mL mol-1, ∼1.7 μs). The essential role of two discrete side chain interactions, a salt bridge, and in particular a single cation-π interaction in the folding dynamics of a naturally occurring α-helix peptide is uniquely revealed by these data.
Collapse
Affiliation(s)
- Catarina S H Jesus
- CQC, Department of Chemistry , University of Coimbra , 3004-535 Coimbra , Portugal
| | - Pedro F Cruz
- CQC, Department of Chemistry , University of Coimbra , 3004-535 Coimbra , Portugal
| | - Luis G Arnaut
- CQC, Department of Chemistry , University of Coimbra , 3004-535 Coimbra , Portugal
| | - Rui M M Brito
- CQC, Department of Chemistry , University of Coimbra , 3004-535 Coimbra , Portugal
| | - Carlos Serpa
- CQC, Department of Chemistry , University of Coimbra , 3004-535 Coimbra , Portugal
| |
Collapse
|
6
|
Directly monitor protein rearrangement on a nanosecond-to-millisecond time-scale. Sci Rep 2017; 7:8691. [PMID: 28821738 PMCID: PMC5562898 DOI: 10.1038/s41598-017-08385-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 07/10/2017] [Indexed: 11/09/2022] Open
Abstract
In order to directly observe the refolding kinetics from a partially misfolded state to a native state in the bottom of the protein-folding funnel, we used a "caging" strategy to trap the β-sheet structure of ubiquitin in a misfolded conformation. We used molecular dynamics simulation to generate the cage-induced, misfolded structure and compared the structure of the misfolded ubiquitin with native ubiquitin. Using laser flash irradiation, the cage can be cleaved from the misfolded structure within one nanosecond, and we monitored the refolding kinetics of ubiquitin from this misfolded state to the native state by photoacoustic calorimetry and photothermal beam deflection techniques on nanosecond to millisecond timescales. Our results showed two refolding events in this refolding process. The fast event is shorter than 20 ns and corresponds to the instant collapse of ubiquitin upon cage release initiated by laser irradiation. The slow event is ~60 μs, derived from a structural rearrangement in β-sheet refolding. The event lasts 10 times longer than the timescale of β-hairpin formation for short peptides as monitored by temperature jump, suggesting that rearrangement of a β-sheet structure from a misfolded state to its native state requires more time than ab initio folding of a β-sheet.
Collapse
|
7
|
Butcher D, Bernad S, Derrien V, Sebban P, Miksovska J. Role of Ionic Strength and pH in Modulating Thermodynamic Profiles Associated with CO Escape from Rice Nonsymbiotic Hemoglobin 1. J Phys Chem B 2017; 121:351-364. [PMID: 28072536 DOI: 10.1021/acs.jpcb.6b06933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Type 1 nonsymbiotic hemoglobins are found in a wide variety of land plants and exhibit very high affinities for exogenous gaseous ligands. These proteins are presumed to have a role in protecting plant cells from oxidative stress under etiolated/hypoxic conditions through NO dioxygenase activity. In this study we have employed photoacoustic calorimetry, time-resolved absorption spectroscopy, and classical molecular dynamics simulations in order to elucidate thermodynamics, kinetics, and ligand migration pathways upon CO photodissociation from WT and a H73L mutant of type 1 nonsymbiotic hemoglobin from Oryza sativa (rice). We observe a temperature dependence of the resolved thermodynamic parameters for CO photodissociation from CO-rHb1 which we attribute to temperature dependent formation of a network of electrostatic interactions in the vicinity of the heme propionate groups. We also observe slower ligand escape from the protein matrix under mildly acidic conditions in both the WT and H73L mutant (τ = 134 ± 19 and 90 ± 15 ns). Visualization of transient hydrophobic channels within our classical molecular dynamics trajectories allows us to attribute this phenomenon to a change in the ligand migration pathway which occurs upon protonation of the distal His73, His117, and His152. Protonation of these residues may be relevant to the functioning of the protein in vivo given that etiolation/hypoxia can cause a decrease in intracellular pH in plant cells.
Collapse
Affiliation(s)
- David Butcher
- Department of Chemistry and Biochemistry, Florida International University , Miami Florida 33199, United States
| | - Sophie Bernad
- Laboratoire de Chimie Physique, Université Paris-Sud 11 , 91405 Orsay, France
| | - Valerie Derrien
- Laboratoire de Chimie Physique, Université Paris-Sud 11 , 91405 Orsay, France
| | - Pierre Sebban
- Laboratoire de Chimie Physique, Université Paris-Sud 11 , 91405 Orsay, France
| | - Jaroslava Miksovska
- Department of Chemistry and Biochemistry, Florida International University , Miami Florida 33199, United States.,Biomolecular Sciences Institute, Florida International University , Miami, Florida 33199, United States
| |
Collapse
|
8
|
Word TA, Larsen RW. Time resolved calorimetry of photo-induced folding in horse heart cytochrome c at high pH. Arch Biochem Biophys 2016; 615:10-14. [PMID: 28041937 DOI: 10.1016/j.abb.2016.12.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 12/27/2016] [Accepted: 12/28/2016] [Indexed: 10/20/2022]
Abstract
Here the molar volume and enthalpy changes associated with the early events in the folding of ferrocytochrome c (Cc) at high pH have been examined using time resolved photoacoustic calorimetry (PAC). The data reveal an overall volume change of 1.3 ± 0.3 mL mol-1 and an enthalpy change of 13 ± 7 kcal mol -1 occurring subsequent to photodissociation of the unfolded CO bound Cc species in <∼20 ns. Two additional kinetic phases are observed that are associated with non-native His binding (ΔH and ΔV of 2 ± 4 kcal mol-1 and -0.5 mL mol-1, τ ∼ 2.5 μs ) and Met binding (ΔH and ΔV -0.4 ± 2 kcal mol-1 and -0.1 ± 0.1 mL mol-1, τ∼ 660 ns). Considering only protein conformational changes (excluding volume and enthalpies associated with heme ligation events) the initial conformational event exhibits a ΔH and ΔV of 6 ± 3 kcal mol-1 and -3±0.1 mL mol-1, respectively, that are attributed to a small contraction of the unfolded protein. The corresponding enthalpy associated with both native and non-native ligand binding are found to be -5±4 kcal mol-1 (Fe-Met) and +20 ± 4 kcal mol-1 (Fe-His) with the change in volume for both phases being essential negligible. This would indicate that non-native ligand binding likely occurs from an already collapsed conformation.
Collapse
Affiliation(s)
- Tarah A Word
- Department of Chemistry, University of South Florida, 4202 East Fowler Ave., Tampa, FL 33602 USA
| | - Randy W Larsen
- Department of Chemistry, University of South Florida, 4202 East Fowler Ave., Tampa, FL 33602 USA.
| |
Collapse
|
9
|
Photoacoustic calorimetry studies of CO photo-dissociation from chloramine-T modified horse heart cytochrome-c. Arch Biochem Biophys 2016; 612:17-21. [PMID: 27717638 DOI: 10.1016/j.abb.2016.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 09/27/2016] [Accepted: 10/03/2016] [Indexed: 11/24/2022]
Abstract
Treatment of horse heart Cytochrome-c (Cc) with N-chloro-4-toluosulfonamide (Chloramine-t, CT) results in the oxidation of methionine (Met) residues to the corresponding sulfoxide including the distal heme ligand, Met80. The resulting Fe-sulfoxide coordination is sufficiently labile in the ferrous form to be displaced by gaseous ligands, including CO. Photolysis of the CO-CT-Cc complex provides an opportunity to examine ligand binding dynamics that are associated with a relatively rigid distal heme pocket. In this work, photoacoustic calorimetry (PAC) was utilized to obtain the kinetics as well as enthalpy and molar volume changes subsequent to CO photo-dissociation from CO-CT-Cc. Previous photolysis studies of CO-CT-Cc have led to a proposed model for ligand recombination in which the Met80-sulfoxide and CO recombine with the heme on relatively slow timescales (50 μs and ∼500 μs, respectively). The PAC data presented here reveals two additional kinetic phases with lifetimes of <20 ns and 534 ± 75 ns. The fast phase (<20 ns) is associated with an ΔH of 44 ± 5 kcal mol-1 and ΔV of -0.5 ± 0.5 mL mol-1, whereas the slower phase (534 ns) is associated with a small ΔH of 2 ± 3 kcal mol-1 and ΔV of 1 ± 0.5 mL mol-1.
Collapse
|
10
|
Sharma SK, Kim H, Rogler PJ, A Siegler M, Karlin KD. Isocyanide or nitrosyl complexation to hemes with varying tethered axial base ligand donors: synthesis and characterization. J Biol Inorg Chem 2016; 21:729-43. [PMID: 27350154 PMCID: PMC5003086 DOI: 10.1007/s00775-016-1369-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 06/08/2016] [Indexed: 01/08/2023]
Abstract
A series of ferrous-heme 2,6-dimethylphenyl isocyanide (DIMPI) and ferrous-heme mononitrosyl complexes have been synthesized and characterized. The heme portion of the complexes studied is varied with respect to the nature of the axial ligand, including complexes, where it is covalently tethered to the porphyrinate periphery. Reduced heme complexes, [(F8)Fe(II)], [(P(Py))Fe(II)], [(P(Im))Fe(II)], and [(P(ImH))Fe(II)], where F8 = tetrakis(2,6-difluorophenyl)-porphyrinate and P(Py), P(Im), and P(ImH) are partially fluorinated tetraaryl porphyrinates with covalently appended axial base pyridyl/imidazolyl or histamine moieties, were employed; P(ImH) is a new construct. Room temperature addition of DIMPI to these iron(II) complexes affords the bis-isocyanide species [(F8)Fe(II)-(DIMPI)2] in the case of [(F8)Fe(II)], while for the other hemes, mono-DIMPI compounds are obtained, [(P(Py))Fe(II)-(DIMPI)] [(2)-DIMPI], [(P(Im))Fe(II)-(DIMPI)] [(3)-DIMPI], and [(P(ImH))Fe(II)-(DIMPI)] [(4)-DIMPI]. The structures of complexes (3)-DIMPI and (4)-DIMPI have been determined by single crystal X-ray crystallography, where interesting H…F(porphryinate aryl group) interactions are observed. (19)F-NMR spectra determined for these complexes suggest that H…F(porphyrinate aryl groups) attractions also occur in solution, the H atom coming either from the DIMPI methyl groups or from a porphyinate axial base imidazole or porphyrinate pyrrole. Similarly, we have used nitrogen monoxide to generate ferrous-nitrosyl complexes, a five-coordinate species for F8, [(F8)Fe(II)-(NO)], or low-spin six-coordinate compounds [(P(Py))Fe(II)-(NO)], [(P(Im))Fe(II)-(NO)], and [(P(ImH))Fe(II)-(NO)]. The DIMPI and mononitrosyl complexes have also been characterized using UV-Vis, IR, (1)H-NMR, and EPR spectroscopies.
Collapse
Affiliation(s)
- Savita K Sharma
- Department of Chemistry, The Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Hyun Kim
- Department of Chemistry, The Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Patrick J Rogler
- Department of Chemistry, The Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Maxime A Siegler
- Department of Chemistry, The Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Kenneth D Karlin
- Department of Chemistry, The Johns Hopkins University, Baltimore, MD, 21218, USA.
| |
Collapse
|
11
|
Word TA, Karolak A, Cioce CR, Van Der Vaart A, Larsen RW. Using Photoacoustic Calorimetry to Study thecis- totrans- Photoisomerization of the [Ru(II)(2,2’-bipyridine)2(H2O)2]2+Complex in Aqueous Solution. COMMENT INORG CHEM 2016. [DOI: 10.1080/02603594.2016.1183488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
12
|
Word TA, Whittington CL, Karolak A, Kemp MT, Woodcock HL, van der Vaart A, Larsen RW. Photoacoustic calorimetry study of ligand photorelease from the Ru(II)bis(2,2′-bipyridine)(6,6′-dimethyl-2,2′-bipyridine) complex in aqueous solution. Chem Phys Lett 2015. [DOI: 10.1016/j.cplett.2014.11.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
Qin L, He L, Ji C, Li X, Kang SZ, Mu J. Redox heme-proteins mediated fluorescence of CdSe/ZnS quantum dots. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2014; 133:65-72. [PMID: 24705372 DOI: 10.1016/j.jphotobiol.2014.02.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 02/18/2014] [Accepted: 02/24/2014] [Indexed: 11/29/2022]
Abstract
The redox properties of cytochrome c (Cyt c), hemoglobin (Hb) and myoglobin (Mb) were studied based on electrostatic interactions between Thioglycolic acid (TGA) capped CdSe/ZnS quantum dots (QDs) and proteins. Results indicated that only Cyt c quenched the fluorescence of the QDs at pH>8.0. Under the optimized conditions, a significant fluorescence recovery of the QDs' system was observed when the reduced form of Cyt c incubated with TGA capped QDs, however, the reduced state of Hb and Mb resulted in a more fluorescence quenching on the same size of QDs. Interestingly, the fluorescence changes of QDs-proteins could be switched by modulating the redox potentials of proteins-attached QDs. Moreover, only the oxidized Cyt c form was reduced by the generated O2(-) that significantly enhanced the fluorescence of the QDs' system, which was also demonstrated by fluorescence imaging in HeLa cells.
Collapse
Affiliation(s)
- Lixia Qin
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Luwei He
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Congcong Ji
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Xiangqing Li
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Shi-Zhao Kang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Jin Mu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China.
| |
Collapse
|
14
|
Astudillo L, Bernad S, Derrien V, Sebban P, Miksovska J. Reduction of the internal disulfide bond between Cys 38 and 83 switches the ligand migration pathway in cytoglobin. J Inorg Biochem 2013; 129:23-9. [DOI: 10.1016/j.jinorgbio.2013.08.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 08/09/2013] [Accepted: 08/09/2013] [Indexed: 11/16/2022]
|
15
|
Li Y, Sharma SK, Karlin KD. New heme-dioxygen and carbon monoxide adducts using pyridyl or imidazolyl tailed porphyrins. Polyhedron 2013; 58. [PMID: 24223452 DOI: 10.1016/j.poly.2012.11.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Inspired by the chemistry relevant to dioxygen storage, transport and activation by metalloproteins, in particular for heme/copper oxidases, and carbon monoxide binding to metal-containing active sites as a probe or surrogate for dioxygen binding, a series of heme derived dioxygen and CO complexes have been designed, synthesized, and characterized with respect to their physical properties and reactivity. The focus of this study is in the description and comparison of three types heme-superoxo and heme-CO adducts. The starting point is in the characterization of the reduced heme complexes, [(F8)FeII], [(PPy)FeII] and [(PIm)FeII], where F8, PPy and PIm are iron(II)-porphyrinates and where PPy and PIm possess a covalently tethered axial base pyridyl or imidazolyl group, respectively. The spin-state properties of these complexes vary with solvent. The low temperature reaction between O2 and these reduced porphyrin FeII complex yield distinctive low spin heme-superoxo adducts. The dioxygen binding properties for all three complexes are shown to be reversible, via alternate argon or O2 bubbling. Carbon monoxide binds to the reduced heme-FeII precursors to form low spin heme-CO adducts. The implications for future investigations of these heme O2 and CO adducts are discussed.
Collapse
Affiliation(s)
- Yuqi Li
- Department of Chemistry, The Johns Hopkins University, Baltimore, MD 21218
| | | | | |
Collapse
|
16
|
Astudillo L, Bernad S, Derrien V, Sebban P, Miksovska J. Conformational dynamics in human neuroglobin: effect of His64, Val68, and Cys120 on ligand migration. Biochemistry 2012; 51:9984-94. [PMID: 23176629 DOI: 10.1021/bi301016u] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Neuroglobin belongs to the family of hexacoordinate hemoglobins and has been implicated in the protection of neuronal tissue under hypoxic and ischemic conditions. Here we present transient absorption and photoacoustic calorimetry studies of CO photodissociation and bimolecular rebinding to neuroglobin focusing on the ligand migration process and the role of distal pocket residues (His64 and Val68) and two Cys residues (Cys55 and Cys120). Our results indicate that His64 has a minor impact on the migration of CO between the distal heme pocket and protein exterior, whereas the Val68 side chain regulates the transition of the photodissociated ligand between the distal pocket and internal hydrophobic cavities, which is evident from the increased geminate quantum yield in this mutated protein (Φ(gem) = 0.32 for WT and His64Gln, and Φ(gem) = 0.85 for Val68Phe). The interface between helix G and the A-B loop provides an escape pathway for the photodissociated ligand, which is evident from a decrease in the reaction enthalpy for the transition between the CO-bound hNgb and five-coordinate hNgb in the Cys120Ser mutant (ΔH = -3 ± 4 kcal mol(-1)) compared to that of the WT protein (ΔH = 20 ± 4 kcal mol(-1)). The extensive electrostatic/hydrogen binding network that includes heme propionate groups, Lys67, His64, and Tyr44 not only restricts the heme binding but also modulates the energetics of binding of CO to the five-coordinate hNgb as substitution of His64 with Gln leads to an endothermic association of CO with the five-coordinate hNgb (ΔH = 6 ± 3 kcal mol(-1)).
Collapse
Affiliation(s)
- Luisana Astudillo
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
| | | | | | | | | |
Collapse
|
17
|
Marcelli A, Abbruzzetti S, Bustamante JP, Feis A, Bonamore A, Boffi A, Gellini C, Salvi PR, Estrin DA, Bruno S, Viappiani C, Foggi P. Following ligand migration pathways from picoseconds to milliseconds in type II truncated hemoglobin from Thermobifida fusca. PLoS One 2012; 7:e39884. [PMID: 22792194 PMCID: PMC3391200 DOI: 10.1371/journal.pone.0039884] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 05/28/2012] [Indexed: 11/18/2022] Open
Abstract
CO recombination kinetics has been investigated in the type II truncated hemoglobin from Thermobifida fusca (Tf-trHb) over more than 10 time decades (from 1 ps to ∼100 ms) by combining femtosecond transient absorption, nanosecond laser flash photolysis and optoacoustic spectroscopy. Photolysis is followed by a rapid geminate recombination with a time constant of ∼2 ns representing almost 60% of the overall reaction. An additional, small amplitude geminate recombination was identified at ∼100 ns. Finally, CO pressure dependent measurements brought out the presence of two transient species in the second order rebinding phase, with time constants ranging from ∼3 to ∼100 ms. The available experimental evidence suggests that the two transients are due to the presence of two conformations which do not interconvert within the time frame of the experiment. Computational studies revealed that the plasticity of protein structure is able to define a branched pathway connecting the ligand binding site and the solvent. This allowed to build a kinetic model capable of describing the complete time course of the CO rebinding kinetics to Tf-trHb.
Collapse
Affiliation(s)
- Agnese Marcelli
- LENS, European Laboratory for Non-linear Spectroscopy, Florence, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Origins of aging mass loss in recombinant N-terminus and C-terminus deletion mutants of the heme-PAS biosensor domain BjFixLH(140-270). J Inorg Biochem 2011; 105:609-15. [PMID: 21443850 DOI: 10.1016/j.jinorgbio.2011.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Revised: 01/20/2011] [Accepted: 01/21/2011] [Indexed: 11/22/2022]
Abstract
Nine recombinant FixL heme domains from Bradyrhizobium japonicum previously were shown to exhibit mass instability independent of many environmental factors (J.D. Satterlee, C. Suquet, A. Bidwai, J. Erman, L. Schwall, R. Jimenez, Biochemistry 47 (2008) 1540-1553). Two of those recombinant proteins were produced in remote laboratories. Mass losses begin appearing at completion of isolation and comprise a substantial proportion of samples within 1-3 days of storage and handling. Thus, degradation occurs during the time frame of experiments and crystallization. Detailed understanding of this instability is desired in order to formulate stable heme-PAS sensor domains for experimentation and for a mechanistic interpretation. However, mass spectra of the full length heme-PAS domain, BjFixLH(140-270), are complex by 1-3 days following isolation due to broad features and a high density of overlapping peaks, so that individual peak assignments are at present ambiguous. This stymies direct, quantitative interpretation of the source of the observed mass losses. To solve this dilemma amino-terminal primary sequencing and MALDI-TOF (Matrix Assisted Laser Desorption Ionization-Time of Flight) mass spectrometry monitoring of three terminal variants of BjFixLH(140-270) have been achieved. The working hypothesis, that the experimentally observed mass losses originate in the PAS protein sequence termini, has been substantiated. This establishes a basis for interpreting the more complex results from aging full length BjFixLH(140-270).
Collapse
|
19
|
Time resolved thermodynamics associated with ligand photorelease in heme peroxidases and globins: Open access channels versus gated ligand release. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1814:1065-76. [PMID: 21278003 DOI: 10.1016/j.bbapap.2011.01.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 01/14/2011] [Accepted: 01/17/2011] [Indexed: 10/18/2022]
Abstract
Heme proteins represent a diverse class of biomolecules responsible for an extremely diverse array of physiological functions including electron transport, monooxygenation, ligand transport and storage, cellular signaling, respiration, etc. An intriguing aspect of these proteins is that such functional diversity is accomplished using a single type of heme macrocycle based upon iron protoporphyrin IX. The functional diversity originates from a delicate balance of inter-molecular interactions within the protein matrix together with well choreographed dynamics that modulate the heme electronic structure as well as ligand entry/exit pathways from the bulk solvent to the active site. Of particular interest are the dynamics and energetics associated with the entry/exit of ligands as this process plays a significant role in regulating the rates of heme protein activity. Time-resolved photoacoustic calorimetry (PAC) has emerged as a powerful tool through which to probe the underlying energetics associated with small molecule dissociation and release to the bulk solvent in heme proteins on time scales from tens of nanoseconds to several microseconds. In this review, the results of PAC studies on various classes of heme proteins are summarized highlighting how different protein structures affect the thermodynamics of ligand migration. This article is part of a Special Issue entitled: Protein Dynamics: Experimental and Computational Approaches.
Collapse
|
20
|
Chen HL, Hsu JCC, Viet MH, Li MS, Hu CK, Liu CH, Luh FY, Chen SSW, Chang ESH, Wang AHJ, Hsu MF, Fann W, Chen RPY. Studying submicrosecond protein folding kinetics using a photolabile caging strategy and time-resolved photoacoustic calorimetry. Proteins 2011; 78:2973-83. [PMID: 20737588 DOI: 10.1002/prot.22823] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Kinetic measurement of protein folding is limited by the method used to trigger folding. Traditional methods, such as stopped flow, have a long mixing dead time and cannot be used to monitor fast folding processes. Here, we report a compound, 4-(bromomethyl)-6,7-dimethoxycoumarin, that can be used as a "photolabile cage" to study the early stages of protein folding. The folding process of a protein, RD1, including kinetics, enthalpy, and volume change, was studied by the combined use of a phototriggered caging strategy and time-resolved photoacoustic calorimetry. The cage caused unfolding of the photolabile protein, and then a pulse UV laser (∼10(-9) s) was used to break the cage, leaving the protein free to refold and allowing the resolving of two folding events on a nanosecond time scale. This strategy is especially good for monitoring fast folding proteins that cannot be studied by traditional methods.
Collapse
Affiliation(s)
- Hsin-Liang Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Lucas HR, Meyer GJ, Karlin KD. CO and O2 binding to pseudo-tetradentate ligand-copper(I) complexes with a variable N-donor moiety: kinetic/thermodynamic investigation reveals ligand-induced changes in reaction mechanism. J Am Chem Soc 2011; 132:12927-40. [PMID: 20726586 DOI: 10.1021/ja104107q] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The kinetics, thermodynamics, and coordination dynamics are reported for O(2) and CO 1:1 binding to a series of pseudo-tetradentate ligand-copper(I) complexes ((D)LCu(I)) to give Cu(I)/O(2) and Cu(I)/CO product species. Members of the (D)LCu(I) series possess an identical tridentate core structure where the cuprous ion binds to the bispicolylamine (L) fragment. (D)L also contains a fourth variable N-donor moiety {D = benzyl (Bz); pyridyl (Py); imidazolyl (Im); dimethylamino (NMe(2)); (tert-butylphenyl)pyridyl (TBP); quinolyl (Q)}. The structural characteristics of (D)LCu(I)-CO and (D)LCu(I) are detailed, with X-ray crystal structures reported for (TBP)LCu(I)-CO, (Bz)LCu(I)-CO, and (Q)LCu(I). Infrared studies (solution and solid-state) confirm that (D)LCu(I)-CO possess the same four-coordinate core structure in solution with the variable D moiety "dangling", i.e., not coordinated to the copper(I) ion. Other trends observed for the present series appear to derive from the degree to which the D-group interacts with the cuprous ion center. Electrochemical studies reveal close similarities of behavior for (Im)LCu(I) and (NMe(2))LCu(I) (as well as for (TBP)LCu(I) and (Q)LCu(I)), which relate to the O(2) binding kinetics and thermodynamics. Equilibrium CO binding data (K(CO), ΔH°, ΔS°) were obtained by conducting UV-visible spectrophotometric CO titrations, while CO binding kinetics and thermodynamics (k(CO), ΔH(double dagger), ΔS(double dagger)) were measured through variable-temperature (193-293 K) transient absorbance laser flash photolysis experiments, λ(ex) = 355 nm. Carbon monoxide dissociation rate constants (k(-CO)) and corresponding activation parameters (ΔH(double dagger), ΔS(double dagger)) have also been obtained. CO binding to (D)LCu(I) follows an associative mechanism, with the increased donation from D leading to higher k(CO) values. Unlike observations from previous work, the K(CO) values increased as the k(CO) and k(-CO) values declined; the latter decreased at a faster rate. By using the "flash-and-trap" method (λ(ex) = 355 nm, 188-218 K), the kinetics and thermodynamics (k(O(2)), ΔH(double dagger), ΔS(double dagger)) for O(2) binding to (NMe(2))LCu(I) and (Im)LCu(I) were measured and compared to those for (Py)LCu(I). A surprising change in the O(2) binding mechanism was deduced from the thermodynamic ΔS(double dagger) values observed, associative for (Py)LCu(I) but dissociative for (NMe(2))LCu(I) and (Im)LCu(I); these results are interpreted as arising from a difference in the timing of electron transfer from copper(I) to O(2) as this molecule coordinates and a tetrahydrofuran (THF) solvent molecule dissociates. The change in mechanism was not simply related to alterations in (D)LCu(II/I) geometries or the order in which O(2) and THF coordinate. The equilibrium O(2) binding constant (K(O(2)), ΔH°, ΔS°) and O(2) dissociation rate constants (k(-O(2)), ΔH(double dagger), ΔS(double dagger)) were also determined. Overall the results demonstrate that subtle changes in the coordination environment, as occur over time through evolution in nature or through controlled ligand design in synthetic systems, dictate to a critically detailed level the observed chemistry in terms of reaction kinetics, structure, and reactivity, and thus function. Results reported here are also compared to relevant copper and/or iron biological systems and analogous synthetic ligand-copper systems.
Collapse
Affiliation(s)
- Heather R Lucas
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | | | |
Collapse
|
22
|
Photothermal studies of the room temperature photo-induced spin state change in the Fe(III)(salten)(mepepy) complex. Inorganica Chim Acta 2010. [DOI: 10.1016/j.ica.2010.06.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
23
|
Schaberle FA, Nunes RMD, Barroso M, Serpa C, Arnaut LG. Analytical solution for time-resolved photoacoustic calorimetry data and applications to two typical photoreactions. Photochem Photobiol Sci 2010; 9:812-22. [DOI: 10.1039/c0pp00025f] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
24
|
Lucas HR, Meyer GJ, Karlin KD. Carbon monoxide and nitrogen monoxide ligand dynamics in synthetic heme and heme-copper complex systems. J Am Chem Soc 2009; 131:13924-5. [PMID: 19736941 DOI: 10.1021/ja906172c] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Intermolecular nitrogen monoxide (*NO) and carbon monoxide (CO) transfer from iron to copper and back, a phenomenon not previously observed, has been accomplished by employing transient-absorbance laser flash photolysis methods. A 1:1 heme/copper component system consisting of a six-coordinate ferrous species, F(8)Fe(II)(CO)(DCIM) or F(8)Fe(II)(NO)(thf) [F(8) = tetrakis(2,6-difluorophenyl)porphyrinate(2-); DCIM = 1,5-dicyclohexylimidazole; thf = tetrahydrofuran], and two ligand-copper(I) complexes, one with tridentate [(Bz)L = (benzyl)bis(2-pyridylmethyl)amine] and one with tetradentate coordination [(Py)L = tris(2-pyridylmethyl)amine], was utilized. The results suggest a lower affinity for NO versus CO binding to copper(I) and a higher rate for NO versus CO binding to heme. In fact, the latter event has been observed in cytochrome c oxidase aa(3).
Collapse
Affiliation(s)
- Heather R Lucas
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | | | |
Collapse
|
25
|
Mokdad A, Miksovská J, Larsen RW. Photothermal studies of CO photodissociation from peroxidases from horseradish and soybean. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1794:1558-65. [PMID: 19595798 DOI: 10.1016/j.bbapap.2009.06.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Revised: 06/25/2009] [Accepted: 06/30/2009] [Indexed: 11/30/2022]
Abstract
In this work, the results of photoacoustic calorimetry (PAC) studies involving CO photodissociation from horseradish peroxidase (HRP) and soybean peroxidase (SBP) are discussed. Both proteins contain Fe-protoporphyrin IX active sites and relatively open distal heme pockets (i.e., direct solvent access). In addition, it has been shown previously that SBP binds a Tris molecule in the distal pocket near the heme group potentially regulating ligand binding to the heme iron. Results of PAC studies indicate a fast (< approximately 50 ns) relaxation for both HRP and SBP subsequent to CO photolysis in both phosphate and Tris buffers and with varying concentrations of Tris. However, the molar volume/enthalpy changes associated with CO release are distinct between the two proteins. In the case of HRP, CO photolysis results in an enthalpy change of approximately 2 kcal mol(-1) and volume change of approximately -12 mL mol(-1) attributed to solvation/structural changes regardless of buffer conditions. In contrast, SBP exhibits buffer and ionic strength dependent enthalpy changes ranging from approximately -23 kcal mol(-1) in 50 mM phosphate buffer to approximately 6 kcal mol(-1) in Tris buffer with volume changes similar to those observed in HRP. The results are consistent with a model in which photodissociation of CO from ferrous HRP or SBP leads to CO migration from the distal heme pocket to the bulk solvent with a corresponding input of a water molecule all occurring in < approximately 50 ns. The differences in enthalpies are attributed to variations in hydrogen bond formation between the incoming water molecule(s) and the protein matrix in both HRP and SBP.
Collapse
Affiliation(s)
- Audrey Mokdad
- Department of Chemistry, University of South Florida, 4202 East Fowler Ave., Tampa, FL 33620, USA
| | | | | |
Collapse
|
26
|
Luo D, Huang J. Determination of Cytochrome c and Other Heme Proteins Using the Reduction Wave of Mercury Protoporphyrin IX Groups Generated by a Hydroxylamine Induced Replacement Reaction. Anal Chem 2009; 81:2032-6. [DOI: 10.1021/ac8023735] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Dengbai Luo
- Key Laboratory of Analytical Chemistry of the State Ethnic Affair Commission, College of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan 430074, P. R. of China
| | - Jinxiang Huang
- Key Laboratory of Analytical Chemistry of the State Ethnic Affair Commission, College of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan 430074, P. R. of China
| |
Collapse
|
27
|
Lucas HR, Karlin KD. Copper-Carbon Bonds in Mechanistic and Structural Probing of Proteins as well as in Situations where Copper is a Catalytic or Receptor Site. METAL-CARBON BONDS IN ENZYMES AND COFACTORS 2009. [DOI: 10.1039/9781847559333-00295] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
While copper-carbon bonds are well appreciated in organometallic synthetic chemistry, such occurrences are less known in biological settings. By far, the greatest incidence of copper-carbon moieties is in bioinorganic research aimed at probing copper protein active site structure and mechanism; for example, carbon monoxide (CO) binding as a surrogate for O2. Using infrared (IR) spectroscopy, CO coordination to cuprous sites has proven to be an extremely useful tool for determining active site copper ligation (e.g., donor atom number and type). The coupled (hemocyanin, tyrosinase, catechol oxidase) and non-coupled (peptidylglycine α-hydroxylating monooxygenase, dopamine β-monooxygenase) binuclear copper proteins as well as the heme-copper oxidases (HCOs) have been studied extensively via this method. In addition, environmental changes within the vicinity of the active site have been determined based on shifts in the CO stretching frequencies, such as for copper amine oxidases, nitrite reductases and again in the binuclear proteins and HCOs. In many situations, spectroscopic monitoring has provided kinetic and thermodynamic data on CuI-CO formation and CO dissociation from copper(I); recently, processes occurring on a femtosecond timescale have been reported. Copper-cyano moieties have also been useful for obtaining insights into the active site structure and mechanisms of copper-zinc superoxide dismutase, azurin, nitrous oxide reductase, and multi-copper oxidases. Cyanide is a good ligand for both copper(I) and copper(II), therefore multiple physical-spectroscopic techniques can be applied. A more obvious occurrence of a “Cu-C” moiety was recently described for a CO dehydrogenase which contains a novel molybdenum-copper catalytic site. A bacterial copper chaperone (CusF) was recently established to have a novel d-π interaction comprised of copper(I) with the arene containing side-chain of a tryptophan amino acid residue. Meanwhile, good evidence exists that a plant receptor site (ETR1) utilizes copper(I) to sense ethylene, a growth hormone. A copper olfactory receptor has also been suggested. All of the above mentioned occurrences or uses of carbon-containing substrates and/or probes are reviewed and discussed within the framework of copper proteins and other relevant systems.
Collapse
Affiliation(s)
- Heather R. Lucas
- Department of Chemistry, The Johns Hopkins University 3400 N. Charles Street Baltimore MD 21218 USA
| | - Kenneth D. Karlin
- Department of Chemistry, The Johns Hopkins University 3400 N. Charles Street Baltimore MD 21218 USA
| |
Collapse
|
28
|
Dhulipala G, Rubio M, Michael K, Miksovská J. Thermodynamic profile for urea photo-release from a N-(2-nitrobenzyl) caged urea compound. Photochem Photobiol Sci 2009; 8:1157-63. [PMID: 19639118 DOI: 10.1039/b900593e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Gangadhar Dhulipala
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, USA
| | | | | | | |
Collapse
|
29
|
Mikšovská J, Horsa S, Davis MF, Franzen S. Conformational Dynamics Associated with Photodissociation of CO from Dehaloperoxidase Studied Using Photoacoustic Calorimetry. Biochemistry 2008; 47:11510-7. [DOI: 10.1021/bi8012033] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jaroslava Mikšovská
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, and Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695
| | - Simona Horsa
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, and Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695
| | - Michael F. Davis
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, and Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695
| | - Stefan Franzen
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, and Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695
| |
Collapse
|
30
|
Mokdad A, Belof JL, Yi SW, Shuler SE, McLaughlin ML, Space B, Larsen RW. Photophysical Studies of the Trans to Cis Isomerization of the Push−Pull Molecule: 1-(Pyridin-4-yl)-2-(N-methylpyrrol-2-yl)ethene (mepepy). J Phys Chem A 2008; 112:8310-5. [DOI: 10.1021/jp803268r] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Audrey Mokdad
- Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, Tampa, Florida 33620
| | - Jonathan L. Belof
- Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, Tampa, Florida 33620
| | - Sung Wook Yi
- Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, Tampa, Florida 33620
| | - Stephen E. Shuler
- Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, Tampa, Florida 33620
| | - Mark L. McLaughlin
- Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, Tampa, Florida 33620
| | - Brian Space
- Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, Tampa, Florida 33620
| | - Randy W. Larsen
- Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, Tampa, Florida 33620
| |
Collapse
|
31
|
Fry HC, Lucas HR, Narducci Sarjeant AA, Karlin KD, Meyer GJ. Carbon Monoxide Coordination and Reversible Photodissociation in Copper(I) Pyridylalkylamine Compounds. Inorg Chem 2007; 47:241-56. [DOI: 10.1021/ic701903h] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- H. Christopher Fry
- The Johns Hopkins University, Department of Chemistry, 3400 North Charles Street, Baltimore, Maryland 21218
| | - Heather R. Lucas
- The Johns Hopkins University, Department of Chemistry, 3400 North Charles Street, Baltimore, Maryland 21218
| | - Amy A. Narducci Sarjeant
- The Johns Hopkins University, Department of Chemistry, 3400 North Charles Street, Baltimore, Maryland 21218
| | - Kenneth D. Karlin
- The Johns Hopkins University, Department of Chemistry, 3400 North Charles Street, Baltimore, Maryland 21218
| | - Gerald J. Meyer
- The Johns Hopkins University, Department of Chemistry, 3400 North Charles Street, Baltimore, Maryland 21218
| |
Collapse
|
32
|
Chen HL, Huang YF, Hsu CP, Lim TS, Kuo LC, Leung MK, Chao TC, Wong KT, Chen SA, Fann W. Direct Measurements of Intersystem Crossing Rates and Triplet Decays of Luminescent Conjugated Oligomers in Solutions. J Phys Chem A 2007; 111:9424-30. [PMID: 17696510 DOI: 10.1021/jp0740651] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Photothermal calorimetry and fluorescence spectroscopy were used to determine the relaxations of the photoexcited singlet state of two PPV and polyfluorene oligomers, (E,E)-1,4-bis[(2-benzyloxy)styryl]benzene (PVDOP) and ter(9,9'-spirobifluorene) (TSBF). The decay rates of different S1 relaxation channels, which include intersystem crossing (ISC), radiative, and nonradiative decay can be determined by the combination of photoacoustic calorimetry (PAC) and the time-correlated single photon counting (TCSPC) technique. The triplet state energy level is determined by the phosphorescence (Ph) spectra recorded at 77 K. The ISC yields are approximately 3% and 6% for PVDOP and TSBF, respectively. The T1 to S0 transition decay rate is acquired by PAC and photothermal beam deflection (PBD) measurements. The triplet state decay rate is 17 and 21 ms(-1) at room temperature. The Ph intensity decay at 77 K shows that the triplet state lifetime increases by 4 orders of magnitude, as compared to room temperature.
Collapse
Affiliation(s)
- Hsin-Liang Chen
- Department of Physics, National Taiwan University, Taipei 106, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|