1
|
Pujol M, Degeilh L, Sauty de Chalon T, Réglier M, Simaan AJ, Decroos C. Repurposing myoglobin into a carbene transferase for a [2,3]-sigmatropic Sommelet-Hauser rearrangement. J Inorg Biochem 2024; 260:112688. [PMID: 39111220 DOI: 10.1016/j.jinorgbio.2024.112688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/30/2024] [Accepted: 07/30/2024] [Indexed: 09/03/2024]
Abstract
New-to-Nature biocatalysis has emerged as a promising tool in organic synthesis thanks to progress in protein engineering. Notably, hemeproteins have been evolved into robust catalysts for carbene and nitrene transfers and related sigmatropic rearrangements. In this work, we report the first example of a [2,3]-sigmatropic Sommelet-Hauser rearrangement initiated by a carbene transfer of the sperm whale myoglobin mutant L29S,H64V,V68F that was previously reported to catalyze the mechanistically similar [2,3]-sigmatropic Doyle-Kirmse rearrangement. This repurposed heme enzyme catalyzes the Sommelet-Hauser rearrangement between ethyl diazoacetate and benzyl thioethers bearing strong electron-withdrawing substituents with good yields and enantiomeric excess. Optimized catalytic conditions in the absence of any reductant led to an increased asymmetric induction with up to 59% enantiomeric excess. This myoglobin mutant is therefore one of the few catalysts for the asymmetric Sommelet-Hauser rearrangement. This work broadens the scope of abiological reactions catalyzed by iron-carbene transferases with a new example of asymmetric sigmatropic rearrangement.
Collapse
Affiliation(s)
- Manon Pujol
- Aix Marseille Univ, CNRS, Centrale Méditerranée, iSm2, Marseille, France
| | - Lison Degeilh
- Aix Marseille Univ, CNRS, Centrale Méditerranée, iSm2, Marseille, France
| | | | - Marius Réglier
- Aix Marseille Univ, CNRS, Centrale Méditerranée, iSm2, Marseille, France
| | - A Jalila Simaan
- Aix Marseille Univ, CNRS, Centrale Méditerranée, iSm2, Marseille, France
| | - Christophe Decroos
- Aix Marseille Univ, CNRS, Centrale Méditerranée, iSm2, Marseille, France; Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Department of Integrated Structural Biology, Illkirch, France.
| |
Collapse
|
2
|
Yang P, Brockmann T, Wu XF. Copper-catalyzed strain-enabled reaction of bicyclobutanes with diazo compounds to synthesize penta-1,4-dienes. Chem Commun (Camb) 2024. [PMID: 39434550 DOI: 10.1039/d4cc04832f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Herein we report an interesting copper-catalyzed transformation of BCBs with diazo compounds. This reaction leads to the synthesis of substituted skipped penta-1,4-dienes in good to excellent yields with only one diastomer obtained, and the reaction can also be performed on a gram scale. The transformation is compatible with many different functional groups attached to the BCBs and the diazo compounds.
Collapse
Affiliation(s)
- Peng Yang
- Leibnitz-Institut für Katalyse e.V, Albert-Einstein-Straße 29a, 18059 Rostock, Germany.
| | - Till Brockmann
- Leibnitz-Institut für Katalyse e.V, Albert-Einstein-Straße 29a, 18059 Rostock, Germany.
| | - Xiao-Feng Wu
- Leibnitz-Institut für Katalyse e.V, Albert-Einstein-Straße 29a, 18059 Rostock, Germany.
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023 Dalian, Liaoning, China
| |
Collapse
|
3
|
Laha D, Bankar OS, Santra S, Navale BS, Ghosh D, Bhat RG. Photosensitizer-Free Photoinduced Ground-State Triplet Carbene-Assisted Persistent Aryloxy Radical Generation via Hydrogen Atom Transfer. Org Lett 2024; 26:8674-8679. [PMID: 39373279 DOI: 10.1021/acs.orglett.4c02717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
The traditional intermolecular O-H insertion strategy is typically associated with the reactivity exhibited by the singlet spin state, or it can alter the spin state from triplet to singlet by hydrogen bonding. Herein, we report diazoarylidene succinimide that generates a persistent ground-state triplet carbene under visible light (Blue LED, 456 nm) without a photosensitizer. This triplet carbene undergoes an intramolecular O-H insertion via hydrogen atom transfer, forming a persistent aryloxy radical without altering its spin state and leading to biologically relevant 2H-chromenes.
Collapse
Affiliation(s)
- Debasish Laha
- Department of Chemistry, Indian Institute of Science Education and Research (IISER)-Pune, Dr. Homi Bhabha Road, Pashan, 411008 Pune, Maharashtra, India
| | - Onkar S Bankar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER)-Pune, Dr. Homi Bhabha Road, Pashan, 411008 Pune, Maharashtra, India
| | - Supriyo Santra
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata, 2A & 2B Raja S C Mullick Road, Kolkata 700032, India
| | - Balu S Navale
- Department of Chemistry, Indian Institute of Science Education and Research (IISER)-Pune, Dr. Homi Bhabha Road, Pashan, 411008 Pune, Maharashtra, India
- Department of Chemistry, Institute of Science, Nagpur, Maharashtra 440001, India
| | - Debashree Ghosh
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata, 2A & 2B Raja S C Mullick Road, Kolkata 700032, India
| | - Ramakrishna G Bhat
- Department of Chemistry, Indian Institute of Science Education and Research (IISER)-Pune, Dr. Homi Bhabha Road, Pashan, 411008 Pune, Maharashtra, India
| |
Collapse
|
4
|
Empel C, Pham QH, Koenigs RM. Spin States Matter─from Fundamentals toward Synthetic Methodology Development and Drug Discovery. Acc Chem Res 2024; 57:2717-2727. [PMID: 39221592 DOI: 10.1021/acs.accounts.4c00405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
ConspectusThe potent reactivity of carbenes and nitrenes has been traditionally harnessed by the employment of a transition-metal catalyst in which the reactivity of the metal carbene/nitrene intermediates can be controlled via the judicious tuning of the metal catalyst. In recent years, progress made in this research area has unveiled novel strategies to directly access free carbenes or nitrenes under visible-light-mediated conditions without the necessity of a metal catalyst for stabilization of the carbene/nitrene intermediate. Such photochemical approaches present new opportunities to leverage orthogonal reactions with classic metal-catalyzed transformations.In this Account, we describe the major contributions from our group over the past years pushing the boundaries of light-mediated carbene and nitrene transfer reactions. In the first section, the development from purely singlet carbene chemistry toward methods that allow access to triplet carbene intermediates will be dissected. We describe how the triplet spin state of reagents provides a rich array of novel synthetic methods that build on the fundamentals of spin conservation. We lay out the different strategies in accessing the triplet spin state of carbenes (i.e., via electronic stabilization, via triplet sensitization with suitable photocatalysts, or via exploitation of geometric features of these intermediates), followed by an analysis of how the triplet spin state can be employed to leverage reactions distinct to the classic singlet carbene chemistry.The second part focuses on free nitrene intermediates, whereby both photochemical and photocatalytic strategies are analyzed and compared. We initiate with a discussion of the reactivity of iminoiodinanes as nitrene precursors in the presence of a photocatalyst or under photochemical conditions and how these two approaches result in fundamentally distinct nitrogen-based intermediates. While a nitrene radical anion is formed under photocatalytic conditions, triplet nitrene is generated under photochemical conditions. We commence with an outline of the basic reactivity of nitrene transfer reactions under both conditions, with a focus on the reaction with substrates containing double bonds. Finally, the latest developments in advanced cycloaddition chemistry beyond classic aziridination reactions are examined, with a special emphasis on the relay of the triplet nitrene reactivity to enable a Pauson-Khand-like (2 + 2 + 1) cycloaddition reaction that offers convenient access to high value bioisosteres in drug discovery.The work from our group on spin-dependent reactivities offers insight into important fundamentals in synthesis, where the spin state of the reactive intermediate will dictate the reaction outcome. We hope this may inspire others to widen the scope of applications of light-mediated carbene and/or nitrene transfer reactions, and furthermore, we anticipate that these understandings may also enable the development of advanced catalytic systems featuring triplet metal carbene/nitrene intermediates.
Collapse
Affiliation(s)
- Claire Empel
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Quoc Hoang Pham
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Rene M Koenigs
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| |
Collapse
|
5
|
Bao W, Wang XJ, Wang SH, Chen SW, Liu HH, Xiang SH, Tan B. Design of Stable Chiral Aminosulfonium Ylides and Their Catalytic Asymmetric Synthesis. Angew Chem Int Ed Engl 2024:e202412508. [PMID: 39213133 DOI: 10.1002/anie.202412508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
The isolation and catalytic enantioselective synthesis of configurationally stable S-stereogenic sulfonium ylides have been significant challenges in the field of asymmetric synthesis. These reactive intermediates are crucial for a variety of synthetic transformations, yet their inherent tendency towards rapid inversion at the sulfur stereocenter has hindered their practical utilization. Conventional approaches have focused on strategies that incorporate a C=S bond-containing cyclic framework to help mitigate this stereochemical lability. In this work, we present an alternative tactic that leverages the stabilizing influence of an adjacent N-atom and cyclic sulfide moiety. Exploiting a copper catalyzed enantioselective intermolecular carbene transfer reaction, structurally diverse S-stereogenic aminosulfonium ylides have been achieved in excellent yields and enantioselectivities. Experimental results indicate that the careful selection of 2-diazo-1,3-diketone precursors is crucial for achieving optimal stereoinduction in this transformation. The resulting highly enantioenriched aminosulfonium ylides allow for further stereospecific elaborations to furnish aminosulfonium ylide oxides and sulfinamide. This work expands the boundaries of chiral sulfonium ylide chemistry, providing access to a broad range of previously elusive S-stereogenic aminosulfonium ylide scaffolds.
Collapse
Affiliation(s)
- Wen Bao
- School of Basic Medical Sciences & School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xu-Jie Wang
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Shao-Hua Wang
- School of Basic Medical Sciences & School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Shi-Wu Chen
- School of Basic Medical Sciences & School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Huan-Huan Liu
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Shao-Hua Xiang
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Bin Tan
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
6
|
He F, Sun Z, Xu Y, Yu J, Li W, Miao H, Wu C. Photoinduced [3+2] Cycloaddition of Alkyl-Acceptor Diazoalkanes: Diversity-Oriented Synthesis of Pyrazolines Containing a Quaternary Center. Org Lett 2024; 26:4031-4036. [PMID: 38277125 DOI: 10.1021/acs.orglett.3c04296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
We present a new [3+2] cycloaddition reaction between alkyl-acceptor diazoalkanes under visible light irradiation. By employing easily accessible alkyl-acceptor-type diazoalkanes or their precursor hydrazones as both 1,3-dipoles and dipolarophiles, a diverse range of pyrazoline derivatives featuring a quaternary center have been efficiently synthesized in a predictable manner, with excellent functional group tolerance and good yields. Furthermore, scale-up experiments and downstream transformations of the product were also detailed.
Collapse
Affiliation(s)
- Fengya He
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui 230038, China
| | - Ziyi Sun
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui 230038, China
| | - Yiwei Xu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui 230038, China
| | - Jingwen Yu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui 230038, China
| | - Wenyong Li
- Anhui Province Key Laboratory of Environmental Hormone and Reproduction, School of Biological and Food Engineering, Fuyang Normal University, Fuyang, Anhui 236037, P. R. China
| | - Hui Miao
- Anhui Province Key Laboratory of Environmental Hormone and Reproduction, School of Biological and Food Engineering, Fuyang Normal University, Fuyang, Anhui 236037, P. R. China
| | - Chenggui Wu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui 230038, China
- Anhui Province Key Laboratory of Environmental Hormone and Reproduction, School of Biological and Food Engineering, Fuyang Normal University, Fuyang, Anhui 236037, P. R. China
| |
Collapse
|
7
|
Mandal PK, Chakrawarti R, Katukojvala S. [3+3] Annulation of Diazoenals and α-Mercapto Ketones via Protic Sulfonium Ylides: Direct Synthesis of 2 H-Thiopyrans, Innovative Progenitors for Unstudied 2 H-Thiopyran-2-ones and 4 H-Thiopyran-4-ones. Org Lett 2024. [PMID: 38625754 DOI: 10.1021/acs.orglett.4c01033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
Herein, we report a new Rh(II)/Sc(III)-catalyzed [3+3] annulation between diazoenals and α-mercapto ketones for the direct synthesis of 4-formyl-2H-thiopyrans. The reaction proceeds via protic sulfonium ylides derived from highly electrophilic Rh-enalcarbenoids, followed by regioselective intramolecular aldol condensation. Further studies revealed that 4-formyl-2H-thiopyrans are novel precursors for unstudied 2H-thiopyran-2-ones and 4H-thiopyran-4-ones. The 4H-thiopyran-4-ones were obtained via a novel O2/Et3N-mediated oxidative deformylation. This methodology was applied to the short synthesis of structurally complex pyrimidine-fused 2H-thiopyran via cascade Schmidt, Ritter, and intramolecular cyclization reactions.
Collapse
Affiliation(s)
- Pratap Kumar Mandal
- Department of Chemistry, Indian Institute of Science Education & Research Bhopal, Bhopal, Madhya Pradesh 462066, India
| | - Rahul Chakrawarti
- Department of Chemistry, Indian Institute of Science Education & Research Bhopal, Bhopal, Madhya Pradesh 462066, India
| | - Sreenivas Katukojvala
- Department of Chemistry, Indian Institute of Science Education & Research Bhopal, Bhopal, Madhya Pradesh 462066, India
| |
Collapse
|
8
|
Jayarani A, Deepa M, Khan HA, Koothradan FF, Yoganandhini S, Sreelakshmi V, Sivasankar C. Ruthenium-Catalyzed Chemo-Selective Carbene Insertion into C-H Bond of Styrene over Cyclopropanation: C-C Bond Formation. J Org Chem 2023; 88:15817-15831. [PMID: 37934176 DOI: 10.1021/acs.joc.3c01881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
The C-C bond formation reactions are important in organic synthesis. Heck reaction is known to arylate the terminal carbon of olefins; however, direct alkylation of the terminal carbon of olefin is limited. Herein, we report a novel ruthenium-catalyzed selective cross-coupling reaction of styrene and α-diazoesters to form a new C-C bond over cyclopropanation via the C-H insertion process for the first time. Using this novel methodology, a wide variety of substrates have been utilized and a variety of α-vinylated benzylic esters and densely functionalized olefins have been synthesized with good stereoselectivity under mild reaction conditions. The overall reaction process proceeds through the carbene insertion into styrene to form the desired products in good to excellent yields with proper stereoselectivity. The selective C-H inserted product, wide substrate scope, and excellent functional group tolerance are the best features of this work.
Collapse
Affiliation(s)
- Arumugam Jayarani
- Catalysis and Energy Laboratory, Department of Chemistry, Pondicherry University (A Central University), Puducherry, Puducherry 605014, India
| | - Masilamani Deepa
- Postgraduate and Research Department of Chemistry, Muthurangam Government Arts College, Vellore, Tamil Nadu 632002, India
| | - Hilal Ahmad Khan
- Catalysis and Energy Laboratory, Department of Chemistry, Pondicherry University (A Central University), Puducherry, Puducherry 605014, India
| | - Fathima Febin Koothradan
- Catalysis and Energy Laboratory, Department of Chemistry, Pondicherry University (A Central University), Puducherry, Puducherry 605014, India
| | - Sekar Yoganandhini
- Postgraduate and Research Department of Chemistry, Muthurangam Government Arts College, Vellore, Tamil Nadu 632002, India
| | - Vinod Sreelakshmi
- Catalysis and Energy Laboratory, Department of Chemistry, Pondicherry University (A Central University), Puducherry, Puducherry 605014, India
| | - Chinnappan Sivasankar
- Catalysis and Energy Laboratory, Department of Chemistry, Pondicherry University (A Central University), Puducherry, Puducherry 605014, India
| |
Collapse
|
9
|
Yang FY, Han TJ, Jia SK, Wang MC, Mei GJ. Catalytic [2,3]-sigmatropic rearrangement of sulfonium ylides derived from azoalkenes: non-carbenoid Doyle-Kirmse reaction. Chem Commun (Camb) 2023; 59:3107-3110. [PMID: 36808428 DOI: 10.1039/d3cc00160a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
The Sc(III)-catalyzed [2,3]-sigmatropic rearrangement of sulfonium ylides derived from azoalkenes has been established. Owing to the absence of a carbenoid intermediate, this protocol represents the first non-carbenoid variant of the Doyle-Kirmse reaction. Under mild conditions, a variety of tertiary thioethers have been readily prepared in good to excellent yields.
Collapse
Affiliation(s)
- Fu-Yuan Yang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Tian-Jiao Han
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Shi-Kun Jia
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Min-Can Wang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Guang-Jian Mei
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
10
|
Liu X, Liu LG, Chen CM, Li X, Xu Z, Lu X, Zhou B, Ye LW. Copper-Catalyzed Enantioselective Doyle-Kirmse Reaction of Azide-Ynamides via α-Imino Copper Carbenes. Angew Chem Int Ed Engl 2023; 62:e202216923. [PMID: 36639865 DOI: 10.1002/anie.202216923] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/13/2023] [Accepted: 01/13/2023] [Indexed: 01/15/2023]
Abstract
[2,3]-Sigmatropic rearrangement reaction involving sulfonium ylide (Doyle-Kirmse reaction) generated from metal carbenes represents one of the powerful methods for the construction of C(sp3 )-S and C-C bonds. Although significant advances have been achieved, the asymmetric versions via the generation of sulfonium ylides from metal carbenes have been rarely reported to date, and they have so far been limited to diazo compounds as metal carbene precursors. Here, we describe a copper-catalyzed enantioselective Doyle-Kirmse reaction via azide-ynamide cyclization, leading to the practical and divergent assembly of an array of chiral [1,4]thiazino[3,2-b]indoles bearing a quaternary carbon stereocenter in generally moderate to excellent yields and excellent enantioselectivities. Importantly, this protocol represents a unique catalytic asymmetric Doyle-Kirmse reaction via a non-diazo approach and an unprecedented asymmetric [2,3]-sigmatropic rearrangement via α-imino metal carbenes.
Collapse
Affiliation(s)
- Xin Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Li-Gao Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Can-Ming Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xiao Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Zhou Xu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Xin Lu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Bo Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Long-Wu Ye
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
11
|
Fu D, Xu J. Halide-promoted pyridinylation of α-acylmethylides with 2-halo-1-methylpyridinium iodides as reagents. Org Biomol Chem 2023; 21:1008-1013. [PMID: 36602179 DOI: 10.1039/d2ob02078e] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Halide-promoted pyridinylation between α-acyl sulfonylmethylides and 2-halo-1-methylpyridinium iodides in a transition-metal-free protocol is described. A broad range of α-acyl sulfonylmethylides were transformed to bifunctionalized vinylsulfones in moderate to good yields, thereby providing a facile and practical approach for constructing methylthio- and pyridinoxyl-substituted vinylsulfones. The substrates can be extended to other acyl methylides. The reaction was shown to entail the formation of a C-O bond and consecutive breaking of C-S, C-Cl and C-N bonds.
Collapse
Affiliation(s)
- Duo Fu
- State Key Laboratory of Chemical Resource Engineering, Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China.
| | - Jiaxi Xu
- State Key Laboratory of Chemical Resource Engineering, Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China.
| |
Collapse
|
12
|
Cai BG, Bao YP, Pei C, Li Q, Li L, Koenigs RM, Xuan J. Photochemical synthesis of 1,2,4-triazoles via addition reaction of triplet intermediates to diazoalkanes and azomethine ylide intermediates. Chem Sci 2022; 13:13141-13146. [PMID: 36425480 PMCID: PMC9667952 DOI: 10.1039/d2sc04720a] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/22/2022] [Indexed: 09/19/2023] Open
Abstract
The reactivity of diazoalkanes most commonly proceeds through the formation of carbene intermediates or dipolar cycloaddition reactions. The reaction of diazoalkanes with intermediates with unpaired electrons, however, is much less elaborated. Herein, we report on the photochemical reaction of acceptor-only diazoalkanes with azodicarboxylates. Photoexcitation of the latter results in the formation of a triplet species, which undergoes an addition reaction with diazoalkanes and formation of an azomethine ylide followed by dipolar cycloaddition reaction with organic nitriles to give a 1,2,4-triazole. The application of this transformation was elaborated in a broad and general substrate scope (48 examples), including scale-up via flow chemistry and downstream transformations. Experimental and computational studies were performed to elucidate the reaction mechanism and to rationalize the reaction outcome.
Collapse
Affiliation(s)
- Bao-Gui Cai
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, College of Chemistry & Chemical Engineering, Anhui University Hefei Anhui 230601 China
| | - Ye-Peng Bao
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, College of Chemistry & Chemical Engineering, Anhui University Hefei Anhui 230601 China
| | - Chao Pei
- Institute of Organic Chemistry, RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Qian Li
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, College of Chemistry & Chemical Engineering, Anhui University Hefei Anhui 230601 China
| | - Lei Li
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, College of Chemistry & Chemical Engineering, Anhui University Hefei Anhui 230601 China
| | - Rene M Koenigs
- Institute of Organic Chemistry, RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Jun Xuan
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, College of Chemistry & Chemical Engineering, Anhui University Hefei Anhui 230601 China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials, (Anhui University), Ministry of Education Hefei Anhui 230601 China
| |
Collapse
|
13
|
Chaubey TN, Borpatra PJ, Sharma A, Pandey SK. Metal-Free Syntheses of α-Ketothioamide and α-Ketoamide Derivatives from Sulfoxonium Ylides. Org Lett 2022; 24:8062-8066. [PMID: 36278911 DOI: 10.1021/acs.orglett.2c03371] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An efficient base, additive and metal-free synthetic methods for α-ketothioamide and α-ketoamide derivatives from readily available sulfoxonium ylides have been described. Sulfoxonium ylides with primary or secondary amines afforded α-ketothioamides in the presence of elemental sulfur, whereas α-ketoamides were produced when I2 and TBHP were present. The reaction proceeded well at room temperature and generated the corresponding molecules in good to excellent yields. The reaction can be scaled-up and tolerated by a range of functional groups with simple operational procedures.
Collapse
Affiliation(s)
- Trayambek Nath Chaubey
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Paran J Borpatra
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Ajay Sharma
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Satyendra Kumar Pandey
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| |
Collapse
|
14
|
Liu Y, Liu X, Feng X. Recent advances in metal-catalysed asymmetric sigmatropic rearrangements. Chem Sci 2022; 13:12290-12308. [PMID: 36382273 PMCID: PMC9629009 DOI: 10.1039/d2sc03806d] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/22/2022] [Indexed: 09/22/2023] Open
Abstract
Asymmetric sigmatropic rearrangement is a powerful organic transformation via substrate-reorganization to efficiently increase molecular complexity from readily accessible starting materials. In particular, a high level of diastereo- and enantioselectivity can be readily accessed through well-defined and predictable transition states in [3,3], [2,3]-sigmatropic rearrangements, which have been widely applied in the synthesis of various chiral building blocks, natural products, and pharmaceuticals. In recent years, catalytic asymmetric sigmatropic rearrangements involving chiral metal complexes to induce stereocontrol have been intensively studied. This review presents an overview of metal-catalysed enantioselective versions of sigmatropic rearrangements in the past two decades, mainly focusing on [3,3], [2,3], and [1,3]-rearrangements, to show the development of substrate design, new catalyst exploitation, and novel cascade processes. In addition, their application in the asymmetric synthesis of complex natural products is also exemplified.
Collapse
Affiliation(s)
- Yangbin Liu
- Institute of Chemical Biology, Shenzhen Bay Laboratory Shenzhen 518132 China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Xiaoming Feng
- Institute of Chemical Biology, Shenzhen Bay Laboratory Shenzhen 518132 China
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| |
Collapse
|
15
|
Zhang LM, Fu ZH, Yuan DF, Guo MZ, Li M, Wen LR, Zhang LB. Electrochemical promoted C-H bond chlorination of sulfoxonium ylides. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
16
|
C – C coupling of alkynes to the CH2 group in a 1-phosphonioethenyl ligand in a zwitterionic dirhenium carbonyl complex. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2022.122490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
17
|
Karmakar U, Hwang HS, Lee Y, Cho EJ. Photocatalytic para-Selective C-H Functionalization of Anilines with Diazomalonates. Org Lett 2022; 24:6137-6141. [PMID: 35973228 DOI: 10.1021/acs.orglett.2c02228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Visible-light-induced para-selective C-H functionalization of anilines over N-H insertion was developed using diazomalonates with the help of an Ir(III) photocatalyst. The para-selective radical-radical cross coupling proceeded via C-centered radical intermediates generated from both anilines and diazomalonates. The photochemistry of anilines could be extended to other N-heterocycles, such as indole and carbazole. The reaction pathway for the selective C-C coupling was validated by electrochemical and photophysical experiments as well as computational studies.
Collapse
Affiliation(s)
- Ujjwal Karmakar
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Ho Seong Hwang
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Yunjeong Lee
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Eun Jin Cho
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| |
Collapse
|
18
|
Wang Y, Jia P, Hao Y, Li J, Lai R, Guo L, Wu Y. Blue light induced [2,3]-sigmatropic rearrangement reactions of tosylhydrazones. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
19
|
Adams RD, Kaushal M, Rassolov VA, Smith MD. Synthesis and Chemistry of Ammonioethenyl and Phosphonioethenyl Ligands in Zwitterionic Dirhenium Carbonyl Complexes. Inorg Chem 2022; 61:12262-12274. [PMID: 35895600 DOI: 10.1021/acs.inorgchem.2c01471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
New zwitterionic dirhenium carbonyl complexes containing ammonioethenyl and phosphonioethenyl ligands have been synthesized and studied. The reaction of Re2(CO)10 with C2H2 and Me3NO yielded the dirhenium complex Re2(CO)9(NMe3) (6) and the new zwitterionic complex Re2(CO)9[η1-E-2-CH═CH(NMe3)] (7). Compound 6 was characterized structurally and was found to have a NMe3 ligand in an equatorial coordination site cis to a long Re-Re single bond, Re-Re = 3.0938(2) Å. Compound 7 can be obtained from the reaction of 6 with ethyne (C2H2) formally by the insertion of ethyne into the Re-N bond to the NMe3 ligand. Compound 7 contains a 2-trimethylammonioethenyl ligand, -CH═CH(+NMe3), that is formally a zwitterion having a positive charge on the nitrogen atom and a negative charge on the terminal carbon atom. When coordinated to rhenium by the terminal ethenyl carbon atom, the negative charge on the -CH═CH(+NMe3) carbon atom is formally transferred to the rhenium atom. The reaction of Re2(CO)10 with C2H2 and NEt3 in the presence of Me3NO yielded the new dirhenium complex Re2(CO)9[η1-E-2-CH═CH(NEt3)] (8) together with some 6 and 7. Compound 8 is structurally similar to 7, but it contains a NEt3 group in the ammonioethenyl ligand in the place of the NMe3 group in 7. Reactions of 7 with PMePh2 and PPh3 yielded the zwitterionic 2-arylphosphonioethenyl-coordinated dirhenium carbonyl complexes, Re2(CO)9[η1-E-2-CH═CH(PPh2Me)] (9a) and Re2(CO)9[η1-E-2-CH═CH(PPh3)] (9b), and the zwitterionic 1-phosphonioethenyl ligand in the dirhenium carbonyl complexes, Re2(CO)9[η1-1-C(PPh2Me)(═CH2)] (10a), Re2(CO)8[μ-η2-1-C(PPh2Me)(═CH2)] (11a), and Re2(CO)8[[μ-η2-1-C(PPh3)(CH2)] (11b). Compound 10a was converted to 11a and the new compound Re2(CO)7(μ-H)[μ-η2-1-(CH2C)P(Ph)(Me)(o-C6H4)], (12) by decarbonylation using Me3NO. Compound 12 contains an ortho-metalated phenyl ring. The new products 6,7, 8, 9b, 10a, 11a, 11b and 12 were characterized structurally by single-crystal X-ray diffraction analyses.
Collapse
Affiliation(s)
- Richard D Adams
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Meenal Kaushal
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Vitaly A Rassolov
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Mark D Smith
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|
20
|
Chiral rhodium(II)-catalyzed asymmetric aldol-type interception of an oxonium ylide to assemble chiral 2,3-dihydropyrans. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1275-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
21
|
Kanchupalli V, Thorbole LA, Kalepu J, Joseph D, Arshad M, Katukojvala S. Rhodium-Catalyzed Enal Transfer with N-Methoxypyridazinium Salts. Org Lett 2022; 24:3850-3854. [PMID: 35587254 DOI: 10.1021/acs.orglett.2c01424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Herein, we report a simple method for functionalized enals involving enal-transfer reaction of water-soluble N-methoxypyridazinium salts. This open-flask reaction proceeds under mild aqueous basic conditions through [2,3]-sigmatropic rearrangement of propargyl/allyl sulfur-ylides derived from in situ-generated Rh-(E)-enalcarbene. Various synthetically challenging allene- and allyl-functionalized (E)-enals with a γ-C(sp3) quaternary center were obtained in good to high yields. InCl3-catalyzed cascade cyclization of allenyl-enal and aniline gave a valuable pyrrolo[1,2-a]quinoline motif.
Collapse
Affiliation(s)
- Vinaykumar Kanchupalli
- Department of Chemistry, Indian Institute of Science Education & Research Bhopal, Bhopal, Madhya Pradesh 462066, India
| | - Laxman Anandrao Thorbole
- Department of Chemistry, Indian Institute of Science Education & Research Bhopal, Bhopal, Madhya Pradesh 462066, India
| | - Jagadeesh Kalepu
- Department of Chemistry, Indian Institute of Science Education & Research Bhopal, Bhopal, Madhya Pradesh 462066, India
| | - Desna Joseph
- Department of Chemistry, Indian Institute of Science Education & Research Bhopal, Bhopal, Madhya Pradesh 462066, India
| | - Mohammad Arshad
- Department of Chemistry, Indian Institute of Science Education & Research Bhopal, Bhopal, Madhya Pradesh 462066, India
| | - Sreenivas Katukojvala
- Department of Chemistry, Indian Institute of Science Education & Research Bhopal, Bhopal, Madhya Pradesh 462066, India
| |
Collapse
|
22
|
Wang J, Huang H, Gao H, Qin G, Xiao T, Jiang Y. DBU/AgOTf Relay‐Catalysis Enabled One‐Pot Synthesis of 1,3‐Dihydroisobenzofurans and Its Conversion to Indanones. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jiazhuang Wang
- Faculty of Science Kunming University of Science and Technology Kunming 650500 People's Republic of China
| | - Hongtai Huang
- Faculty of Science Kunming University of Science and Technology Kunming 650500 People's Republic of China
| | - Haotian Gao
- Faculty of Science Kunming University of Science and Technology Kunming 650500 People's Republic of China
| | - Guiping Qin
- Faculty of Science Kunming University of Science and Technology Kunming 650500 People's Republic of China
| | - Tiebo Xiao
- Faculty of Science Kunming University of Science and Technology Kunming 650500 People's Republic of China
| | - Yubo Jiang
- Faculty of Science Kunming University of Science and Technology Kunming 650500 People's Republic of China
| |
Collapse
|
23
|
Nair VN, Tambar UK. Catalytic rearrangements of onium ylides in aromatic systems. Org Biomol Chem 2022; 20:3427-3439. [PMID: 35388871 PMCID: PMC10124236 DOI: 10.1039/d2ob00218c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Onium ylides are reactive intermediates that undergo versatile chemical transformations to give structurally interesting compounds. Rearrangement reactions of onium ylides are of great importance to synthetic organic chemists, as they provide efficient methods for C-C bond formations as well as installation of new stereogenic centers in molecules. Traditionally, onium ylides have been shown to undergo two types of rearrangements, namely, [2,3]- and [1,2]-rearrangements. In recent years, there have been tremendous developments in the field of metal-catalyzed onium ylide rearrangements through catalytic generation of ylide intermediates from diazocompounds. Several examples of selective catalytic onium ylide rearrangements involving sulfonium, oxonium, ammonium, as well as iodonium ylides have been developed over the years especially in allylic and propargylic systems. However, when the π-system that takes part in the rearrangement is part of an aromatic ring, the selectivity for rearrangements of reactive onium ylides is more challenging. In this review, we discuss recent advances in catalyst control of onium ylide rearrangements of aromatic systems.
Collapse
Affiliation(s)
- Vaishnavi N Nair
- Department of Biochemistry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9038, USA.
| | - Uttam K Tambar
- Department of Biochemistry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9038, USA.
| |
Collapse
|
24
|
Wang K, Li S, Wang J. Cu(I)/Chiral Bisoxazoline‐Catalyzed Enantioselective Doyle‐Kirmse Reaction of Allenyl Sulfides with
α
‐Diazoesters. Chemistry 2022; 28:e202200170. [DOI: 10.1002/chem.202200170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Kang Wang
- Beijing National Laboratory of Molecular Sciences (BNLMS) Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education College of Chemistry Peking University Beijing 100871 P. R. China
| | - Shu‐Sen Li
- Beijing National Laboratory of Molecular Sciences (BNLMS) Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education College of Chemistry Peking University Beijing 100871 P. R. China
| | - Jianbo Wang
- Beijing National Laboratory of Molecular Sciences (BNLMS) Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education College of Chemistry Peking University Beijing 100871 P. R. China
- The State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Sciences Shanghai 200032 P. R. China
| |
Collapse
|
25
|
Hong F, Shi C, Hong P, Zhai T, Zhu X, Lu X, Ye L. Copper‐Catalyzed Asymmetric Diyne Cyclization via [1,2]‐Stevens‐Type Rearrangement for the Synthesis of Chiral Chromeno[3,4‐
c
]pyrroles. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Feng‐Lin Hong
- State Key Laboratory of Physical Chemistry of Solid Surfaces Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Chong‐Yang Shi
- State Key Laboratory of Physical Chemistry of Solid Surfaces Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Pan Hong
- State Key Laboratory of Physical Chemistry of Solid Surfaces Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Tong‐Yi Zhai
- State Key Laboratory of Physical Chemistry of Solid Surfaces Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Xin‐Qi Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Xin Lu
- State Key Laboratory of Physical Chemistry of Solid Surfaces Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Long‐Wu Ye
- State Key Laboratory of Physical Chemistry of Solid Surfaces Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Sciences Shanghai 200032 China
| |
Collapse
|
26
|
Nicastri KA, Zappia S, Pratt JC, Duncan JM, Guzei IA, Fernández I, Schomaker JM. Tunable Aziridinium Ylide Reactivity: Non-covalent Interactions Enable Divergent Product Outcomes. ACS Catal 2022; 12:1572-1580. [PMID: 35291380 PMCID: PMC8920351 DOI: 10.1021/acscatal.1c05413] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Methods for rapid preparation of densely functionalized and stereochemically complex N-heterocyclic scaffolds are in demand for exploring potential bioactive chemical space. This work describes experimental and computational studies to better understand the features of aziridinium ylides as intermediates for the synthesis of highly substituted dehydromorpholines. The development of this chemistry has enabled the extension of aziridinium ylide chemistry to the concomitant formation of both a C-N and a C-O bond in a manner that preserves the stereochemical information embedded in the substrate. Additionally, we have uncovered several key insights that describe the importance of steric effects, rotational barriers around the C-N bond of the aziridinium ylide, and non-covalent interactions (NCIs) on the ultimate reaction outcome. These critical insights will assist in the further development of this chemistry to generate N-heterocycles that will further expand complex amine chemical space.
Collapse
Affiliation(s)
- Kate A. Nicastri
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, WI 53706
| | - Soren Zappia
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, WI 53706
| | - Jared C. Pratt
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, WI 53706
| | - Julia M. Duncan
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, WI 53706
| | - Ilia A. Guzei
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, WI 53706
| | - Israel Fernández
- Departamento de Química Orgánica I and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040-Madrid, Spain
| | - Jennifer M. Schomaker
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, WI 53706
| |
Collapse
|
27
|
Discriminating non-ylidic carbon-sulfur bond cleavages of sulfonium ylides for alkylation and arylation reactions. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.06.069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
Fu Z, Zhou Q, Xiao Y, Wang J. Polymerization with Cu(I)-Catalyzed Doyle-Kirmse Reaction of Bis(allyl sulfides) and Bis(α-diazoesters). Polym Chem 2022. [DOI: 10.1039/d2py00162d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cu(I)-catalyzed Doyle-Kirmse reaction has been successfully introduced into polymer chemistry for the first time. A series of new type of sulfur-containing polymers were efficiently synthesized from various allyl sulfides and...
Collapse
|
29
|
Sha H, Qian Y, Yang X, Dong K, Xu X, Hu W. A copper-catalyzed three-component reaction of dithioacetals with diazo ketones and ketimines. Org Biomol Chem 2022; 20:8223-8227. [DOI: 10.1039/d2ob01679f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
An efficient protocol for the synthesis of various acyclic thioacetal derivatives and medium-size sulfur-containing heterocycles via copper-catalyzed three-component reaction of dithioacetals with diazo-ketones and ketimines was reported.
Collapse
Affiliation(s)
- Hongkai Sha
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Yu Qian
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Xiangji Yang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Kuiyong Dong
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Xinfang Xu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Wenhao Hu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| |
Collapse
|
30
|
Hong FL, Shi CY, Hong P, Zhai TY, Zhu XQ, Lu X, Ye LW. Copper-Catalyzed Asymmetric Diyne Cyclization via [1,2]-Stevens-Type Rearrangement for the Synthesis of Chiral Chromeno[3,4-c]pyrroles. Angew Chem Int Ed Engl 2021; 61:e202115554. [PMID: 34904775 DOI: 10.1002/anie.202115554] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Indexed: 12/21/2022]
Abstract
Here, we report a copper-catalyzed asymmetric cascade cyclization/[1,2]-Stevens-type rearrangement via a non-diazo approach, leading to the practical and atom-economic assembly of various valuable chiral chromeno[3,4-c]pyrroles bearing a quaternary carbon stereocenter in generally moderate to good yields with wide substrate scope and excellent enantioselectivities (up to 99 % ee). Importantly, this protocol not only represents the first example of catalytic asymmetric [1,2]-Stevens-type rearrangement based on alkynes but also constitutes the first asymmetric formal carbene insertion into the Si-O bond.
Collapse
Affiliation(s)
- Feng-Lin Hong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Chong-Yang Shi
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Pan Hong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Tong-Yi Zhai
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xin-Qi Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xin Lu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Long-Wu Ye
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
31
|
Li F, Pei C, Quaranta C, Koenigs RM. 1,3‐Difunctionalization of Imino‐Carbenes via Rhodium‐Catalyzed Reactions of Triazoles with Acyl Selenides. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Fang Li
- RWTH Aachen University Institute of Organic Chemistry Landoltweg 1 D-52074 Aachen Germany
| | - Chao Pei
- RWTH Aachen University Institute of Organic Chemistry Landoltweg 1 D-52074 Aachen Germany
| | - Calogero Quaranta
- RWTH Aachen University Institute of Organic Chemistry Landoltweg 1 D-52074 Aachen Germany
| | - Rene M. Koenigs
- RWTH Aachen University Institute of Organic Chemistry Landoltweg 1 D-52074 Aachen Germany
| |
Collapse
|
32
|
Wang J, Yu J, Chen J, Jiang Y, Xiao T. Doyle-Kirmse reaction using 3,3-difluoroallyl sulfide and N-sulfonyl-1,2,3-triazole: an efficient access to gem-difluoroallylated multifunctional quaternary carbon. Org Biomol Chem 2021; 19:6974-6978. [PMID: 34338276 DOI: 10.1039/d1ob01129d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A Doyle-Kirmse reaction of N-sulfonyl-1,2,3-triazole with 3,3-difluoroallyl sulfide through a Rh(ii)-catalyzed [2,3]-sigmatropic rearrangement has been developed, which provides an efficient access to multifunctional quaternary centers containing aryl, imino, thio, and brominated gem-difluoroallyl groups. The reaction features broad substrate scope with moderate to excellent yields. The applicability of the method is confirmed by gram-scale synthesis and further transformations.
Collapse
Affiliation(s)
- Jiazhuang Wang
- Faculty of Science, Kunming University of Science and Technology, Jingming South Road 727, Chenggong District, Kunming 650500, P. R. of China.
| | | | | | | | | |
Collapse
|
33
|
Abstract
Herein, we report on the tris(pentafluorophenyl)borane-catalyzed reaction of carbazole heterocycles with aryldiazoacetates. We could demonstrate that selective N-H functionalization occurs in the case of an unprotected carbazole, other N-heterocycles, and secondary amines in good yields. In contract, the protected carbazole undergoes C-H functionalization at the C-3 position in a good yield. The application of both approaches was studied in 41 examples with up to a 97% yield.
Collapse
Affiliation(s)
- Feifei He
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, D-52074 Aachen, Germany
| | - Rene M Koenigs
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, D-52074 Aachen, Germany
| |
Collapse
|
34
|
Lu B, Liang X, Zhang J, Wang Z, Peng Q, Wang X. Dirhodium(II)/Xantphos-Catalyzed Relay Carbene Insertion and Allylic Alkylation Process: Reaction Development and Mechanistic Insights. J Am Chem Soc 2021; 143:11799-11810. [PMID: 34296866 DOI: 10.1021/jacs.1c05701] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Although dirhodium-catalyzed multicomponent reactions of diazo compounds, nucleophiles and electrophiles have achieved great advance in organic synthesis, the introduction of allylic moiety as the third component via allylic metal intermediate remains a formidable challenge in this area. Herein, an attractive three-component reaction of readily accessible amines, diazo compounds, and allylic compounds enabled by a novel dirhodium(II)/Xantphos catalysis is disclosed, affording various architecturally complex and functionally diverse α-quaternary α-amino acid derivatives in good yields with high atom and step economy. Mechanistic studies indicate that the transformation is achieved through a relay dirhodium(II)-catalyzed carbene insertion and allylic alkylation process, in which the catalytic properties of dirhodium are effectively modified by the coordination with Xantphos, leading to good activity in the catalytic allylic alkylation process.
Collapse
Affiliation(s)
- Bin Lu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Xinyi Liang
- State Key Laboratory of Elemento-Organic Chemistry and Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Jinyu Zhang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Zijian Wang
- State Key Laboratory of Elemento-Organic Chemistry and Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Qian Peng
- State Key Laboratory of Elemento-Organic Chemistry and Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Xiaoming Wang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.,School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
| |
Collapse
|
35
|
Singha S, Buchsteiner M, Bistoni G, Goddard R, Fürstner A. A New Ligand Design Based on London Dispersion Empowers Chiral Bismuth-Rhodium Paddlewheel Catalysts. J Am Chem Soc 2021; 143:5666-5673. [PMID: 33829767 PMCID: PMC8154533 DOI: 10.1021/jacs.1c01972] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Indexed: 01/02/2023]
Abstract
Heterobimetallic bismuth-rhodium paddlewheel complexes with phenylglycine ligands carrying TIPS-groups at the meta-positions of the aromatic ring exhibit outstanding levels of selectivity in reactions of donor/acceptor and donor/donor carbenes; at the same time, the reaction rates are much faster and the substrate scope is considerably wider than those of previous generations of chiral [BiRh] catalysts. As shown by a combined experimental, crystallographic, and computational study, the new catalysts draw their excellent application profile largely from the stabilization of the chiral ligand sphere by London dispersion (LD) interactions of the peripheral silyl substituents.
Collapse
Affiliation(s)
| | | | - Giovanni Bistoni
- Max-Planck-Institut für
Kohlenforschung, 45470 Mülheim/Ruhr, Germany
| | - Richard Goddard
- Max-Planck-Institut für
Kohlenforschung, 45470 Mülheim/Ruhr, Germany
| | - Alois Fürstner
- Max-Planck-Institut für
Kohlenforschung, 45470 Mülheim/Ruhr, Germany
| |
Collapse
|
36
|
Combs JR, Lai YC, Van Vranken DL. Tandem Insertion/[3,3]-Sigmatropic Rearrangement Involving the Formation of Silyl Ketene Acetals by Insertion of Rhodium Carbenes into S-Si Bonds. Org Lett 2021; 23:2841-2845. [PMID: 33792331 DOI: 10.1021/acs.orglett.1c00229] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Allyl 2-diazo-2-phenylacetates are shown to react with trimethylsilyl thioethers in the presence of rhodium(II) catalysts to generate α-allyl-α-thio silyl esters. The transformation involves a tandem process involving formal rhodium-catalyzed insertion of the carbene group into the S-Si bond to generate a silyl ketene acetal, followed by a spontaneous Ireland-Claisen rearrangement. The silyl ester products were isolated as the corresponding carboxylic acids after aqueous workup. Intramolecular cyclopropanation of the allyl fragment generally competes with addition of the heteroatom to the carbene center. The reaction occurs under mild conditions and in high yield, allowing for rapid entry into rearrangement tetrasubstituted products. Propargyl esters were shown to generate the corresponding α-allenyl products.
Collapse
Affiliation(s)
- Jason R Combs
- Department of Chemistry, University of California, Irvine, Irvine, California 92617, United States
| | - Yin-Chu Lai
- Department of Chemistry, University of California, Irvine, Irvine, California 92617, United States
| | - David L Van Vranken
- Department of Chemistry, University of California, Irvine, Irvine, California 92617, United States
| |
Collapse
|
37
|
Guchhait SK, Saini M, Khivsara VJ, Giri SK. Annulation of Conjugated Azine-Imine with a Sulfoxonium Ylide in a Noncarbenoid Route to Synthesize Multisubstituted Imidazole-Fused Heterocycles. J Org Chem 2021; 86:5380-5387. [PMID: 33759525 DOI: 10.1021/acs.joc.1c00052] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A new [4+1]-annulation of in situ generated heterocyclic azine-aldimines with β-keto sulfoxonium ylides has been developed. The reaction constructs N-fused imidazole rings. In the reaction, the ylides play a dual-functional role of a nucleophilic 1,1-dipolar one-carbon synthon and a source of an internal oxidant, dimethyl sulfoxide, that promotes in situ dehydrogenation to product scaffolds. The method enables access to imidazo-pyridine, pyrazine, and pyrimidine heteroaromatics.
Collapse
Affiliation(s)
- Sankar K Guchhait
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, SAS Nagar, Mohali, Punjab 160062, India
| | - Meenu Saini
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, SAS Nagar, Mohali, Punjab 160062, India
| | - Viren J Khivsara
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, SAS Nagar, Mohali, Punjab 160062, India
| | - Santosh K Giri
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, SAS Nagar, Mohali, Punjab 160062, India
| |
Collapse
|
38
|
Li F, Pei C, Koenigs RM. Rhodium-catalyzed cascade reactions of triazoles with organoselenium compounds - a combined experimental and mechanistic study. Chem Sci 2021; 12:6362-6369. [PMID: 34084435 PMCID: PMC8115268 DOI: 10.1039/d1sc00495f] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Herein, we report on our studies on the reaction of organoselenium compounds with triazoles under thermal conditions using simple Rh(ii) catalysts. These reactions do not provide the product of classic rearrangement reactions. Instead two different cascade reactions were uncovered. While allyl selenides react in a cascade of sigmatropic rearrangement and selenium-mediated radical cyclization reaction to give dihydropyrroles, cinnamyl selenides undergo a double rearrangement reaction cascade involving a final aza-Cope reaction to give the product of 1,3-difunctionalization. Theoretical and experimental studies were conducted to provide an understanding of the reaction mechanism of these cascade reactions. The former provide an important insight into fundamental question on the nature of the ylide intermediate in rearrangement reactions and reveal that organoselenium compounds take up multiple roles in rearrangement reactions and mediate a free ylide reaction mechanism. Herein, we report on our studies on the reaction of organoselenium compounds with triazoles under thermal conditions using simple Rh(ii) catalysts.![]()
Collapse
Affiliation(s)
- Fang Li
- RWTH Aachen University, Institute of Organic Chemistry Landoltweg 1 D-52074 Aachen Germany
| | - Chao Pei
- RWTH Aachen University, Institute of Organic Chemistry Landoltweg 1 D-52074 Aachen Germany
| | - Rene M Koenigs
- RWTH Aachen University, Institute of Organic Chemistry Landoltweg 1 D-52074 Aachen Germany
| |
Collapse
|
39
|
Adams RD, Akter H, Kaushal M, Smith MD, Tedder JD. Synthesis, Structures, and Transformations of Bridging and Terminally-Coordinated Trimethylammonioalkenyl Ligands in Zwitterionic Pentaruthenium Carbido Carbonyl Complexes. Inorg Chem 2021; 60:3781-3793. [PMID: 33616385 DOI: 10.1021/acs.inorgchem.0c03541] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Reactions of the pentaruthenium cluster complexes Ru5(μ5-C)(CO)15 (5), Ru5(μ5-C)(CO)14[μ-η2-O═C(NMe2)](μ-H) (6), and Ru5(μ5-C)(CO)15Cl(μ-H) (7) with ethyne (C2H2) in the presence of Me3NO yielded the zwitterionic complexes Ru5(μ5-C)(CO)13[μ-η2-CHCH(NMe3)] (8), Ru5(μ5-C)(CO)13[μ-η2-O═C(NMe2)](η1-E-CH═CH(NMe3)(μ-H) (9), and Ru5(μ5-C)(CO)13Cl[η1-E-CH═CH(NMe3)](μ-H) (11). Each product contains a positively charged trimethylammonioethenyl ligand, CH═CH(+NMe3), that is derived from a 2-trimethylammonioethenide, -CH═CH(+NMe3), zwitterion that formally has a positive charge on the nitrogen atom and a negative charge on the terminal enyl carbon atom. The trimethylammonioethenyl ligand, CH═CH(+NMe3) in 8 is a η2-ligand that bridges a Ru-Ru bond on a basal edge of the square-pyramidal Ru5 cluster by a combination of σ + π cooordination of the ethenyl group. Compounds 9 and 11 each contain a η1-terminally coordinated [η1-E-CH═CH(+NMe3)] ligand with an E stereochemistry at the C═C double bond in open Ru5 cluster complexes. Compound 9 was decarbonylated to yield the compound Ru5(μ5-C)(CO)12[μ-η2-O═C(NMe2)][μ-η2-CH═CH(NMe3)](μ-H) (10) containing a η2-bridging CHCH(+NMe3) ligand. Compound 10 was converted back to 9 by the addition of CO. Two zwitterionic products, Ru5(μ5-C)(CO)14[η1-E-CH═CH(NMe3)] (12) and Ru5(μ5-C)(CO)15[η1-E-CH═CH(NMe3)] (13), were obtained by the addition of CO to 8. Compound 12 is an intermediate en route to 13. Compound 12 contains a terminally coordinated η1-E-CH═CH(+NMe3) ligand on one of the basal Ru atoms of a square-pyramidal Ru5 cluster. Compound 13 also contains a terminally coordinated η1-E-CH═CH(+NMe3) ligand on the wing-tip bridging Ru atom of a butterfly Ru4C cluster. Treatment of 6 with methyl propiolate (HC≡CCO2Me) yielded the zwitterionic complex Ru5(μ5-C)(CO)13[μ-η2-O═C(NMe2)][η1-E-(MeO2C)C═C(H)NMe3](μ-H) (14) that is structurally similar to 9 but contains a η1-E-(MeO2C)C═C(H)(+NMe3) ligand. Compound 14 eliminated the NMe3 group to yield the compounds Ru5(μ5-C)(CO)13[μ-η2-O═C(NMe2)][μ-η2-(MeO2C)HC═CH] (15) which contains a bridging methoxycarbonyl-substituted alkenyl ligand and the known compound Ru5(μ5-C)(CO)13[μ-η2-O═C(NMe2)](HNMe2)(μ-H) (16).
Collapse
Affiliation(s)
- Richard D Adams
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Humaiara Akter
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Meenal Kaushal
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Mark D Smith
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Jonathan D Tedder
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|
40
|
Zhang X, Lin B, Chen J, Chen J, Luo Y, Xia Y. Synthesis of Sulfimides and N-Allyl- N-(thio)amides by Ru(II)-Catalyzed Nitrene Transfer Reactions of N-Acyloxyamides. Org Lett 2021; 23:819-825. [PMID: 33428420 DOI: 10.1021/acs.orglett.0c04043] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The N-acyloxyamides were employed as effective N-acyl nitrene precursors in reactions with thioethers under the catalysis of a commercially available Ru(II) complex, from which a variety of sulfimides were synthesized efficiently and mildly. If an allyl group is contained in the thioether precursor, the [2,3]-sigmatropic rearrangement of the sulfimide occurs simultaneously and the N-allyl-N-(thio)amides were obtained as the final products. Preliminary mechanistic studies indicated that the Ru-nitrenoid species should be a key intermediate in the transformation.
Collapse
Affiliation(s)
- Xinyu Zhang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Bo Lin
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Jianhui Chen
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Jiajia Chen
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Yanshu Luo
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Yuanzhi Xia
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| |
Collapse
|
41
|
Nunewar S, Kumar S, Talakola S, Nanduri S, Kanchupalli V. Co(III), Rh(III) & Ir(III)‐Catalyzed Direct C−H Alkylation/Alkenylation/Arylation with Carbene Precursors. Chem Asian J 2021; 16:443-459. [DOI: 10.1002/asia.202001219] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/13/2021] [Indexed: 12/15/2022]
Affiliation(s)
- Saiprasad Nunewar
- Department of Chemical Sciences National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500 037 Telangana India
| | - Sanjeev Kumar
- Department of Chemical Sciences National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500 037 Telangana India
| | - Srilakshmi Talakola
- Department of Chemical Sciences National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500 037 Telangana India
| | - Srinivas Nanduri
- Department of Chemical Sciences National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500 037 Telangana India
| | - Vinaykumar Kanchupalli
- Department of Chemical Sciences National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500 037 Telangana India
| |
Collapse
|
42
|
Jana S, Guo Y, Koenigs RM. Recent Perspectives on Rearrangement Reactions of Ylides via Carbene Transfer Reactions. Chemistry 2021; 27:1270-1281. [PMID: 32754993 PMCID: PMC7894496 DOI: 10.1002/chem.202002556] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/29/2020] [Indexed: 01/24/2023]
Abstract
Among the available methods to increase the molecular complexity, sigmatropic rearrangements occupy a distinct position in organic synthesis. Despite being known for over a century sigmatropic rearrangement reactions of ylides via carbene transfer reaction have only recently come of age. Most of the ylide mediated rearrangement processes involve rupture of a σ-bond and formation of a new bond between π-bond and negatively charged atom followed by simultaneous redistribution of π-electrons. This minireview describes the advances in this research area made in recent years, which now opens up metal-catalyzed enantioselective sigmatropic rearrangement reactions, metal-free photochemical rearrangement reactions and novel reaction pathways that can be accessed via ylide intermediates.
Collapse
Affiliation(s)
- Sripati Jana
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Yujing Guo
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Rene M. Koenigs
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| |
Collapse
|
43
|
Laconsay CJ, Tantillo DJ. Metal Bound or Free Ylides as Reaction Intermediates in Metal-Catalyzed [2,3]-Sigmatropic Rearrangements? It Depends. ACS Catal 2021. [DOI: 10.1021/acscatal.0c04768] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Croix J. Laconsay
- Department of Chemistry, University of California−Davis, Davis, California 95616, United States
| | - Dean J. Tantillo
- Department of Chemistry, University of California−Davis, Davis, California 95616, United States
| |
Collapse
|
44
|
Kumar S, Nunewar S, Oluguttula S, Nanduri S, Kanchupalli V. Recent advances in Rh(iii)/Ir(iii)-catalyzed C–H functionalization/annulation via carbene migratory insertion. Org Biomol Chem 2021; 19:1438-1458. [DOI: 10.1039/d0ob02309d] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The review highlighted diverse annulations, including nitrogen, oxygen, sulfur heterocycles and carbocylizations via Rh(iii)/Ir(iii)-catalyzed C–H functionalization/annulation with various arene and carbene precursors.
Collapse
Affiliation(s)
- Sanjeev Kumar
- Department of Process Chemistry
- National Institute of Pharmaceutical Education and Research (NIPER)
- Hyderabad 500 037
- India
| | - Saiprasad Nunewar
- Department of Process Chemistry
- National Institute of Pharmaceutical Education and Research (NIPER)
- Hyderabad 500 037
- India
| | - Srilekha Oluguttula
- Department of Process Chemistry
- National Institute of Pharmaceutical Education and Research (NIPER)
- Hyderabad 500 037
- India
| | - Srinivas Nanduri
- Department of Process Chemistry
- National Institute of Pharmaceutical Education and Research (NIPER)
- Hyderabad 500 037
- India
| | - Vinaykumar Kanchupalli
- Department of Process Chemistry
- National Institute of Pharmaceutical Education and Research (NIPER)
- Hyderabad 500 037
- India
| |
Collapse
|
45
|
Bera S, Sarkar S, Samanta R. Recent quinone diazide based transformations via metal–carbene formation. NEW J CHEM 2021. [DOI: 10.1039/d1nj01678d] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recent advancements in versatile synthetic transformations using quinone diazide based metal carbenes have been summarized.
Collapse
Affiliation(s)
- Satabdi Bera
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- Kharagpur 721302
- India
| | - Souradip Sarkar
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- Kharagpur 721302
- India
| | - Rajarshi Samanta
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- Kharagpur 721302
- India
| |
Collapse
|
46
|
Priest JD, Male L, Davies PW. Diastereoselective sulfur ylide rearrangements from gold catalyzed oxidation of ynamides. Tetrahedron 2021. [DOI: 10.1016/j.tet.2020.131757] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
47
|
Additions of N, O, and S heteroatoms to metal-supported carbenes: Mechanism and synthetic applications in modern organic chemistry. ADVANCES IN ORGANOMETALLIC CHEMISTRY 2021. [DOI: 10.1016/bs.adomc.2021.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
48
|
Liu Z, Jin X, Dang Y. Mechanistic Studies of Copper(I)-Catalyzed Stereoselective [2,3]-Sigmatropic Rearrangements of Diazoesters with Allylic Iodides/Sulfides. ACS Catal 2020. [DOI: 10.1021/acscatal.0c04620] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Zheyuan Liu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Tianjin University, Tianjin 300072, China
| | - Xiaojiao Jin
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Tianjin University, Tianjin 300072, China
| | - Yanfeng Dang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Tianjin University, Tianjin 300072, China
| |
Collapse
|
49
|
Yan S, Rao J, Zhou CY. Chemoselective Rearrangement Reactions of Sulfur Ylide Derived from Diazoquinones and Allyl/Propargyl Sulfides. Org Lett 2020; 22:9091-9096. [PMID: 33147039 DOI: 10.1021/acs.orglett.0c03493] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Here, we describe three types of rearrangement reactions of sulfur ylide derived from diazoquinones and allyl/propargyl sulfides. With Rh2(esp)2 as the catalyst, diazoquinones react with allyl/propargyl sulfides to form a sulfur ylide, which undergoes a chemoselective tautomerization/[2,3]-sigmatropic rearrangement reaction, a Doyle-Kirmse rearrangement/Cope rearrangement cascade reaction, or a Doyle-Kirmse rearrangement/elimination reaction, depending on the substituent of the sulfides. The protocol provides alkenyl and allenyl sulfides and multisubstituted phenols with moderate and high yields.
Collapse
Affiliation(s)
- Sijia Yan
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Junxin Rao
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Cong-Ying Zhou
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| |
Collapse
|
50
|
Makitalo CL, Yoshimura A, Rohde GT, Mironova IA, Yusubova RY, Yusubov MS, Zhdankin VV, Saito A. Imino‐λ
3
‐iodane and Catalytic Amount of I
2
‐Mediated Synthesis of
N
‐Allylsulfenamides via [2,3]‐Sigmatropic Rearrangement. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Cody L. Makitalo
- Department of Chemistry and Biochemistry University of Minnesota Duluth 55812 Minnesota USA
| | - Akira Yoshimura
- Department of Chemistry and Biochemistry University of Minnesota Duluth 55812 Minnesota USA
- Research School of Chemistry and Applied Biomedical Sciences The Tomsk Polytechnic University 634050 Tomsk Russia
| | | | - Irina A. Mironova
- Research School of Chemistry and Applied Biomedical Sciences The Tomsk Polytechnic University 634050 Tomsk Russia
| | - Rosa Y. Yusubova
- Research School of Chemistry and Applied Biomedical Sciences The Tomsk Polytechnic University 634050 Tomsk Russia
| | - Mekhman S. Yusubov
- Research School of Chemistry and Applied Biomedical Sciences The Tomsk Polytechnic University 634050 Tomsk Russia
| | - Viktor V. Zhdankin
- Department of Chemistry and Biochemistry University of Minnesota Duluth 55812 Minnesota USA
| | - Akio Saito
- Division of Applied Chemistry Institute of Engineering Tokyo University of Agriculture and Technology 2‐23‐16 Naka‐cho 184‐8588 Koganei Tokyo Japan
| |
Collapse
|